Review Article The efficacy and safety of Sacubitril/Valsartan in the treatment of chronic heart failure: a meta-analysis

Caiyun Zheng^{1,4*}, Hengfen Dai^{2*}, Jungao Huang^{3*}, Meimei Lin^{1*}, Qiaowen Zheng¹, Pujing Tang¹, Jingwen Xiao², Yan Zhang²

¹Affiliated Fuqing City Hospital of Fujian Medical University, Fuzhou 350300, China; ²Fuzhou First Hospital, Fuzhou 350009, China; ³Ganzhou Maternal and Child Health Hospital, Ganzhou 341000, China; ⁴Fujian Medical University, Fuzhou 350122, China. *Equal contributors.

Received January 22, 2021; Accepted September 6, 2021; Epub November 15, 2021; Published November 30, 2021

Abstract: Objective: A meta-analysis of the studies involving Sacubitril/Valsartan in chronic heart failure was performed to compare the efficacy and safety of Sacubitril/Valsartan with traditional drug therapy in chronic heart failure. Methods: We searched databases from PubMed, EMBASE, the Cochrane Library, Web of Science, and clinicaltrials.gov for studies published between 2010 and 2020 that reported efficacy and safety following Sacubitril/ Valsartan administration. Results: Ten studies enrolling 1689 patients were included. Sacubitril/Valsartan outperformed traditional medicine (especially the Non-ARNI group) in terms of blood pressure, biomarkers and cardiac reverse remodeling indices, with striking changes in left ventricular ejection fraction, systolic blood pressure. Sacubitril/Valsartan showed significant benefit in renal function in patients with chronic heart failure. Conclusions: Compared with traditional drugs, Sacubitril/Valsartan significantly improved echocardiography, vital signs and biomarkers of patients with chronic heart failure, and reduced the incidence of hyperkalemia, renal dysfunction and other adverse reactions. Further large sample trials are needed in the future to determine the long-term effects of Sacubitril/Valsartan on efficacy and safety in patients with chronic heart failure.

Keywords: Chronic heart failure, Sacubitril/Valsartan, cardiac reverse remodeling, meta-analysis

Introduction

Chronic Heart Failure (CHF) is a complex clinical syndrome in which ventricular filling or ejection function is continuously impaired due to structural or functional abnormality of the heart, which is also the terminal stage of various cardiac disorders. The number of heart failure patients worldwide had reached 23 million and was increasing by 2 million per year, and the 5-year mortality of heart failure was much higher than that of most cancers [1]. In recent decades, heart failure has been considered as a chronic and spontaneous progressive disease, and the activation of different neuroendocrine systems leads to cardiac remodeling, which is a key factor in the development of heart failure (HF) [2, 3]. The sympathetic nervous system (SNS), renin-angiotensin-aldosterone system (RAAS) and natriuretic peptide system (NPS) are the three predominant neuroendocrine systems, that might play a favorable or unfavorable role in the pathophysiology of heart failure. As the first angiotensin receptorneprilysin inhibitor (ARNI), Sacubitril/Valsartan can block angiotensin II receptor and inhibit neprilysin enzyme through RAAS and NPS, respectively.

In the leading study (PARADIGM-HF trial), Sacubitril/Valsartan was shown to be superior to enalapril in reducing mortality, hospitalization rates and blood pressure of heart failure patients (LVEF≤40%) [4]. T The recently published PARAGON-HF trial results indicate that Sacubitril/valsartan may benefit patients with LVEF ranging from 45% to 57% (median) [5]. Myocardial fibrosis is an important pathophysiological mechanism underlying the development of HF. Sacubitril/Valsartan significantly decreased some biomarkers (associated with profibrotic signaling), which may contribute to improved outcomes [6]. Compared to enalapril, Sacubitril/Valsartan resulted in an early and

sustained reduction in biomarkers of myocardial wall stress and injury (N-terminal pro-Btype natriuretic peptide and troponin) [7]. The concentration of NT-proBNP correlated with the extent of reversal of ventricular remodeling [8], and a recent study confirmed the involvement of Sacubitril/Valsartan in the above relationship [9]. In this context, we performed a systematic meta-analysis of the latest studies in the field of Sacubitril/Valsartan to compare the effects of other drugs with ARNI on CHF outcomes.

Methods

Literature retrieval

A systematic literature review was conducted for studies published in the English language from 2000 through to 2020 by searching PubMed, EMBASE, the Cochrane Library, Web of Science, and clinicaltrials.gov databases. The research subjects included "angiotensin receptor-neprilysin inhibitor", "heart failure", "chronic heart failure", "Sacubitril/Valsartan", "angiotensin receptor antagonists" and "angiotensin-converting enzyme inhibitor" (see the **Multimedia Appendix 1**).

Inclusion and exclusion criteria

All controlled studies involving the treatment of chronic heart failure with Sacubitril/ Valsartan were included. Case reports were excluded. Included studies must meet the following criteria: (1) Adult patients aged 18 years old or over), (2) designed to compare the effects of ACEI/ARB with ARNI in the CHF population. (3) reported at least one of the primary outcomes or secondary outcomes: Vital signs (systolic blood pressure, diastolic blood pressure, heart rate), Echocardiography (left ventricular ejection fraction, left ventricular end-systolic dimension, left ventricular end-diastolic dimension, left atrial dimension, peak e-wave velocity/peak a-wave velocity ratio),

Biomarkers (N-terminal pro-brain natriuretic peptide) and Safety (all-cause mortality, death from cardiovascular causes, angioedema, hyperkalemia, symptomatic hypotension, renal dysfunction).

Data extraction and quality evaluation

All the titles and abstracts of the literature were initially screened by two authors (Dai Hengfen and Zheng Caiyun) independently. Then, the two authors analyzed the full text respectively. Any disagreements were resolved by discussion and mutual consensus, or where agreement could not be reached, by arbitration with a third author (Huang Jungao). The researchers used a literature data extraction table to extract the required data, and other researchers confirmed the accuracy and authenticity of the data. The contents extracted included study information (study subject, author, date), baseline characteristics of study subjects (sample size, median age, sex ratio, heart failure type), control group, outcome indicators and adverse reactions after follow-up.

