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Abstract: Recent studies have shown that cancer stem cells (CSCs) are involved in the occurrence and develop-
ment of hepatocellular carcinoma (HCC). However, potential mechanisms for this have not yet been elucidated. We 
constructed a model based on the Progenitor Cell Biology Consortium database to generate stemness indices. We 
then utilized RNA-seq data and clinical information from the Cancer Genome Atlas (CGA) and International Cancer 
Genome Consortium (ICGC) for model predictions and verification. An mRNA gene expression-based stemness index 
(mRNAsi) and a DNA methylation-based stemness index (mDNAsi) were both calculated through one-class logistic 
regression. By applying univariate Cox regression analysis, we found that the mRNAsi and the mDNAsi correlated 
significantly with overall survival. Functional prediction analyses were used to characterize implicated genes and 
their degree of involvement as network hubs through protein-protein interaction analysis, and Spearman’s rank 
correlation coefficient test was used to assess the relationship between hub genes and indices for stemness. The 
mRNAsi values for CGA and ICGC carcinoma samples correlated significantly with negative clinical characteristics 
and overall survival, whereas gene and protein-protein interaction analyses revealed that SNAP25, KPT19, GABBR1, 
and EPCAM were negatively associated with clinical mDNAsi scores. Collectively, the data suggest that our new 
stemness model based on related genes may predict patient prognoses.
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Introduction

Hepatocellular carcinoma (HCC) is the sixth 
most common cancer, and the third most fre-
quent cause of cancer death [1, 2]. Although 
surgical resection is the most promising treat-
ment during early stages, the 5-year survival 
rate for HCC is less than 20%, mainly due to 
limited treatment efficacy for advanced HCC 
[3-6]. Due to the absence of clinical symptoms 
during early stages, most patients with HCC are 
diagnosed at advanced stages, with poor prog-
noses [4, 7]. As the pathogenesis of HCC is 
unclear, it is essential to explore the mecha-
nisms of HCC development and progression so 
that early diagnosis and targeted treatments 
can be achieved.

The theory of cancer stem cells (CSCs) indicat-
ed to researchers that malignant solid tumors 

contained a highly heterogeneous population of 
CSCs [8, 9]. CSCs represent the small number 
of cancer cells that can self-replicate as stem 
cells and support both tumor growth and tumor 
characteristics, just as normal stem cells can 
renew and maintain organs and tissues [10, 
11]. Growing evidence suggests that CSCs play 
crucial roles in tumorigenesis, metastasis, re- 
currence, and resistance to both radiation  
and chemotherapy [12-15]. However, how CSCs 
maintain malignant tumors, including potential 
molecular mechanisms and signaling pathways 
involved, is not clear.

Recent studies have shown the potential for 
CSCs to be targets of cancer therapy [16, 17]. 
Yang et al. [18] found that HGF/c-Met promoted 
the enrichment of renal CSCs, which could be a 
mechanism for metastasis and recurrence to 
leverage as a new target for treating renal cell 
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carcinoma. Additional evidence has suggested 
that clarifying the source of CSCs may offer 
novel methods for individualized cancer treat-
ment [19], but for HCC, little is known about the 
source, expression patterns, and molecular 
mechanisms involved.

In this study, we constructed a model based on 
stem-cell sequencing data from the Progenitor 
Cell Biology Consortium (PCBC) to predict stem 
cell-associated molecular-feature (stemness) 
indices for HCC samples. We then utilized a 
Cancer Genome Atlas (CGA) cohort to make 
predictions and validated our findings through 
an independent dataset, analyzing relation-
ships between stemness indices, clinical char-
acteristics, and overall patient survival. Fur- 
thermore, we evaluated genes based on stem-
ness and performed protein-protein interaction 
(PPI) analyses to identify potential hub genes in 
signaling networks, which could provide CSC-
specific targets for the treatment of HCC.

