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Original Article
Systematic analysis using a bioinformatics strategy 
identifies SFTA1P and LINC00519 as potential  
prognostic biomarkers for lung  
squamous cell carcinoma
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Abstract: Lung cancer has high incidence and mortality rates, in which lung squamous cell carcinoma (LUSC) is a 
primary type of non-small cell lung carcinoma (NSCLC). The aim of our study was to discover long non-coding RNAs 
(lncRNAs) associated with diagnose and prognosis for LUSC. RNA sequencing data obtained from LUSC samples 
were extracted from The Cancer Genome Atlas database (TCGA). Two prognosis-associated lncRNAs (including 
SFTA1P and LINC00519) were selected from LUSC samples, and the expression levels were also verified to be as-
sociated abnormal in LUSC clinical samples. Our findings demonstrate that lncRNAs SFTA1P and LINC00519 exert 
important functions in human LUSC and may serve as new targets for LUSC diagnosis and therapy.
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Introduction

Lung cancer is the leading cause of cancer 
death world-wide, responsible for 27% of can-
cer deaths in male patients and about 22% in 
female patients [1]. Annually, the estimated 
new cases of lung and bronchus cancer num-
ber more than 25,000 globally, ranking second 
across all cancer types [2], and the five-year 
survival percentage is only 18.5% [3]. Lung 
squamous cell carcinoma (LUSC), a type of  
cancer that originates in squamous cells, is 
generally found in the tissue that forms the lin-
ing of the respiratory tract; LUSC accounts for 
about 30% of non-small cell lung cancer 
(NSCLC) cases [4, 5]. Therefore, LUSC is one of 

the primary pathological subtypes of lung can-
cer, constituting a vast proportion and poor 
prognosis of diagnosed cases.

Usually, patients with LUSC are diagnosed in 
the late stage, and most of the available treat-
ment methods can not be implemented in  
time [6]. In addition, the sensitivity of patients 
with LUSC to radiotherapy and chemotherapy  
is far less than that of patients with small cell 
carcinoma (SCC) [7]. LUSC cancer cells usually 
show different shapes, which makes it impos-
sible to clearly distinguish the scope from sur-
rounding normal adjacent tissues [8-10]. This 
leads to a high recurrence rate of LUSC, making 
the prognosis more difficult to assess [11]. At 
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present, accurate prognosis and timely surgical 
resection are the key to improve the survival 
rate of patients with LUSC.

In recent years, researchers have carried out  
a series of in-depth studies on the methodolo-
gy and/or markers of lung cancer based on  
the principle of early diagnosis and early treat-
ment of cancer, and made significant progress 
in early diagnosis and prognosis prediction  
[12-14]. In recent years, the development and 
progress of LUSC have been deeply studied at 
the molecular level [18-20], it has been con-
firmed that the occurrence of LUSC is closely 
related to the expression of many oncogenes 
and the deletion of tumor suppressor genes or 
the structural abnormalities of their products 
[15-17]. In addition to studying the genes 
involved in the diagnosis and treatment of 
LUSC, researchers have found that the key 
pathways of gene and cell signaling pathways 
that can be used to evaluate or predict the 
prognosis of LUSC are also very important  
[21-23]. Some genes and proteins related to 
LUSC have been identified. Among them,  
some related genes have been used to evalu-
ate lung cancer sections by immunohisto- 
chemical staining. The expression of these 
genes (e.g., SFTA3, TMC5, CALML3, and  
MLPH) can be used to distinguish between 
LUSC and lung adenocarcinoma (LUAD) [24-
26]. In addition, studies on biomarker identifi-
cation have also confirmed that some genes, 
including c-erbB-2, can be used as potential 
prognostic indicators, while squamous differ-
entiation genes and pathway related genes 
(such as KEAP1 and NFE2L2) can be used as 
potential therapeutic targets for LUSC [27-30].