					-			
Study	Study Design	Interventions	Category	Patients (N)	Age (year, Mean ± SD)	Women (%)	Outcomes	Follow-up (months)
Solomon 2012 [19]	RCT	ARNI Valsartan	HFpEF	301	71.1±9.1	56.5	ECG, Biomarkers, Safety	3 and 9
McMurray 2014 [4]	RCT	ARNI Enalapril	HFrEF	8399	63.8±11.4	21.8	Safety	27
Kang 2018 [20]	RCT	ARNI Valsartan	HFrEF	118	62.6±11.2	39.0	ECG, Safety	12
Gao 2019 [21]	RCT	ARNI Valsartan	HFrEF	120	70.3±7.3	26.7	ECG, Biomarkers, Safety	2
Solomon 2019 [5]	RCT	ARNI Valsartan	HFpEF	4796	72.7±8.4	51.7	Safety	35
Martens 2018 [22]	Prospective Observation	ARNI Non-ARNI	HFrEF	125	66.0±10.0	19.0	Vital Signs, ECG	4.2
Romano 2019 [14]	Prospective Observation	ARNI ACEI/ARB	HFrEF	205	59.0±10.0	15.0	Vital Signs, ECG, Biomarkers	10.5
Bayard 2019 [23]	Prospective Observation	ARNI Non-ARNI	HFrEF	41	70.0±10.0	24.4	ECG	3
El-Battrawy 2019 [24]	Prospective Observation	ARNI Non-ARNI	HFrEF	59	66.8±12.1	NR	Vital Signs, ECG, Biomarkers	12
Spannella 2019 [25]	Longitudinal Observational	ARNI Non-ARNI	HFrEF	84	65.4±11.3	32.1	Vital Signs, ECG	6 and 12

Table 1. Basic characteristics of included studies of the meta-analysis

Vital Signs: including Systolic Blood Pressure, Diastolic Blood Pressure, Heart rate; ECG: echocardiography indicators including LVEF, LVED, LA and E/A ratio; Biomarkers: mainly refers to the NT-proBNP; Safety: including All-cause mortality, Death from cardiovascular causes, Angioedema, Hyperkalemia, Symptomatic hypotension, Renal dvsfunction.

The quality of included randomized controlled trials was assessed using the Cochrane risk bias tool of the Cochrane system [10], and the quality of other studies (including retrospective cohort studies and prospective observational studies) were appraised using the Newcastle-Ottawa quality assessment scale [11].

Sensitivity analyses

Meta-analyses were conducted using Cochrane's Review Manager (RevMan) version 5.3 (The Cochrane Collaboration, Copenhagen, Denmark) and R programming language, version 3.6.3 (R Foundation for Statistical Computing, Guangzhou, China) with included literatures. Chi-square test was used to assess heterogeneity and I² was used for quantitative analysis. $P \ge 0.05$ and I² $\le 50\%$ were considered to have no heterogeneity and a fixed-effects model was used. If P < 0.05 and I² $\ge 50\%$, the random-effects model was used, and then subgroup analysis was conducted to determine the cause of heterogeneity.

Results

Literature search results and baseline characteristics

Seven hundred and thirty-one articles were retrieved from different databases, along with

69 articles on clinical trial.gov. for a total of 800 articles. After removing the repeated studies, the remaining 703 articles were screened. 37 qualified articles with full text were read, 27 articles were excluded, 10 articles were included. Among the 10 literatures, there were 5 RCTs and 5 cohort studies. A total of 1689 patients were included. The system search results are shown in **Figure 1**. The baseline characteristics are presented in **Table 1**.

Quality assessment and publication bias

The quality of included randomized controlled trials was evaluated using the Cochrane systematic evaluation method, and other studies were evaluated using the Newcastle-Ottawa scale (**Figure 2** and **Table 2**). Funnel plots did not show significant publication bias (**Figure 3**).

Efficacy endpoints

LVEF: Ten studies provided data on LVEF. Metaanalysis was conducted according to different drugs in the control group, and there was no significant difference and high heterogeneity in the Valsartan group, while there was a significant difference in the non-ARNI and ACEI/ARB groups (Valsartan group: mean difference [MD] =2.47, 95% CI -2.57 to 7.50, I²=95%, *P*=0.34; Non-ARNI group: mean difference [MD] =3.12,

Figure 2. Quality evaluation of RCTs.

	-,								
	Represen- tativeness	Selection of the	Accortain	Demonstration that outcome of	Comparability of cohorts on	Access	Was follow-	Ad-	
	lativeness	or the	Ascertain-	that outcome of	or conorts on	Assess-	up long	equacy	
Study	of the	non- ex-	ment of	interest was not	the basis of	ment of	enough for	of follow	Total
	exposed	posed	exposure	present at start	the design or	outcome	outcomes	up of	
	cohort	cohort		of study	analysis		to occur	cohorts	
Martens 2018	1	1	1	1	1	1	1	1	7
Romano 2019	1	1	1	1	1	1	1	1	8
Bayard 2019	1	1	1	1	1	1	1	1	8
EI-Battrawy 2019	1	1	1	1	1	1	1	1	8
Spannella 2019	1	1	1	0	1	1	1	1	7

Table 2. Quality evaluation of other types of literature

Figure 3. Funnel plot estimating publication bias. A. Left ventricular ejection fraction (LVEF). B. Safety (all-cause mortality, death from cardiovascular causes, angioedema, hyperkalemia, symptomatic hypotension and renal dysfunction).

95% CI 1.40 to 4.84, I²=68%, P<.01; ACEI/ARB group: mean difference [MD] =3.00, 95% CI 1.67 to 4.33, P<.01), as shown in **Figure 4**.

Subgroup analysis of gender, age, follow-up time and sample size: Subgroup analysis of gender showed that the difference between the ARNI group and the control group was not related to gender, as shown in **Figure 5**.

Subgroup analysis of age showed that the difference between the ARNI group and the control group was not related to age, as shown in **Figure 6**.

Subgroup analysis of follow-up time (FU) showed that the difference between the ARNI group and the Valsartan group was not affected by follow-up time. Compared with the Non-ARNI

	Expe	erimen	tal	C	ontrol			Mean Difference	Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% Cl	IV, Random, 95% Cl
1.4.1 RCT(Valsartan)									
Gao2019	45.35	4.49	60	36.47	5.21	60	10.7%	8.88 [7.14, 10.62]	•
Kang2018	37.7	8.1	51	37	8.4	53	8.7%	0.70 [-2.47, 3.87]	+
Solomon2012(3m)	59.26	8.75	114	59.04	9.23	118	9.9%	0.22 [-2.09, 2.53]	+
Solomon2012(9m)	61	8.5	94	61.17	9.11	111	9.8%	-0.17 [-2.58, 2.24]	t
Subtotal (95% CI)			319			342	39.0 %	2.47 [-2.57, 7.50]	•
Heterogeneity: Tau ² = 2	4.83; Ch	i² = 55	.99, df	= 3 (P <	0.000	01); l² =	= 95%		
Test for overall effect: Z	= 0.96 (F	P = 0.3	4)						
1.4.2 Prospective obse	ervation(Non-A	RNI)						
Bayard2019	36	6	41	32.6	5	41	9.8%	3.40 [1.01, 5.79]	-
El-Battrawy2019	30	10.3	59	26	6.3	59	8.8%	4.00 [0.92, 7.08]	-
Martens2018	34.8	6.2	125	29.6	5.9	125	10.9%	5.20 [3.70, 6.70]	•
Spannella2019(12m)	32.2	7.2	54	31.3	3.1	30	10.0%	0.90 [-1.32, 3.12]	+
Spannella2019(6m)	32.7	5.6	54	30.8	4	30	10.2%	1.90 [-0.17, 3.97]	-
Subtotal (95% CI)			333			285	49.8%	3.12 [1.40, 4.84]	•
Heterogeneity: Tau ² = 2	.56; Chi ²	= 12.5	58, df =	4 (P = 0)).01); F	² = 68%	5		
Test for overall effect: Z	= 3.55 (F	P = 0.0	004)						
1.4.3 Prospective obse	ervation(ACEI/A	(RB)						
Romano2019	30	7.7	205	27	5.9	205	11.1%	3.00 [1.67, 4.33]	•
Subtotal (95% CI)			205			205	11.1%	3.00 [1.67, 4.33]	•
Heterogeneity: Not appl	licable								
Test for overall effect: Z		P < 0.0	0001)						
Total (95% CI)			857			832	100.0%	2.89 [1.08, 4.70]	•
Heterogeneity: Tau ² = 7	.21: Chi ^a	e 69.4	44. df =	9 (P < 0	.0000	1); ² =	87%		
Test for overall effect: Z						.,,,, -			-100 -50 0 50 100
Test for subgroup differ				= 2 (P =	: 0.97)	$l^2 = 0.9$	6		Favours [Others] Favours [ARNI]

Figure 4. Forest plots for effect of Sacubitril/Valsartan on LVEF.