Methods

Data processing

The following databases were used: the Cancer 
Genome Atlas (CGA, https://cancergenome.
nih.gov/) database, International Cancer Ge- 
nome Consortium (ICGC, https://icgc.org/) 
database, Progenitor Cell Biology Consortium 
(PCBC, https://progenitorcells.org/frontpage) 
database, and the STRING (https://string-db.
org/) database. Expression data (syn2701943) 
for pluripotent stem-cell samples, including 
embryonic stem cells (ESCs) and induced plu-
ripotent stem cells (iPSCs), were downloaded 
from the PCBC using the R package synapse 
(v0.6.61). RNA-Seq data and clinical follow-up 
information were downloaded concurrently for 
424 samples in the CGA, and 203 samples in 
the ICGC database, the latter used as a valida-
tion set. Clinical follow-up information included 
gender, age, pathology grading, Tumor Node 
Metastasis (TNM) staging, hepatitis B virus 
(HBV) and hepatitis C virus (HCV) infection sta-
tus, immune-cell score, and iCluster typing. 
Data were processed as previously described 
[20-22].

Calculation of a stemness index based on the 
one-class logistic regression (OCLR) method

To predict and calculate stemness indices, ESC 
and iPSC expression data from the PCBC data-

base were evaluated using the OCLR method, 
and this method was performed as previously 
described [23]. There were 78 total ESC and 
iPSC samples with 12,998 mRNA expression 
profiles of genes per sample. For DNA methyla-
tion-based stemness index (mDNAsi) calcula-
tions, 99 samples with 219 stem-cell probe 
signatures in the PCBC database were divided 
into two groups, of which 44 samples were 
stem-cell samples, and 55 samples were non-
stem-cell samples. Expression profiles and me- 
thylation data were centralized by the average 
value for each sample. Both the mRNA gene 
expression-based stemness index (mRNAsi), 
and the mDNAsi weight vector for each gene 
were then calculated by the OCLR method 
using the R package gel net (v1.2.1).

For the expression profiles and methylation 
data from the CGA and ICGC HCC samples, we 
calculated Spearman’s rank correlation coeffi-
cient for each sample gene with the model’s 
gene weight vector. We then performed a linear 
conversion to the Spearman’s rank correlation 
coefficient obtained from the sample. Con- 
version methods were used to identify a Spear- 
man’s rank correlation coefficient for each 
sample, minus a minimum, which was then 
divided by the maximum value. The values 
obtained became the mRNAsi and mDNAsi for 
each sample, with a distribution range of stem-
ness indices between zero and one.

Analysis and screening of differentially ex-
pressed genes

We used the R package DESeq2 (v1.24.0) to 
perform a differential analysis of the RNA-seq 
data from mRNAsi-high/mDNAsi-high and mR- 
NAsi-low/mDNAsi-low samples and then deter-
mined differentially expressed genes (DEGs) 
between the these two samples [23, 24]. These 
DEGs were then filtered according to a thresh-
old false discovery rate (FDR) < 0.05 and |log-
2FC| > 1 [22].

Enrichment analysis of gene function and 
pathways

A Kyoto Encyclopedia of Genes and Genomes 
(KEGG) (https://www.kegg.jp/ or https://www.
genome.jp/kegg/) pathway-enrichment analy-
sis was used to determine networks for meta-
bolic, signaling, and other molecular interac-
tions [25]. Gene Ontology (GO) functional 
enrichment analysis is an international stan-
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dard classification system for gene function, 
including Biological Process (BP), Cellular Com- 
ponents (CC), and Molecular Function (MF) 
[26]. Through these categories, gene functions 
were defined and described accordingly [27]. 
To examine possible functions related to the 
stemness indices of DEGs, we performed KE- 
GG-pathway analyses and GO functional enri- 
chment analyses with mRNAsi and mDNAsi 
through the R package cluster Profiler (v3.14.0). 
The significance level was defined as FDR < 
0.05.

PPI network analysis

The STRING database was used to analyze the 
PPI network of DEGs, and the degree algorithm 
in the cytoHubba plugin of Cityscape software 
was applied to identify hub genes. PPI network 
analysis is commonly used to elucidate molecu-
lar bases of diseases, and provides detailed 
knowledge about protein interactions which 
can be used to determine underlying factors for 
prevention, diagnosis, and treatment of dis-
ease [28]. This PPI analysis also provides infor-
mation about the genes and proteins shared in 
a disease and describes their interactions.

Statistics

A t-test was used for continuous variables. 
Statistical analyses were performed using IBM 
SPSS 24.0 software. All statistical tests were 
two-sided, and the significance level was 
defined as P < 0.05. Spearman’s rank correla-
tion coefficients were used to analyze correla-
tions between two variables. Kaplan-Meier sur-
vival curves were generated, after stratification 
of the data, and compared using a log-rank 
test.