Long non-coding RNAs (lncRNAs) are RNA  
transcripts with a length of more than 200 
nucleotides and do not encode proteins [34-
36]. They are involved in a variety of biological 
processes, such as differentiation, cell prolif-
eration, epigenetic regulation, transcription, 
chromosome reconstruction, and post-tran-
scriptional modification [37-39]. In recent 
years, lncRNAs have been proved to be involv- 
ed in the regulation of a variety of human dis-
eases, including tumors, which has attracted 
more and more attention [31-33]. Studies  
have shown that lncRNAs play an important 
role in cancer biology, and the expression level 
or mutation of specific lncRNAs genes are 
closely related to the development and prog-
ress of cancer [40-43]. In addition, a large num-

ber of lncRNAs are abnormally expressed in a 
variety of tumors, including hepatocellular car-
cinoma, breast cancer, lung cancer, colorectal 
cancer and malignant glioma, which indicate 
that they may be effective biomarkers for diag-
nosis and prognosis, or as potential cancer 
treatment targets [44-47].

In this study, we downloaded and analyzed  
data from TCGA and Gene Expression Omni- 
bus (GEO) databases to screen differentially 
expressed lncRNAs and analyze the diagnostic 
and prognostic value of these key lncRNAs in 
LUSC.

Materials and methods

Tissue samples and ethics statement

Fresh frozen samples were collected from  
LUSC patients undergoing surgical resection 
between 2010 and 2016 at Shanghai Tenth 
People’s Hospital, Tongji University School of 
Medicine, which included 10 paired adjacent 
non-cancerous tissues and LUSC tumor. The 
study was approved by the Ethical Committee 
of Shanghai Tenth People’s Hospital, Tongji 
University School of Medicine (SHSY-IEC- 
Paper-16-18). 

Data source

High-throughput data from RNA sequencing  
of patients diagnosed with LUSC were down-
loaded from TCGA [48]. These RNA sequ- 
encing data were from the Illumina HiSeq 
RNASeq platform and included 504 LUSC  
and 49 adjacent non-cancerous lung tissues. 
Additionally, data of LUSC patients from  
GEO database (http://www.ncbi.nlm.nih.gov/
geo) were used to validate TCGA results. 
Independent sample t tests were used to sta-
tistically analyze the differential expression 
level of the selected lncRNAs between para-
carcinoma lung tissues and LUSC samples. 
Receiver operating characteristic (ROC) curve 
analysis was used to validate the diagnostic 
value of the lncRNAs for LUSC patients based 
on GEO dataset GSE30219.

We also evaluated the differing lncRNAs ex- 
pression levels between para-noncancerous 
tissues and cancer tissues with the assistan- 
ce of Gene Expression Profiling Interactive 
Analysis (GEPIA) (http://gepia.cancerpku.cn), 
which analyzes the RNA sequencing data of 23 
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types of normal samples and cancers from 
TCGA.

Exploration of the diff-lncRNAs in LUSC

The RNA-Seq data of LUSC samples with 
60,483 mRNAs covered 7,589 lncRNAs, as 
described by Ensembl (http://asia.ensembl.
org/) or NCBI (https://www.ncbi.nlm.nih.gov/). 
The R language package DESeq [49] was  
subsequently used to calculate differentially 
expressed lncRNAs (the absolute log2 fold 
change (FC) ≥ 2 and adjusted P < 0.05). The 
lncRNAs with an expression of less than one in 
more than 15% of samples were excluded, and 
the lncRNA expression level was log2 trans-
formed for following analysis.

The receiver operating characteristic (ROC) 
curve was available to analyze the diagnostic 
role of differentially expressed lncRNAs, and 
the top 10 lncRNAs were then selected for fur-
ther evaluation.

RNA extraction and RNA sequencing analysis

RNA was purified using the QIAGEN RNA Kit 
(Qiagen, CA, USA) according to the manufac-
turer’s instructions [50, 51]. Specimens from 
10 paired adjacent non-cancerous tissues  
and tumor samples were obtained for RNA 
sequencing analysis [52]. Sequencing was per-
formed on the Illumina Nextseq 500 platform 
according to the manufacturer’s instructions 
[53]. Clean reads were mapped to reference 
Homo sapiens transcriptome sequences from 
the University of California Santa Cruz genome 
bioinformatics website (hg19) using Bowtie 2 
and TopHat 2.0.1 software [54].

Statistical analysis

The statistical analyses were performed with 
SPSS statistics for Windows, Version 22.0  
(IBM Corp.; Armonk, NY, USA). Data were pre-
sented as the mean and standard deviation 
(SD). The different expression was assessed  
by Student’s t test. The Pearson correlation  
test (SPSS Inc., Chicago, IL, USA) was per-
formed for the expression levels of differen- 
tially expressed lncRNAs that differed be- 
tween normal and LUSC tissues. The prognos-
tic roles of differentially expressed lncRNAs 
were analyzed using the Kaplan-Meier method 
to contradistinguish survival time and results 
were compared with a log-rank test. The uni-

variate and multivariate Cox analyses for these 
lncRNAs were also performed. A P-value < 0.05 
was considered statistical significance. 