Figure 5. Subgroup analysis of gender in the improvement of LVEF in chronic heart failure with Sacubitril/Valsartan.

	Experimental Control							Mean Difference	Mean Difference
Study or Subgroup	Mean	SD T	otal N	lean	SD	Total	Weight	IV, Random, 95% Cl	IV, Random, 95% Cl
1.10.1 Age≤70									
Kang2018	37.7	8.1	51	37	8.4	53	24.0%	0.70 [-2.47, 3.87]	Ť
Subtotal (95% CI)			51			53	24.0%	0.70 [-2.47, 3.87]	•
Heterogeneity: Not ap	plicable								
Test for overall effect:	Z=0.43 ((P = 0.6	7)						
1.10.2 Age>70									
Gao2019	45.35	4.49	60 3	6.47 (5.21	60	25.8%	8.88 [7.14, 10.62]	•
Solomon2012(3m)	59.26	8.75	114 5	9.04 9	3.23	118	25.2%	0.22 [-2.09, 2.53]	+
Solomon2012(9m)	61	8.5	94 6	61.17 9	3.11	111	25.0%	-0.17 [-2.58, 2.24]	•
Subtotal (95% CI)			268			289	76.0%	3.02 [-3.27, 9.31]	◆
Heterogeneity: Tau ² =	29.63; Cł	hi² = 51	.73, df:	= 2 (P <	0.00	001); I ^z	= 96%		
Test for overall effect:						,,			
Total (95% CI)			319			342	100.0%	2.47 [-2.57, 7.50]	•
Heterogeneity: Tau ² =	24.83; CI	hi² = 55	.99, df:	= 3 (P <	0.00	001); l ²	= 95%		
Test for overall effect:				- (-					-100 -50 0 50 100
Test for subaroup diffe				= 1 (P =	= 0.52	2), $ ^2 = 0$	1%		Favours (ARNI) Favours (Valsartan)
·····		erimen			ontro			Mean Difference	Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% Cl
1.6.1 Age≤70									
EI-Battrawy2019	30	10.3	59	26	6.3	59	15.3%	4.00 [0.92, 7.08]	
Martens2018	34.8	6.2	125	29.6	5.9	125	24.5%	5.20 [3.70, 6.70]	_
Spannella2019(12m)	32.2	7.2	54	31.3	3.1	30	20.1%	0.90 [-1.32, 3.12]	
Spannella2019(6m)	32.7	5.6	54	30.8		30	21.0%	1.90 [-0.17, 3.97]	
Subtotal (95% CI)			292			244	80.9%	3.03 [0.85, 5.21]	
Heterogeneity: Tau ² =	3.68: Chi	r = 12.5	58.df=	3 (P = 1	0.006	$1^2 = 7$	6%		
Test for overall effect:				- (-					
restior overall ellect.	Z = 2.72 ((P = 0.0	06)						
	Z= 2.72 ((P = 0.0	06)						
1.6.2 Age>70				32.6	5	41	19.1%	3.40 (1.01, 5.79)	
1.6.2 Age >70 Bayard2019	Z = 2.72 (36		41 41	32.6	5	41 41	19.1% 19.1 %	3.40 [1.01, 5.79] 3.40 [1.01, 5.79]	
1.6.2 Age ≥70 Bayard2019 Subtotal (95% CI)	36		41	32.6	5			3.40 [1.01, 5.79] 3.40 [1.01, 5.79]	
1.6.2 Age >70 Bayard2019 Subtotal (95% CI) Heterogeneity: Not ap Test for overall effect.	36 plicable	6	41 41	32.6	5				
1.6.2 Age >70 Bayard2019 Subtotal (95% CI) Heterogeneity: Not ap	36 plicable	6	41 41	32.6	5	41			•
1.6.2 Age >70 Bayard2019 Subtotal (95% CI) Heterogeneity: Not ap Test for overall effect: . Total (95% CI)	36 plicable Z = 2.79 (6 (P = 0.0	41 41 05) 333			41 285	19.1% 100.0%	3.40 [1.01, 5.79]	•
1.6.2 Age >70 Bayard2019 Subtotal (95% CI) Heterogeneity: Not ap Test for overall effect: .	36 plicable Z = 2.79 (2.56; Chi	6 (P = 0.0 ² = 12.6	41 41 05) 333 58, df=			41 285	19.1% 100.0%	3.40 [1.01, 5.79]	•

Figure 6. Subgroup analysis of age in the improvement of LVEF in chronic heart failure with Sacubitril/Valsartan.

group, the ARNI group had a better outcome in FU≤9 M population, and there was no significant difference in FU>9 M population. (FU≤9 M: mean difference [MD] =3.60, 95% CI 1.54 to 5.67, I²=70%, P<.01; FU>9 M: mean difference [MD] =2.26, 95% CI -0.76 to 5.27, I²=61%, P=0.14), as shown in **Figure 7**.

Subgroup analysis of sample size showed that the difference between the ARNI group and the control group was not related to sample size, as shown in **Figure 8**.

Other echocardiography indices: Other echocardiography indices mainly include LVES(D), left ventricular end-systolic dimension; LVED(D), left ventricular end-diastolic dimension; LA(D), left atrial dimension; E/A ratio. Through the meta-analysis, the ARNI group was superior to the Valsartan group of LA and LVED, and with significant differences. Compared with the Non-ARNI group there was no significant difference, as shown in **Figure 9**. *Vital signs:* For vital signs including SBP, DBP and HR, meta-analysis results showed that the ARNI group was superior to the Non-ARNI group in SBP and HR, and there was no significant difference on DBP, as shown in **Figure 10** (SBP: mean difference [MD] =-3.65, 95% CI -6.80 to -0.49, I²=23%, *P*<0.05; DBP: mean difference [MD] =-2.76, 95% CI -6.81 to -1.30, I²=73%, *P*=0.18; HR: mean difference [MD] =-4.15, 95% CI -6.67 to -1.63, I²=0%, *P*<0.01).