Results

Relationships between indices for mRNA 
expression- and DNA methylation-based stem-
ness and clinical characteristics

We first investigated relationships between 
stem-cell index distributions and clinical char-
acteristics by ranking HCC samples according 
to their mRNAsi and mDNAsi values, and then 
tested whether any clinical features correlated 
with low- or high-stemness values. Clinical fea-
tures for tumor samples included gender, age, 
pathology staging, HBV or HCV infection status, 

immune-cell score, and iCluster typing. mRNAsi 
and mDNAsi exponential distributions for the 
CGA HCC samples are shown in Figure 1A, 1B, 
respectively. The mRNAsi exponential distribu-
tions for the ICGC HCC samples are shown in 
Figure 1C.

We then performed linear-regression testing for 
the above characteristics. As shown in Table 1, 
the mRNAsi values for the CGA HCC samples 
correlated significantly with pathology grading, 
HBV infection, immune-cell score, and iCluster 
typing. mDNAsi values were significantly asso-
ciated with immune-cell score and iCluster typ-
ing. Analysis of the ICGC HCC validation cohort 
dataset indicated that mRNAsi values were sig-
nificantly associated with TNM stage (Table 2).

For the CGA HCC samples, mRNAsi scores were 
significantly higher in HBV-infected samples 
compared to uninfected samples (Figure 2A), 
and in iCluster3 samples compared to iClus-
ter1 and iCluster2 samples (Figure 2B, 2C). In 
addition, samples from HCC patients with late 
pathology grading showed higher mRNAsi scor-
ing (Figure 2D, 2E). iCluster typing also signifi-
cantly correlated with mDNAsi values. mDNAsi 
scores were lowest in iCluster1 samples and 
highest in iCluster3 samples, while HBV infec-
tion and pathology grading had no obvious cor-
relations with mDNAsi scores (Figure S1A-E). In 
the ICGC HCC samples, TNM stage was signifi-
cantly associated with mRNAsi values in an 
increasing manner for the first three stages, 
but no relationship between HBV infection and 
mRNAsi values was found (Figure 2F, 2G). 
Immune scores were negatively correlated with 
both mRNAsi and mDNAsi scores in the CGA 
HCC samples (Figures 2H, S1F). Furthermore, 
there was a positive correlation between the 
mRNAsi and mDNAsi scores in the CGA HCC 
samples (R = 0.30, Figure 2I). Taken together, 
higher stemness-index values in HCC samples 
correlated with worse clinical characteristics, 
demonstrating that stemness indices may 
characterize tumor progression.

Correlations between HCC stemness indices 
and overall survival

To better understand the relationship between 
stemness-index values and prognosis, we first 
compared overall survival with clinical features 
such as gender, age, pathology grading, iClus-
ter typing, immune-cell scores, and HBV or HCV 
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Figure 1. Exponential mRNAsi and mDNAsi distributions based on clinical characteristics of HCC samples. A. The mRNAsi distribution based on the clinical charac- 
teristics of the CGA HCC samples. B. The mDNAsi distribution based on the clinical characteristics of the CGA HCC samples. C. The mRNAsi distribution based on the 
clinical characteristics of the ICGC HCC samples. HCC: hepatocellular carcinoma; mRNAsi: mRNA gene expression-based stemness index; mDNAsi: DNA methylation-
based stemness index; CGA: Cancer Genome Atlas; ICGC: International Cancer Genome Consortium.
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Table 1. Correlations between CGA HCC sample 
mRNAsi and mDNAsi values and clinical features and 
molecular typing

Percent/Average p (mRNAsi) p (mDNAsi)
Sex Male: 65.6% 0.80 0.12

Female: 34.4%
Age 60.13 0.47 0.23

G1
Grade G2 3.71E-05 0.67

G3
HBV 23.00% 3.04E-04 0.47
HCV 18.6% 0.76 0.15
Immune score 166.12 1.2E-03 0.018

iCluster1
iCluster iCluster2 1.29E-07 5.64E-31

iCluster3

Table 2. Correlations between ICGC HCC sample 
mRNAsi values and clinical features and molecu-
lar typing

Percent/Average p (mRNAsi)
Sex Male: 75.4% 0.12

Female: 24.6%
Age 67 0.2

I: 16.3%
TNM stage II: 47.3% 9.09E-03

III: 29.1%
IV: 7.4%

HBV 23.00% 0.81
HCV 18.6% 0.64
Immune score 166.12 0.97

according to iCluster typing (Table 3). Only 
iCluster2 samples grouped according to 
mRNAsi values showed a significant surviv-
al difference (Figures 3I-K and S2B-D). 
However, this evaluation was complicated 
by the small sample sizes and short survival 
times of the three groups.