Results

Differentially expressed lncRNAs in LUSC 
based on TCGA data

The lncRNA expression level transformed with 
log2 was calculated by DESeq R software. In 
this study, we found 884 differentially 
expressed lncRNAs from LUSC samples, in 
which 669 highly expressed and 215 lowly 
expressed (Figure 1A). Then, all the differen-
tially expressed lncRNAs were selected for ROC 
analysis, and there were 75 lncRNAs with an 
area under the ROC curve (AUC) over 0.95. 
Therefore, these lncRNAs had potentially high 
diagnostic value for LUSC patients.

Clinical value of the top ten aberrantly down- 
and upregulated lncRNAs in LUSC

The top ten differentially downregulated and 
upregulated lncRNAs were selected for further 
analysis, including downregulated SFTA1P, 
LINC00968, LINC01314, MIR3945HG, RP1-
78O14.1, FENDRR, RP11-613D13.8, RP11-43- 
4D9.1, AC018647.3, and AC109642.1 (Figure 
1B, 1D), and upregulated RP11-244M2.1, 
AC068831.16, AC005537.2, RP11-796E10.1, 
LINC00519, RP11-776H12.1, RP11-161I6.2, 
RP13-463N16.6, CTD-2527I21.15, and CASC9 
(Figure 1C, 1D). All of these twenty differentially 
expressed lncRNAs showed high diagnostic val-
ues for distinguishing LUSC from non-cancer-
ous lung tissues, and all had AUCs greater than 
0.95 (Figure 1E).

Survival analyses showed that SFTA1P, 
LINC00968, RP11-613D13.8, LINC00519, and 
CTD-2626G11.2 were significantly involved in 
the overall survival (OS) time of LUSC patients, 
while LINC01197 and LINC00519 were signifi-
cantly involved in the disease-free survival 
(DFS) time of LUSC patients (Figure 2).

Concerning the relationship between these 
twenty lncRNAs and LUSC progression, some 
differentially expressed lncRNAs were signifi-
cantly related to clinical parameters of LUSC 
(Figure 3). In particular, the level of SFTA1P, 
AC109642.1, LINC01314, LINC00968, AC0- 
18647.3, and CASC9 was able to distinguish 
the LUSC patients in the early and middle stage 



SFTA1P and LINC00519 in LUSC

171	 Am J Transl Res 2021;13(1):168-182

from the patients in the advanced stage (Table 
1).

Validation of expression and ROC value of 
three lncRNAs using GEO data

The expression levels of three key lncRNAs, 
LINC01197, SFTA1P, and LINC00519 were 
extracted from GEO dataset GSE30219. Am- 
ong these, remarkably lower expression was 

observed for SFTA1P in LUSC tissues, while 
LUSC tissues showed predominantly higher 
expression of LINC00519 (Figure 4A).

Next, survival analyses of LUSC patients 
showed that SFTA1P and LINC00519 were sig-
nificantly related to survival time of LUSC, while 
LINC00519 was significantly related to the dis-
ease-free time of LUSC patients (Figure 4B). 
Moreover, the ROC curves of two lncRNAs, 

Figure 1. The differentially expressed lncRNAs between para-tumorous lung tissues and LUSC tissues. (A) Volcano 
plot of the all differentially expressed lncRNAs between para-tumorous lung tissues and LUSC tissues. Value of 
log2FC of the top ten aberrantly downregulated (B) and upregulated (C) lncRNAs in LUSC. (D) Differential expression 
of the top ten lncRNAs between LUSC and para-tumorous lung tissues. (E) AUC of the top 10 aberrantly upregulated 
lncRNAs.
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SFTA1P (AUC = 0.92) and LINC00519 (AUC = 
0.99), indicated favorable diagnostic value for 
LUSC (Figure 4C) (Table 2).