Safety endpoints

Major adverse reactions: The main safety endpoints include all-cause mortality, death from cardiovascular causes, angioedema, hyperkalemia, symptomatic hypotension, renal dysfunction. The adverse reactions of angioedema and symptomatic hypotension in the control group were less than those in the intervention group; There was a significant difference between the Sacubitril/Valsartan group and the traditional treatment group in renal dys-

		rimenta			ntrol			Mean Difference	Mean Difference
Study or Subgroup	Mean	SD 1	Total I	lean	SD	Total	Weight	IV, Random, 95% Cl	IV, Random, 95% Cl
1.11.1 FU≪9M									
Gao2019	45.35			36.47		60	25.8%	8.88 [7.14, 10.62]	•
Solomon2012(3m)	59.26	8.75	114 (59.04	9.23	118	25.2%	0.22 [-2.09, 2.53]	t.
Subtotal (95% CI)			174			178	50.9%	4.58 [-3.90, 13.07]	•
Heterogeneity: Tau² =	36.41; 0	≿hi² = 34	4.37, df	= 1 (P <	< 0.00	001); P	²= 97%		
Test for overall effect:	Z=1.06	(P = 0.2	29)						
1.11.2 FU>9M									
Kang2018	37.7	8.1	51	37	8.4	53	24.0%	0.70 [-2.47, 3.87]	+
Solomon2012(9m)	61	8.5	94 6	61.17	9.11	111	25.0%	-0.17 [-2.58, 2.24]	+
Subtotal (95% CI)			145			164	49.1%	0.15 [-1.77, 2.07]	•
Heterogeneity: Tau ² =	0.00; Cł	ni² = 0.1	8, df = 1	(P = 0)	67);	²=0%			
Test for overall effect:					,,				
Total (95% CI)			319			342	100.0%	2.47 [-2.57, 7.50]	•
Heterogeneity: Tau ² =	24.83: 0	≿hi² = 5	5.99. df	= 3 (P <	0.00	001): P	²= 95%		
Test for overall effect:	Z = 0.96	(P = 0.3)	34)						-100 -50 Ó 50 100
Test for subgroup diff				(= 1 (P =	= 0.3	2), I ² = ()%		Favours (Valsartan) Favours (ARNI)
· · · · · · · · · · · · · · · · · · ·		perime			ontro			Mean Difference	Mean Difference
Study or Subgroup	Mea	n SD	Total	Mean	SD	Total	Weight	IV, Random, 95% Cl	IV, Random, 95% Cl
1.7.1 FU≤≤9M									
Bayard2019	3	66	41	32.6	5	41	19.1%	3.40 [1.01, 5.79]	
Martens2018	34.	8 6.2	125	29.6	5.9	125	24.5%	5.20 [3.70, 6.70]	·
Spannella2019(6m)	32.	7 5.6	54	30.8	4	30	21.0%		
Subtotal (95% CI)			220			196			
Heterogeneity: Tau ² =	2.32: Cł	ni² = 6.6	4. df = 3	2(P = 0)	.04); [² = 709	6	. / .	
Test for overall effect:									
1.7.2 FU>9M									
El-Battrawy2019	3	0 10.3	59	26	6.3	59	15.3%	4.00 [0.92, 7.08]	
Spannella2019(12m)						30			
Subtotal (95% CI)			113			89			
Heterogeneity: Tau ² = Test for overall effect:				l (P = 0	.11);1	²= 619	6		
Total (95% CI)			333			285	100.0%	3.12 [1.40, 4.84]	▲
Heterogeneity: Tau ² =	2.56: Cł	ni² = 12.	58. df =	4 (P =	0.01)	$ ^2 = 68$	%		
Test for overall effect:					,				-10 -5 0 5 10
Test for subgroup diff		•		= 1 (P =	= 0.4	7), $ ^2 = 0$	1%		Favours [Non-ARNI] Favours [ARNI]
			2.02. u		0.4				

Figure 7. Subgroup analysis of follow-up time in the improvement of LVEF in chronic heart failure with Sacubitril/ Valsartan.

function, and no significant difference in allcause mortality, death from cardiovascular causes and symptomatic hypotension, as shown in **Figure 11**.

Other adverse reactions: Other adverse reactions include cerebral infarction, heart failure deterioration and rehospitalization, most of the studies had no significant differences in results, as shown in **Figure 12**.

Discussion

This study provided the latest systematic metaanalysis of assessing the effects of Sacubitril/ Valsartan on LVEF, echocardiographic index, vital signs, biomarkers, and adverse reactions in patients with chronic heart failure. Compared with ACEIs/ARBs, all indicators of heart failure patients treated with Sacubitril/Valsartan showed significant improvement. Sacubitril/ valsartan took effect one month after starting treatment, and the study's follow-up period ranged from 1 to 35 months. Subgroup analysis was used to address heterogeneity in LVEF and observed that gender, age, and follow-up time may contribute to differences in LVEF benefits. Sacubitril/Valsartan has a significant effect on the echocardiography index of CHF patients, including LVES, LVED. There was no significant difference in LA and E/A ratio. Both ACEIs and ARBs are recognized as essential agents for the treatment of chronic heart failure, with beneficial effects in reversing ventricular remodeling and reducing cardiovascular mortality. Therefore, as a unique combination of neprilysin inhibitor and ARB, Sacubitril/ Valsartan has a reasonable effect on reversing ventricular remodeling and lowering blood pressure. Ventricular remodeling is a major underlying mechanism for CHF progression. Previous studies using assessments, of LVEF, LVESD, LVEDD, E/A ratio, or LA, had demonstrated that