We next used the above analysis on the 
ICGC HCC dataset, and validated that there 
were no correlations between survival and 
gender, age, immune-cell scoring, and HBV 
infection (Figure 4A-D). Overall survival was 
lower in the presence of HCV infection 
(Figure 4E) and was lower with increasing 
TNM stage (Figure 4F). For the stemness 
indices, overall survival of the mRNAsi-low 
group was longer than for the mRNAsi-high 
group (Figure 4G). Collectively, these data 

suggest that higher mRNAsi values correlate 
with poorer survival, which may offer new crite-
ria for determining prognoses in patients with 
HCC.

Screening for stem cell-related genes in HCC 
samples

Based on the above results, we further ana-
lyzed differentially expressed genes (DEGs) in 
the CGA HCC cohort. After threshold-filtering, 
136 DEGs were identified, with 110 genes 
downregulated and 26 genes upregulated in 
the mRNAsi-high group compared to the mRNA-
si-low group (Figure 5A). In the mDNAsi set, 
569 DEGs were identified, with 546 genes 
downregulated and 23 genes upregulated in 
the mDNAsi-high group compared to mDNAsi-
low group (Figure 5B). Common DEGs between 
the mRNAsi and mDNAsi sets were APOBEC3C, 
C1orf116, GABBR2, and TFCP2L1. In the fil-
tered ICGC cohort, 190 DEGs were observed, 
with 16 genes downregulated and 174 genes 
upregulated in the mRNAsi-high group com-
pared with the mRNAsi-low group (Figure 5C). 
The only DEG in common between the CGA and 
ICGC cohorts was upregulated ALDH1A3. These 
differences in gene expression reflect index-
value differences (high versus low) among HCC 
samples.

Functional analyses of differentially expressed 
genes

To explore the possible roles of these DEGs in 
the CGA HCC samples for tumorigenesis, me- 

infection status, among the HCC samples. The 
results demonstrated that gender, age, HCV 
infection, pathology grade, and iCluster typing 
were not significantly correlated with overall 
survival (Figure 3A-E). Significant survival dif-
ferences were identified in these samples 
based on HBV infection and immune-cell scor-
ing. The high immune-score group demonstrat-
ed higher survival compared to the low immune-
score group (Figure 3F), and patient survival for 
HBV-infected samples was lower than for non-
infected samples (Figure 3G). Importantly, 
overall survival for the mRNAsi-low group was 
higher compared to the mRNAsi-high group 
(Figure 3H), and survival for the mDNAsi-high 
group was higher compared to the mDNAsi-low 
group (Figure S2A). Samples grouped by mRNA-
si and mDNAsi values were then assessed 
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tastasis, recurrence, and drug resistance, we 
performed Gene Ontology (GO) functional anal-
yses for the 136 mRNAsi DEGs that showed no 
significant enrichments (FDR < 0.05). GO func-
tional annotations for the 569 DEGs identified 
using mDNAsi values indicated that the “metal 
ion transmembrane transporter activity” path-
way, and “monovalent inorganic action trans-
membrane transporter activity” were signifi-
cantly enriched (Figure 5D). KEGG-pathway 
enrichment analysis of mRNAsi DEGs found no 
significantly enriched pathways (FDR < 0.05), 
while KEGG-pathway enrichment analysis of 
mDNAsi DEGs demonstrated that the “cAMP 
signaling pathway” was significantly enriched 
(Figure 5E). GO functional annotations of the 
190 mRNAsi-grouped DEGs in the ICGC HCC 
samples showed significant enrichment for 
“extracellular matrix structural constituents” 
and “glycosaminoglycan binding” (Figure 5F). 
KEGG-pathway enrichment analysis of mRNAsi 
DEGs in the ICGC HCC samples found three sig-
nificantly enriched pathways, including the 
PI3K-AKT signaling pathway (Figure 5G). Taken 
together, we found that the DEGs from high- 
and low-stemness indices were enriched for 
pathways related to tumor formation, metasta-
sis and recurrence. These enrichments should 
aid in our understanding of tumorigenesis me- 
chanisms and may guide the development of 
targeted therapies for HCC.