Validation based on LUSC clinical samples

We performed RNA sequencing to study lncRNA 
expression in the 10 paired clinical samples. 
The mean expression levels of SFTA1P, 
LINC00968, and LINC01197 were significantly 

lower in LUSC tissues than in those of non- 
cancerous normal lung sapmles (P < 0.01, 
Figure 5A). The expression level of LINC00519 
was notably higher in LUSC tissues than in non-
cancerous lung tissues (P < 0.001, Figure 5A).

SFTA1P expression levels were significantly 
lower in tissues from the 10 tumor biopsies 
than in the paired adjacent non‑tumor tissues. 
However, LINC00519 expression levels were 

Figure 2. Kaplan-Meier curves of the top 10 aberrantly downregulated and upregulated lncRNAs in LUSC. The X-axis 
indicates overall survival and disease-free survival time (months), and the Y-axis indicates the survival rate.
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significantly higher in tissues from the 10 tu- 
mor biopsies than in the paired adjacent 
non‑tumor tissues. Next, we carried out the  
correction analysis and found a significant neg-
ative correlation between tumor biopsy tissue 
and paired adjacent non‑tumor tissues for 

SFTA1P and LINC00519 expression (Figure 
5B).

Survival analyses showed that the ROC curve  
of LINC00519 indicated favorable diagnostic 
value for LUSC (Figure 5D).

Figure 3. The relative expression of differentially expressed lncRNAs between different LUSC stages. Red violin plot 
indicates the expression of upregulated lncRNAs relative to different stages in LUSC; green violin plot indicates the 
relative expression of downregulated lncRNAs relative between different stages in LUSC.
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Figure 4. The expression levels and clinical significance of SFTA1P, LINC01197, and LINC00519 in LUSC based on 
GEO dataset GSE30219. A. The differing expression levels of SFTA1P, LINC01197, and LINC00519 between LUSC 
tissue and normal tissue based on GEO dataset GSE30219. B. Kaplan-Meier curves of SFTA1P, LINC01197, and 

Table 1. Univariate and multivariate Cox analyses for six lncRNAs in LUSC

Variables
Univariate Multivariate

P value Hazard ratio 95% CI P value Hazard ratio 95% CI
LINC00519 0.002 1.875 1.264-2.317 0.006 1.811 1.211-2.158
SFTA1P 0.004 1.573 1.154-2.145 0.019 1.551 1.073-2.242
RP11-613D13.8 0.033 1.375 1.002-2.016 0.473 1.185 0.887-1.234
LINC00968 0.118 1.276 0.945-1.732
LINC01197 0.468 1.025 0.898-1.543
CTD-2626G11.2 0.605 0.968 0.756-1.322
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Figure 5. The expression levels and clinical significance of SFTA1P, LINC01197, and LINC00519 in 10 LUSC pa-
tients. The expression levels (A) and correlation analyses (B) of SFTA1P, LINC00519, LINC00968, and LINC01197 
in paired LUSC tissues and non-cancerous lung tissues from 10 LUSC patients. (C) Kaplan-Meier curves of SFTA1P, 
LINC00519, LINC00968, and LINC01197 from LUSC clinical samples. (D) ROC curves of SFTA1P, LINC00519, 
LINC00968, and LINC01197 from LUSC clinical samples.

Table 2. Univariate and multivariate Cox analyses for three lncRNAs in LUSC

Variables
Univariate Multivariate

P value Hazard ratio 95% CI P value Hazard ratio 95% CI
LINC00519 0.013 2.577 1.265-5.311 0.008 2.677 1.284-5.215
SFTA1P 0.036 0.684 0.521-1.005 0.042 0.625 0.511-0.926
LINC01197 0.269 1.237 0.662-2.314

LINC00519 in LUSC based on GEO dataset GSE30219. C. ROC curves of SFTA1P, LINC01197, and LINC00519 in 
LUSC based on GEO dataset GSE30219.
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Analysis of two key lncRNAs expression in 22 
types of cancers using TCGA

Downregulation of SFTA1P was found in lung 
adenocarcinoma (LUAD) and LUSC tissues 
based on the results from GEPIA (Figure 6A). 
There was no significant difference in SFTA1P 
expression between cancer samples and para-
noncancerous normal samples among other 
cancer types.