		Expe	rimenta	al	Co	ntrol			Mean Difference	Mean Difference
Solomon 2012(3m) 59.26 8.75 114 59.04 9.23 118 25.2% 0.22 [2.09, 2.53] Solomon 2012(9m) 61 8.5 94 61.17 9.11 111 25.0% -0.17 [-2.58, 2.24] bittotal (95% CI) 208 229 50.2% 0.03 [-1.64, 1.70] Heterogeneity: Tau"= 0.00; Ch"= 0.05; df= 1 ($P = 0.82$); $P = 0$ % Test for overall effect Z = 0.04 ($P = 0.97$) 1.12.2 Sample Size 120 Gao2019 45.35 4.49 60 36.47 5.21 60 25.8% 8.88 [7.14, 10.62] Kang2018 37.7 8.1 51 37 8.4 53 24.0% 0.70 [-2.47, 3.87] Subtotal (95% CI) 111 113 49.8% 4.90 [-3.11, 12.92] Heterogeneity: Tau"= 23.75; Ch"= 19.64, df= 1 ($P = 0.200001$); $P = 95\%$ Test for overall effect Z = 0.50; $P = 5.99$, df = 3 ($P = 0.200001$); $P = 95\%$ Test for overall effect Z = 0.50; $P = 5.99$, df = 3 ($P = 0.24$), $P = 26.4\%$ Experimental Control Mean Difference Study or Subgroup Mean SD Total Mean SD Total Weight IV. Random, 95% CI 1.8.1 Sample Size 100 Martens2018 34.8 6.2 125 29.6 5.9 125 24.5% 5.20 [3.70, 6.70] Subtotal (95% CI) 125 125 24.5% 5.20 [3.70, 6.70] Heterogeneity: Tau" = 2.4.79 ($P < 0.00001$) 1.8.2 Sample Size 100 Bayard2019 36 6 41 32.6 5 41 19.1% 3.40 [1.01, 5.79] Heterogeneity: Tau" = 0.33; Ch" = 3.66, df = 3 ($P = 0.30$; $P = 18\%$ Test for overall effect Z = 0.30; $P = 0.30$; $P = 18\%$ Test for overall effect Z = 3.48 ($P = 0.00001$) 1.8.2 Sample Size 3100 Bayard2019 36 6 41 32.6 5 41 19.1% 3.40 [1.01, 5.79] Heterogeneity: Tau" = 0.33; Ch" = 3.66, df = 3 ($P = 0.30$; $P = 18\%$ Test for overall effect Z = 3.48 ($P = 0.0005$) Total (95% CI) 233 22 55 00.0% 3.12 [1.40, 4.84] Heterogeneity: Tau" = 2.56; Ch" = 12.56, df = 4 ($P = 0.01$; $P = 68\%$ Test for overall effect Z = 3.48 ($P = 0.0005$) Total (95% CI) 333 285 100.0% Test for overall effect Z = 3.45 ($P = 0.0005$) Total (95% CI) 333 285 100.0% Test for overall effect Z = 3.45 ($P = 0.0005$) Total (95% CI) 333 285 100.0% Test for overall effect Z = 3.56 ($P = 0.0005$) Total (95% CI) 333 285 100.0% Test for overall effect Z = 3.56 ($P = 0.0005$) Total (95% CI) 333 285 100.0% Samo12 20 20 20 20	Study or Subgroup	Mean	SD 1	Total I	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% Cl
Solomon2012(gm) 61 8.5 94 61.17 9.11 11 25.0% -0.17[2.58 , 2.24] Subtotal (95% CI) 208 229 50.2% 0.03[-1.64, 1.70] Heterogeneity: Tau ² = 0.00; Chi ² = 0.05, Gf = 1 (P = 0.82); P = 0% Test for overall effect Z = 0.04 (P = 0.97) 1.12.2 Sample Size ≤ 120 Gao2019 45.35 4.49 60 36.47 5.21 60 25.8% 8.88 [7.14, 10.62] Kang2018 37.7 8.1 51 37 8.4 53 24.0% 0.70[-2.47, 3.87] Subtotal (95% CI) 111 113 49.8% 4.90 [-3.11, 12.92] Heterogeneity: Tau ² = 3.75; Chi ² = 18.64, df = 1 (P = 0.00001); P = 95% Test for overall effect Z = 0.96 (P = 0.32) Total (95% CI) 319 342 100.0% Experimental Control Mean Difference Subtotal (95% CI) 125 125 24.5% 5.20 [3.70, 6.70] Subtotal (95% CI) 125 125 24.5% 5.20 [3.70, 6.70] Subtotal (95% CI) 125 125 24.5% 5.20 [3.70, 6.70] Heterogeneity: Not applicable Test for overall effect Z = 6.79 (P < 0.00001) Heterogeneity: Not applicable Test for overall effect Z = 6.79 (P < 0.00001) 18.2 Sample Size ≤ 100 Bayard2019 36 6 41 32.6 5 41 19.1% 3.40 [1.01, 5.79] Heterogeneity: Not applicable Test for overall effect Z = 0.30; CP = 3.60, df = 3 (P = 0.30); P = 18% Test for overall effect Z = 0.33; Chi ² = 3.66, df = 3 (P = 0.30); P = 18% Test for overall effect Z = 3.56; CP = 0.2005] Total (95% CI) 333 285 100.0% 3.12 [1.40, 4.84] Heterogeneity: Tau ² = 2.56; Chi ² = 1.56, df = 4 (P = 0.01); P = 68% Test for overall effect Z = 3.48 (P = 0.0005) Total (95% CI) 333 285 100.0% 3.12 [1.40, 4.84] Heterogeneity: Tau ² = 2.56; Chi ² = 1.56, df = 4 (P = 0.01); P = 68% Test for overall effect Z = 3.55 (P = 0.0004)	1.12.1 Sample Size>1	20								
Subtotal (95% Cl) 208 229 50.2% 0.03 [-1.64, 1.70] Heterogeneity: Tau ² = 0.00; Ch ² = 0.05, df = 1 (P = 0.82); P = 0% Test for overall effect Z = 0.04 (P = 0.97) 1.12.2 Sample Size ≤ 120 Gao2019 45.35 4.49 60 36.47 5.21 60 25.8% 8.88 [7.14, 10.62] Gao2019 45.35 4.49 60 36.47 5.21 60 25.8% 4.90 [-3.11, 12.92] Heterogeneity: Tau ² = 31.75; Chi ² = 19.64, df = 1 (P < 0.00001); P = 95% Test for overall effect Z = 1.20 (P = 0.23) Total (95% Cl) 319 342 100.0% 2.47 [-2.57, 7.50] Heterogeneity: Tau ² = 24.83; Chi ² = 55.99, df = 3 (P < 0.00001); P = 95% Test for overall effect Z = 0.96 (P = 0.34) Test for overall effect Z = 0.96 (P = 0.34) Test for overall effect Z = 0.96 (P = 0.34) Test for subgroup differences: Chi ² = 1.36, df = 1 (P = 0.24), P = 26.4% Experimental Control Mean Difference Study or Subgroup Mean SD Total Mean SD Total Weight IV. Random, 95% Cl 1.8.1 Sample Size>100 Martens2018 34.8 6.2 125 29.6 5.9 125 24.5% 5.20 [3.70, 6.70] Heterogeneity: Not applicable Test for overail effect Z = 0.79 (P < 0.00001) 1.8.2 Sample Size <100 Bayard2019 36 6 41 32.6 5 41 19.1% 3.40 [1.01, 5.79] E-Battrawy2019 30 10.3 59 26 6.3 59 15.3% 4.00 [0.92, 7.08] Spannella2019(f2m) 32.7 7.2 54 31.3 1.3 0 20.1% 0.90 [-1.32, 3.12] Spannella2019(f2m) 32.7 7.5 6 54 30.8 4 30 21.0% 1.90 [-0.17, 3.97] Subtotal (95% Cl) 208 160 75.5% 2.33 [1.02, 3.64] Heterogeneity: Tau ² = 0.33; Ch ² = 3.66, df = 3 (P = 0.30); P = 18% Test for overail effect Z = 3.48 (P = 0.0005) Total (95% C) 333 285 100.0% 3.12 [1.40, 4.84] Heterogeneity: Tau ² = 2.56; Ch ² = 12.58, df = 4 (P = 0.01); P = 68% Test for overail effect Z = 3.55 (P = 0.004)	Solomon2012(3m)	59.26	8.75	114	59.04	9.23	118	25.2%	0.22 [-2.09, 2.53]	+