PPI and hub-gene analyses of differentially 
expressed genes

To identify hub genes related to these stem-
ness-index values, PPI analyses were per-
formed based on DEGs. Ten genes (SNAP25, 
EPCAM, CALB2, SOX2, KRT19, GABBR1, MUC1, 
AFP, GRIN1, and GAD1) were identified as hub 
genes among mDNAsi DEGs (Figure 6A). 
Correlation analyses between these hub genes 
and mDNAsi values were performed, and sig-
nificant negative correlations were found be-

tween SNAP25, KPT19, GABBR1, and EPCAM 
and these index values (Figure 6B-E) while six 
other hub genes had no prominent connections 
(Figure 6F-K). These findings suggested that 
tumor stemness-index values could be utilized 
as new prognosticators for patients with HCC. 
In addition, SNAP25, KPT19, GABBR1, and 
EPCAM could be key genes involved in HCC 
tumorigenesis, metastasis and recurrence.

Discussion

In this study, we found that stemness indices 
were related to pathology grading, HBV infec-
tion, immune-cell score, iCluster typing, and 
TNM staging. Consistent with our HCC findings, 
several other studies have demonstrated that 
stemness-index values were associated with 
pathological characteristics in many cancers. 
For example, Pan et al. [24] observed that 
mRNAsi values in bladder cancer increased as 
tumor stage increased, with T3 staging having 
the most stem-cell characteristics. Lower mR- 
NAsi scores also had better overall survival and 
treatment outcomes. Another recent study 
reported that the expression of CSC marker 
OCT4 was correlated with poor differentiation, 
tumor size, and N stage in patients with rectal 
cancer, and concluded that OCT4 could be an 
independent prognostic biomarker [29]. These 
results suggest that stemness-index scores 
could play an essential role in defining tumor 
progression.

An increasing number of studies have also 
linked stemness indices with patient prognosis. 
In our study, we constructed a novel model to 
predict overall survival in HCC patients, and 
observed a relationship between HCC stem-
ness-index values, clinical characteristics, and 
survival. Our results showed that patients with 
worse clinical phenotypes usually possessed 
higher stemness-index scores. Furthermore, 
patients with higher mRNAsi scores tended to 

Figure 2. Relationships between the mRNAsi values and clinical characteristics. A. mRNAsi scores were higher 
in samples infected with HBV in the CGA HCC samples. B. mRNAsi scores were higher in iCluster3 compared to 
scores in iCluster1 and iCluster2 for all CGA HCC samples. C. mRNAsi scores were highest in iCluster3, and lowest 
in iCluster1, for CGA HCC samples without HBV infection. D. mRNAsi scores were highest for grade 3, and lowest for 
grade 1, for all CGA HCC samples. E. mRNAsi scores were highest for grade 3, and lowest for grade 1, for CGA HCC 
samples without HBV infection. F. For ICGC HCC samples, mRNAsi values increased with TNM staging only for the 
first three staging levels. G. There was no significant correlation between mRNAsi values and HBV infection for ICGC 
HCC samples. H. Immune scores were inversely related to mRNAsi scores in the CGA HCC samples. I. mRNAsi and 
mDNAsi values were positively correlated for CGA HCC samples. *P < 0.05. mRNAsi: mRNA gene expression-based 
stemness index; mDNAsi: DNA methylation-based stemness index; HBV: hepatitis B virus; CGA: Cancer Genome 
Atlas. ICGC: International Cancer Genome Consortium.
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Figure 3. Kaplan-Meier survival analyses of the CGA HCC samples. A. Survival probabilities for sex-grouped samples showed no significant differences. B. Survival 
probabilities for age-grouped samples showed no significant differences. C. Survival probabilities for samples grouped by HCV infection showed no significant differ-
ences. D. Survival probabilities for samples grouped by pathology grading showed no significant differences. E. Survival probabilities for iCluster-grouped samples 
showed no significant differences. F. The high immune-score group showed higher survival probabilities than the low immune-score group. G. The survival probabili-
ties for HBV-infected samples was lower than for HBV-negative samples. H. The survival probabilities for the mRNAsi-low group were higher than for the mRNAsi-high 
group for all CGA HCC samples. I. The survival probabilities for the mRNAsi-low group and the mRNAsi-high group in iCluster1 were not significantly different. J. The 
survival probabilities for the mRNAsi-low group were higher than those for the mRNAsi-high group in iCluster2. K. The survival probabilities for the mRNAsi-low group 
and the mRNAsi-high group in iCluster3 were not significantly different. *P < 0.05. mRNAsi: mRNA gene expression-based stemness index; CGA: Cancer Genome 
Atlas; HCV: hepatitis C virus.
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Table 3. Hazard ratio (HR) analysis and optimal 
thresholds for the CGA stem-cell index grouping