As shown in Figure 6B, consistent results  
were found in brain lower grade glioma (LGG), 
head and neck squamous cell carcinoma 
(HNSC), and LUSC, revealing that the LINC- 
00519 level was significant higher in these  
cancer samples compared with that in para-
noncancerous tissues, while the expression of 
LINC00519 was significantly downregulated in 
testicular germ cell tumors (TGCT). However, 
there was no significant difference of LINC- 

Figure 6. SFTA1P and LINC00519 expression levels in multiple tumors. A. SFTA1P relative expression level in LUAD 
and LUSC. B. LINC00519 relative expression level in multiple tumors. C. SFTA1P relative expression between differ-
ent stages in LUAD. D. LINC00519 relative expression between different stages in HNSC and LUAD. E. Kaplan-Meier 
curves of SFTA1P in LUAD and LINC00519 in LUSC and HNSC.
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00519 expression between LUAD samples and 
para-noncancerous normal lung tissues.

Concerning the relationship between SFTA1P 
and LUAD progression, SFTA1P was found to  
be closely related to LUAD clinical parameters 
(Figure 6C). Nevertheless, LINC00519 levels 
could not distinguish the LUAD or HNSC pa- 
tients in the early stage from those in the 
advanced stage (Figure 6D).

Survival analyses showed that LINC00519  
was significantly related to the LUAD survival 
time (Figure 6E). However, LINC00519 level 
was not related to the OS and DFS of HNSC. 
SFTA1P expression showed no significant 
effect on OS or DFS in LUAD.

Discussion

Genomics projects, such as TCGA, have yielded 
much information about alternative molecular 
pathways and genomic, transcriptomic, pro-
teomic, and epigenetic alterations in many  
specific types of cancer [55-58]. Studies utiliz-
ing databases not only provide information on 
the matter of protein-coding genes but also  
can be used to study non-coding transcripts, 
which have been shown to be involved in the 
regulation of a diverse array of biological 
processes.

Few studies have examined how lncRNA  
participates in the invasion and metastasis of 
cancer [59-61]. Non-coding RNA HOX mimics 
antisense intergenic RNA (HOTAIR) and in- 
hibits the translation of HOXD by recruiting 
PRC2, which acts as a scaffolding molecule 
[62]. It also involves PRC2 and the LSD1/
CoREST/REST complex, influencing gene-spe-
cific histone modification changes, which in 
turn leads to cancer metastasis [63].

LncRNA is essentially a substitute in addi- 
tional tissues [64-66]. Miscellaneous studies 
have shown that lncRNA has obvious tissue-
specific expression [67-69]. Accurate analysis 
of the information from differentially expressed 
lncRNAs uploaded to the GEO database is 
important in bioinformatics technology [70]. 
Normal expression of the lncRNAs is limited in 
tumors and aberrant in normal tissues, and 
typical lncRNAs may play a streamlining role in 
regulating cancer occurrence, development, 
invasion, and metastasis [71-73].

LncRNAs that have been previously found to 
play a role in lung infection include MALAT1, 
HOTAIR, Gas5, and H19 [74-77]. Critically, 
these lncRNAs function in tumor progression, 
aggressiveness, and metastasis and reveal an 
important regulatory issue in lung disease cells 
[78-81].

Studies have found that SFTA1P is downregu-
lated in gastric illness tissues compared to 
adjacent normal tissues [82]. SFTA1P could be 
a dangerous biomarker of gastric cancer in  
clinical settings because the downregulation  
of SFTA1P leads to poorer outcomes for 
patients with gastric cancer [83]. It should  
also be taken into consideration that overex-
pression of SFTA1P could lead to improvement 
both in vitro and in vivo, inhibit G1, promote 
apoptosis of gastric cancer cells, and stall the 
advance and invasion of gastric cancer [84-
86]. Interestingly, SFTA1P also inhibits lung 
adenocarcinoma cell migration and invasion, 
but it does not inhibit LUAD cell proliferation 
[87]. However, the performance of LINC00519 
in cancer has never been reported. More 
research is needed on the role of these  
aberrant lncRNAs in lung squamous cell 
carcinoma.

Conclusion

In conclusion, this study validated the asso- 
ciation with LUSC prognosis of two lncRNAs, 
SFTA1P and LINC00519, and the associated 
abnormal expression levels were also verified 
in LUSC clinical samples. These findings dem-
onstrated that lncRNAs SFTA1P and LINC- 
00519 may be involved in the occurrence and 
progression of human LUSC and may serve as 
new targets for LUSC diagnosis and therapy.
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