Heterogeneity: Tau ² = 0.00; Chi ² = 0.05, df = 1 (P = 0.82); P = 0% Test for overall effect $Z = 0.04$ (P = 0.97) 1.12. Sample Size \leq 120 Gao2019 45.35 4.49 60 36.47 5.21 60 25.8% 8.88 [7.14, 10.62] Kang2018 37.7 8.1 51 37 8.4 53 24.0% 0.70 [2.47, 3.87] Subtotal (95% CI) 111 113 49.8% 4.90 [-3.11, 12.92] Heterogeneity: Tau ² = 31.75; Chi ² = 19.64, df = 1 (P < 0.00001); P = 95% Test for overall effect $Z = 0.36$ (P = 0.34) Test for overall effect $Z = 0.36$ (P = 0.34) Test for overall effect $Z = 0.36$ (P = 0.34) Test for overall effect $Z = 0.36$ (P = 0.24), P = 26.4% Experimental Control Matem 2018 34.8 6.2 125 29.6 5.9 125 24.5% 5.20 [3.70, 6.70] Subtotal (95% CI) 125 125 24.5% 5.20 [3.70, 6.70] Subtotal (95% CI) 125 125 24.5% 5.20 [3.70, 6.70] Subtotal (95% CI) 125 125 24.5% 5.20 [3.70, 6.70] Heterogeneity: Not applicable Test for overall effect $Z = 6.79$ (P < 0.00001) 1.8.2 Sample Size>100 Bayard2019 36 6 41 32.6 5 41 19.1% 3.40 [1.01, 5.79] Eheatrawy2019 36 16 41 32.6 5 41 19.1% 3.40 [0.92, 7.08] Spannella2019(12m) 32.2 7.2 54 31.3 3.1 30 20.1% 0.90 [-1.32, 3.12] Spannella2019(12m) 32.2 7.2 54 31.3 3.1 30 20.1% 0.90 [-1.32, 3.12] Spannella2019(12m) 32.7 5.6 54 30.8 4 30 21.0% 1.90 [-0.17, 3.97] Subtotal (95% CI) 208 160 75.5% 2.33 [1.02, 3.64] Heterogeneity: Tau ² = 0.33; Chi ² = 3.66, df = 3 (P = 0.30); P = 18% Test for overall effect $Z = 3.56$ (P = 0.0005) Total (95% CI) 333 285 100.0% 3.12 [1.40, 4.84] Heterogeneity: Tau ² = 2.56; Chi ² = 12.58, df = 4 (P = 0.01); P = 68% Test for overall effect $Z = 3.56$ (P = 0.0004) Test for overall effect $Z = 3.56$ (P = 0.0004) Test for overall effect $Z = 3.56$ (P = 0.0004)	Solomon2012(9m)	61	8.5	94 (61.17	9.11	111	25.0%	-0.17 [-2.58, 2.24]	+
Test for overall effect $Z = 0.04$ (P = 0.97) 1.12.2 Sample Size ≤ 120 Gao 2019 45.35 4.49 60 36.47 5.21 60 25.8% 8.88 [7.14, 10.62] Kang 2018 37.7 8.1 51 37 8.4 53 24.0% 0.70 [-2.47, 3.87] Subtotal (95% Cl) 111 113 49.8% 4.90 [-3.11, 12.92] Heterogeneity: Tau ² = 31.75; Chi ² = 19.84, df = 1 (P < 0.00001); P = 95% Test for overall effect $Z = 1.20$ (P = 0.23) Total (95% Cl) 319 342 100.0% 2.47 [-2.57, 7.50] Heterogeneity: Tau ² = 24.83; Chi ² = 56.99, df = 3 (P < 0.00001); P = 95% Test for overall effect $Z = 0.96$ (P = 0.34) Test for overall effect $Z = 0.96$ (P = 0.34) Test for overall effect $Z = 0.96$ (P = 0.34) Test for overall effect $Z = 0.96$ (P = 0.34) Test for overall effect $Z = 0.96$ (P = 0.34) Test for overall effect $Z = 0.96$ (P = 0.04) Test for overall effect $Z = 0.96$ (P = 0.0001) Heterogeneity: Not applicable Test for overall effect $Z = 6.79$ (P < 0.00001) 1.8.2 Sample Size ≤ 100 Bayard2019 36 6 41 32.6 5 41 19.1% 3.40 [1.01, 5.79] E-Batrawy2019 30 10.3 59 26 6.3 59 15.3% 4.00 [0.92, 7.08] Spannella2019(91cm) 32.7 7.2 54 31.3 3.1 30 20.1% 0.90 [-1.32, 3.12] Spannella2019(12m) 32.7 7.2 54 31.3 3.1 30 20.1% 0.90 [-1.32, 3.12] Spannella2019(91cm) 32.7 7.2 54 31.3 3.1 30 20.1% 0.90 [-1.32, 3.12] Spannella2019(91cm) 32.7 7.6 54 30.8 4 30 21.0% 1.90 [-0.17, 3.97] Subtotal (95% Cl) 208 160 75.5% 2.33 [1.02, 3.64] Heterogeneity: Tau ² = 0.33; Chi ² = 3.56; df = 3 (P = 0.30); P = 18% Test for overall effect $Z = 3.56$ (P = 0.0005) Total (95% Cl) 333 285 100.0% 3.12 [1.40, 4.84] Heterogeneity: Tau ² = 2.56; Chi ² = 1.258, df = 4 (P = 0.001); P = 68% Test for overall effect $Z = 3.56$ (P = 0.0004) Total (95% Cl) 50 50 100 Eavours [Mon ABPNII Eavours [ARNII]	Subtotal (95% CI)			208			229	50.2%	0.03 [-1.64, 1.70]	•
1.12.2 Sample Size <120 Gao2019 45.35 4.49 60 36.47 5.21 60 25.8% 8.88 [7.14, 10.62] Kang2018 37.7 8.1 61 37 8.4 63 24.0% 0.70 [-2.47, 3.87] Subtotal (95% CI) 111 113 49.8% 4.90 [-3.11, 12.92] Heterogeneity: Tau ² = 31.75; Ch ² = 19.64, df = 1 (P < 0.00001); P = 95% 2.47 [-2.57, 7.50] 100 -50 50 100 Test for overall effect: Z = 0.96 (P = 0.34) Test or subgroup differences: Ch ² = 1.36, df = 1 (P = 0.24), P = 26.4% Mean Difference Mean Differenc	Heterogeneity: Tau ² =	0.00; Ch	ni² = 0.0	5, df = 1	1 (P = 0	.82);	l² = 0%			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Test for overall effect: 2	Z = 0.04	(P = 0.9	97)		,				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1.12.2 Sample Size≤	120								