mRNAsi
iCluster HR Cut p

HR Lower Upper p Cut p (Cut)
C1 1.80 0.96 3.40 6.77E-02 0.37 0.23
C2 3.61 1.20 10.84 2.21E-02 0.35 0.08
C3 1.60 0.79 3.23 0.19 0.43 0.77
All 1.68 1.11 2.53 0.0145 0.38 0.08

mDNAsi
iCluster HR Cut p

HR Lower Upper p Cut p (Cut)
C1 0.69 0.37 1.31 0.26 0.12 0.87
C2 0.52 0.20 1.34 1.75E-01 0.20 0.67
C3 1.85 0.91 3.76 0.09 0.30 0.48
All 0.62 0.39 0.98 4.04E-02 0.12 0.51

have lower overall survival. However, we ob- 
served the opposite result in mDNAsi-grouped 
samples which may have been due to small 
sample size. Consistent with our findings, previ-
ous studies have shown that increased expres-
sion of CSC marker CD133 confers a poor prog-
nosis for invasive breast cancer [30], and Qin et 
al. [31] reported that an mRNAsi score was an 
independent prognostic factor in lung squa-
mous-cell carcinoma. Additionally, Zhao et al. 
[32] reported that TBX21 was both a patient 
prognosis predictor and a CSC maintenance 
driver via the TBX21-IL-4 pathway in lung ade-
nocarcinoma, suggesting that TBX21 may ser- 
ve as a novel predictive biomarker and thera-
peutic target. Lastly, Lian et al. determined that 
a prognostic signature based on mRNAsi val-
ues may predict sonic-hedgehog medulloblas-
toma prognosis and such a signature could be 
a potential biomarker for informing treatment-
options in clinical practice [23]. These findings 
demonstrate that stemness-index scores may 
be reliable predictors for HCC prognoses. 

Our investigation also examined DEGs between 
stemness indices and their possible functions. 
The functional pathways for “metal ion trans-
membrane transporter activity”, “monovalent 
inorganic action transmembrane transporter 
activity”, “cAMP signaling pathway”, “extracel-
lular matrix structural constituent”, “glycosami-
noglycan binding”, and “PI3K/AKT signaling 
pathway” were significantly enriched. Previous- 
ly, Roberto et al. found that synergistic inhibi-
tion of HCC and liver CSC proliferation could 

occur by targeting RAS/RAF/MAPK and WNT/β-
Catenin pathways [33], and microRNA-28-5p 
was reported to regulate liver CSC expansion 
via the IGF-1 pathway [34]. Moreover, Si et al. 
identified the miR219/E-cadherin axis as a 
potential therapeutic target against liver CSCs 
and as a predictor for sorafenib treatment in 
HCC patients [35]. Based on these results, 
stem cell-related DEGs correlated with a variety 
of tumorigenesis-related pathways, offering 
mechanistic insight into how to target CSC 
maintenance in patients with HCC.

Finally, we performed PPI analyses to identify 
HCC hub genes based on the identified DEGs. 
We found that SNAP25, KPT19, GABBR1, and 
EPCAM were significantly correlated with 
mDNAsi towards negative outcomes. Similar to 
our results, prior work showed that SENP1 
activity sustained CSCs in hypoxic HCC [36]. Li 
et al. observed that activated STAT3 played a 
pivotal role in maintaining stemness in HCC 
CSCs [37], and Ritu et al. found that miR-26b-
5p imparted metastatic properties and helped 
maintain Ep+ CSCs via HSPA8. Thus, miR-26b-
5p and HSPA8 may serve as molecular targets 
for selectively eliminating the Ep+ CSC popula-
tion in human HCC [38]. Collectively, these find-
ings further support the idea that identifying 
hub genes related to CSCs in HCC could inform 
about its pathogenesis and indicate novel tar-
gets for HCC therapy.