Kang2018 37.7 8.1 51 37 8.4 53 24.0% $0.70[-2.47, 3.87]$ Subtotal (95% CI) 111 13 49.8% 4.90[-3.11, 12.92] Heterogeneity: Tau ² = 3.1.75; Ch ² = 1.9.64, df = 1 ($P < 0.00001$); $P = 95\%$ Test for overall effect $Z = 0.36$ ($P = 0.23$) Total (95% CI) 319 342 100.0% 2.47 [-2.57, 7.50] Heterogeneity: Tau ² = 24.83; Chi ² = 55.99, df = 3 ($P < 0.00001$); $P = 95\%$ Test for overall effect $Z = 0.96$ ($P = 0.34$) Test for overall effect $Z = 0.96$ ($P = 0.34$) Test for subgroup Mean SD Total Mean SD Total Weight N, Random, 95% CI N, Random			4.49	60 3	36.47	5.21	60	25.8%	8.88 (7.14, 10.62)	
Subtotal (95% CI) 111 113 49.8% 4.90 [-3.11, 12.92] Heterogeneity: Tau ² = 31.75; Chi ² = 1.96.4, df = 1 (P < 0.00001); I ² = 95% Test for overall effect Z = 1.20 (P = 0.23) Total (95% CI) 319 342 100.0% 2.47 [-2.57, 7.50] Heterogeneity: Tau ² = 24.83; Chi ² = 55.99, df = 3 (P < 0.00001); I ² = 95% Test for overall effect Z = 0.96 (P = 0.34) Test for overall effect Z = 0.96 (P = 0.34) Test for overall effect Z = 0.96 (P = 0.24). I ² = 26.4% Experimental Control Mean Difference Mean Difference Study or Subgroup Mifferences: Chi ² = 1.36. df = 1 (P = 0.24). I ² = 26.4% Experimental Control Mean SD Total Weight IV, Random, 95% CI IV,	Kang2018	37.7	8.1				53			+
Heterogeneity: Tau ² = 31.75; Chi ² = 19.64, df = 1 (P < 0.00001); P = 95% Test for overall effect: Z = 1.20 (P = 0.23) Total (95% Cl) 319 342 100.0% Heterogeneity: Tau ² = 24.83; Chi ² = 55.99, df = 3 (P < 0.00001); P = 95% Test for overall effect: Z = 0.96 (P = 0.34) Test for subgroup differences: Chi ² = 1.36. df = 1 (P = 0.24), P = 26.4% Experimental Control Mean Difference Study or Subgroup Mean SD Total Mean SD Total Weight IV, Random, 95% Cl 1.8.1 Sample Size>100 Martens2018 34.8 6.2 125 29.6 5.9 125 24.5% 5.20 [3.70, 6.70] Subtotal (95% Cl) 125 125 24.5% 5.20 [3.70, 6.70] Heterogeneity: Not applicable Test for overall effect: Z = 6.79 (P < 0.00001) 1.8.2 Sample Size ≤ 100 Bayard2019 36 6 41 32.6 5 41 19.1% 3.40 [1.01, 5.79] El-Battrawy2019 30 10.3 59 26 6.3 59 15.3% 4.00 [0.92, 7.08] Spannella2019(12m) 32.2 7.2 54 31.3 3.1 30 20.1% 0.90 [-1.32, 3.12] Spannella2019(12m) 32.2 7.2 54 31.3 3.1 30 20.1% 0.90 [-1.32, 3.12] Spannella2019(3m) 32.7 5.6 54 30.8 4 30 21.0% 1.90 [-0.17, 3.97] Subtotal (95% Cl) 208 160 75.5% 2.33 [1.02, 3.64] Heterogeneity: Tau ² = 0.33; Chi ² = 3.66, df = 3 (P = 0.30); P = 18% Test for overall effect: Z = 3.56 (Chi ² = 12.58, df = 4 (P = 0.01); P = 68% Test for overall effect: Z = 3.55 (P = 0.0004) Total (95% Cl) 333 285 100.0% 3.12 [1.40, 4.84] Heterogeneity: Tau ² = 2.56; Chi ² = 12.58, df = 4 (P = 0.01); P = 68% Test for overall effect: Z = 3.55 (P = 0.0004)				111			113			*
Test for overall effect: $Z = 1.20$ (P = 0.23) Total (95% Cl) 319 342 100.0% 2.47 [-2.57, 7.50] Heterogeneity: Tau ² = 24.83; Chi ² = 55.99, df = 3 (P < 0.00001); P = 95% Test for overall effect: $Z = 0.96$ (P = 0.34) Test for subgroup differences: Chi ² = 1.36, df = 1 (P = 0.24); P = 26.4% Experimental Control Mean Difference Study or Subgroup Mean SD Total Mean SD Total Weight IV, Random, 95% Cl 1.8.1 Sample Size>100 Martens2018 34.8 6.2 125 29.6 5.9 125 24.5% 5.20 [3.70, 6.70] Subtotal (95% Cl) 125 125 24.5% 5.20 [3.70, 6.70] Subtotal (95% Cl) 125 125 24.5% 5.20 [3.70, 6.70] Heterogeneity: Not applicable Test for overall effect: Z = 6.79 (P < 0.00001) 1.8.2 Sample Size<100 Bayard2019 36 6 41 32.6 5 41 19.1% 3.40 [1.01, 5.79] El-Battrawy2019 36 16 41 32.6 5 41 19.1% 3.40 [1.01, 5.79] El-Battrawy2019 30 10.3 59 26 6.3 59 15.3% 4.00 [0.92, 7.08] Spannella2019(12m) 32.2 7.2 54 31.3 31 30 20.1% 0.90 [-1.32, 3.12] Spannella2019(12m) 32.7 5.6 54 30.8 4 30 21.0% 1.90 [-0.17, 3.97] Subtotal (95% Cl) 208 160 75.5% 2.33 [1.02, 3.64] Heterogeneity: Tau ² = 0.33; Chi ² = 3.66, df = 3 (P = 0.00); P = 18% Test for overall effect: Z = 3.55 (P = 0.0004) Total (95% Cl) 333 285 100.0% 3.12 [1.40, 4.84] Heterogeneity: Tau ² = 2.56; Chi ² = 12.58, df = 4 (P = 0.01); P = 68% Test for overall effect: Z = 3.55 (P = 0.0004)	. ,	31.75: C	$hi^2 = 19$	9.64. df	= 1 (P -	< 0.00	0001): P	² = 95%	• / •	