The stem-cell index results of this study may 
advance the development of objective diagnos-
tic tools for quantitating HCC stemness, prog-
nosticating judgments, and treatment-respon- 
se predictions. This provides new directions for 
clinical treatment, especially for developing 
personalized treatment protocols. Further re- 
search is needed to explore stemness index-
related genes and their roles in tumor prolifera-
tion and metastasis to advance this promising 
area.
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Figure 4. Kaplan-Meier survival analyses of ICGC HCC samples. A. Survival probabilities for samples grouped by gender showed no significant differences. B.  
Survival probabilities for age-grouped samples showed no significant differences. C. Survival probabilities for samples grouped by immune-cell scores showed no 
significant differences. D. Survival probabilities for samples grouped by HBV infection showed no significant differences. E. The survival probabilities for HCV-infected 
samples were lower than for HCV-negative samples. F. Survival probabilities were lower with increasing TNM staging. G. The survival probabilities for the mRNAsi-low 
group were higher than those for the mRNAsi-high group. *P < 0.05. mRNAsi: mRNA gene expression-based stemness index. ICGC: International Cancer Genome 
Consortium. TNM: Tumor Node Metastasis.
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Figure 5. Volcano plots, and GO and KEGG annotation maps, for differentially expressed genes (DEGs). A. 110 genes were downregulated, and 26 genes were  
upregulated, in the mRNAsi-high group compared to the mRNAsi-low group for CGA HCC samples. B. 546 genes were downregulated, and 23 genes were upregu-
lated, in the mDNAsi-high group compared to the mDNAsi-low group for CGA HCC samples. C. 16 genes were downregulated, and 174 genes were upregulated in the 
mDNAsi-high group compared to the mRNAsi-low group for ICGC HCC samples. D. The GO annotation map for the top 5 (out of 569) mDNAsi DEGs in the CGA HCC 
samples. E. The KEGG annotation map for the top 5 mDNAsi DEGs in the CGA HCC samples. F. The GO annotation map for the top 5 (out of 569) mRNAsi DEGs in the 
ICGC HCC samples. G. The KEGG annotation map for the top 3 mRNAsi DEGs in the ICGC HCC samples. *FDR < 0.05. GO: Gene Ontology; KEGG: Kyoto Encyclopedia 
of Genes and Genomes; DEGs: differentially expressed genes.
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Figure 6. PPI analyses and correlations between hub genes and mDNAsi scores. A. Protein interactions between the 10 hub genes; darker colors indicate higher 
scores that represent more network involvement and significance. B. EPCAM had a significant negative correlation with mDNAsi scores. C. GABBR1 has a significant 
negative correlation with mDNAsi scores. D. KRT19 had a significant negative correlation with mDNAsi scores. E. SNAP25 has a significant negative correlation 
with mDNAsi scores. F. AFP was not significantly correlated with mDNAsi scores. G. CALB2 was not significantly correlated with mDNAsi scores. H. GAD1 was not  
significantly correlated with mDNAsi scores. I. GRIN1 was not significantly correlated with mDNAsi scores. J. MUC1 was not significantly correlated with mDNAsi 
scores. K. SOX2 was not significantly correlated with mDNAsi scores. *P < 0.05. mDNAsi: DNA methylation-based stemness index; PPI: protein-protein interaction.
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Figure S1. Relationship between mDNAsi values and clinical characteristics. A. There were no significant correla-
tions between mDNAsi scores and HBV infections in CGA HCC samples. B. mDNAsi values were highest in iCluster3 
and lowest in iCluster1 for CGA HCC samples without HBV infections. C. There were no significant correlations 
between mDNAsi scores and pathology grading in CGA HCC samples without HBV infections. D. mDNAsi scores 
were highest in iCluster3 and lowest in iCluster1 for all CGA HCC samples. E. There were no significant correlations 
between mDNAsi values and pathology grading for all CGA HCC samples. F. Immune scores were inversely related 
to mDNAsi values.

Figure S2. Kaplan-Meier survival analyses for CGA HCC samples. A. Survival probabilities for the mDNAsi-high group 
were higher than those of the mDNAsi-low group for all GCA HCC samples. B. Survival probabilities for the mDNAsi-
low group and the mDNAsi-high group in iCluster1 were not significantly different. C. Survival probabilities for the 
mDNAsi-low and the mDNAsi-high group in iCluster2 were not significantly different. D. Survival probabilities for the 
mDNAsi-low group and the mDNAsi-high group in iCluster3 were not significantly different.