Heterogeneity: Tau ² = 24.83; Chi ² = 55.99, df = 3 (P < 0.00001); I ² = 95% Test for overall effect Z = 0.96 (P = 0.34) Test for subgroup differences: Chi ² = 1.36, df = 1 (P = 0.24). I ² = 26.4% Experimental Control Mean Difference Study or Subgroup Mean SD Total Mean SD Total Weight N, Random, 95% Cl 1.8.1 Sample Size>100 Martens2018 34.8 6.2 125 29.6 5.9 125 24.5% 5.20 [3.70, 6.70] Subtotal (95% Cl) 125 125 24.5% 5.20 [3.70, 6.70] Heterogeneity: Not applicable Test for overall effect: Z = 6.79 (P < 0.00001) 1.8.2 Sample Size ≤ 100 Bayard 2019 36 6 41 32.6 5 41 19.1% 3.40 [1.01, 5.79] El-Battrawy2019 30 10.3 59 26 6.3 59 15.3% 4.00 [0.92, 7.08] Spannella2019(12m) 32.2 7.2 54 31.3 3.1 30 20.1% 0.90 [-1.32, 3.12] Spannella2019(0m) 32.7 5.6 54 30.8 4 30 21.0% 1.90 [-0.17, 3.97] Subtotal (95% Cl) 208 160 75.5% 2.33 [1.02, 3.64] Heterogeneity: Tau ² = 0.33; Chi ² = 3.66, df = 3 (P = 0.01); I ² = 68% Test for overall effect: Z = 3.56 (P = 0.0004) Total (95% Cl) 333 285 100.0% 3.12 [1.40, 4.84] Heterogeneity: Tau ² = 2.56; Chi ² = 12.58, df = 4 (P = 0.01); I ² = 68% Test for overall effect: Z = 3.55 (P = 0.0004) Total (95% Cl) 333 (20.1% Cl) (20.0% (20.0%) Total (95% Cl) 333 (20.0% (20.0%										
Heterogeneity: Tau ² = 24.83; Chi ² = 55.99, df = 3 (P < 0.00001); I ² = 95% Test for overall effect Z = 0.96 (P = 0.34) Test for subgroup differences: Chi ² = 1.36, df = 1 (P = 0.24). I ² = 26.4% Experimental Control Mean Difference Study or Subgroup Mean SD Total Mean SD Total Weight N, Random, 95% Cl 1.8.1 Sample Size>100 Martens2018 34.8 6.2 125 29.6 5.9 125 24.5% 5.20 [3.70, 6.70] Subtotal (95% Cl) 125 125 24.5% 5.20 [3.70, 6.70] Heterogeneity: Not applicable Test for overall effect: Z = 6.79 (P < 0.00001) 1.8.2 Sample Size ≤ 100 Bayard 2019 36 6 41 32.6 5 41 19.1% 3.40 [1.01, 5.79] El-Battrawy2019 30 10.3 59 26 6.3 59 15.3% 4.00 [0.92, 7.08] Spannella2019(12m) 32.2 7.2 54 31.3 3.1 30 20.1% 0.90 [-1.32, 3.12] Spannella2019(0m) 32.7 5.6 54 30.8 4 30 21.0% 1.90 [-0.17, 3.97] Subtotal (95% Cl) 208 160 75.5% 2.33 [1.02, 3.64] Heterogeneity: Tau ² = 0.33; Chi ² = 3.66, df = 3 (P = 0.01); I ² = 68% Test for overall effect: Z = 3.56 (P = 0.0004) Total (95% Cl) 333 285 100.0% 3.12 [1.40, 4.84] Heterogeneity: Tau ² = 2.56; Chi ² = 12.58, df = 4 (P = 0.01); I ² = 68% Test for overall effect: Z = 3.55 (P = 0.0004) Total (95% Cl) 333 (20.1% Cl) (20.0% (20.0%) Total (95% Cl) 333 (20.0% (20.0%	Total (95% CI)			319			342	100.0%	2.47 [-2.57, 7.50]	•
Test for overall effect: $Z = 0.96$ (P = 0.34) -100 -50 0 50 100 Test for subgroup differences: Chi ² = 1.36. df = 1 (P = 0.24). I ² = 26.4% Experimental Control Mean Difference		24 83 [.] C	$hi^2 = 56$		= 3 (P)	< 0.00			2 [2.0., 1.00]	
Test for subgroup differences: $Chi^2 = 1.36$. df = 1 (P = 0.24). P = 26.4% Favours [Valsartan] Favours [ARNI] Subtor subgroup Mean SD Total Mean SD Total Weight IV. Random, 95% CI Mean Difference Study or Subgroup Mean SD Total Mean SD Total Weight IV. Random, 95% CI Name Size>100 Martens2018 34.8 6.2 24.5% 5.20 [3.70, 6.70] Subtotal (95% CI) 125 24.5% 5.20 [3.70, 6.70] Heterogeneity: Not applicable Test for overall effect: Z = 6.79 (P < 0.00001) 1.8.2 Sample Size <100 Bayard2019 36 6 41 19.1% 3.40 [1.01, 5.79] Favours [Valsartan] Favours [Valsartan] Favours [Valsartan] Subtotal (95% CI) 125 24.5% 5.20 [3.70, 6.70] Mean Difference Mean Difference Wean Difference Valse Site Site Site Site Site Site Site Sit					- 0 (i	0.00	,,.	- 00 /0		
Experimental Control Mean Difference Mean Difference Mean Difference Study or Subgroup Mean SD Total Mean SD Total Weight N, Random, 95% CI N, Random, 95%			•		f = 1 (P	= 0.2	 4) I² = 1 	76.4%		Favours (Valsartan) Favours (ARNI)
Study or Subgroup Mean SD Total Mean SD Total Weight N. Random, 95% Cl N. Random, 95% Cl 1.8.1 Sample Size>100 Martens 2018 34.8 6.2 125 29.6 5.9 125 24.5% 5.20 [3.70, 6.70] Image: Size Size Size Size Size Size Size Size	restion subgroup une							20.470	Mean Difference	Mean Difference
1.8.1 Sample Size>100 Martens 2018 34.8 6.2 125 29.6 5.9 125 24.5% 5.20 [3.70, 6.70] Subtotal (95% CI) 125 125 24.5% 5.20 [3.70, 6.70] Heterogeneity: Not applicable Test for overall effect: $Z = 6.79$ ($P < 0.00001$) 1.8.2 Sample Size Bayard2019 36 6 41 32.6 5 41 19.1% 3.40 [1.01, 5.79] El-Battrawy2019 30 10.3 59 26 6.3 59 15.3% 4.00 [0.92, 7.08] Spannella2019(12m) 32.2 7.2 54 31.3 3.1 30 20.1% 1.09 [-0.17, 3.97] Subtotal (95% CI) 208 160 75.5% 2.33 [1.02, 3.64] 1.02 1.02 Heterogeneity: Tau ² = 0.33; Chi ² = 3.66, df = 3 (P = 0.30); l ² = 18% 3.12 [1.40, 4.84] 1.00 1.00 -50 50 100 Fest for overall effect: $Z = 3.48$ (P = 0.0005) 3.33 2.85 100.0% 3.12 [1.40, 4.84] 1.00 -100 -50 50 100 Fest for overall effect: $Z = 3.55$ (Chi ² = 12.58, df = 4 (P = 0	Study or Subaroup							Weight		
Subtotal (95% CI) 125 125 125 24.5% 5.20 [3.70, 6.70] Heterogeneily: Not applicable Test for overall effect: $Z = 6.79$ (P < 0.00001)										
Subtotal (95% CI) 125 125 125 24.5% 5.20 [3.70, 6.70] Heterogeneily: Not applicable Test for overall effect: $Z = 6.79$ (P < 0.00001)			8 62	125	29.6	5 9	125	24.5%	5 20 [3 70 6 70]	•
Heterogeneity: Not applicable Test for overall effect: Z = 6.79 (P < 0.00001) 1.8.2 Sample Size ≤ 100 Bayard2019 36 6 41 32.6 5 41 19.1% 3.40 [1.01, 5.79] El-Battrawy2019 30 10.3 59 26 6.3 59 15.3% 4.00 [0.92, 7.08] Spannella2019(12m) 32.2 7.2 54 31.3 3.1 30 20.1% 0.90 [-1.32, 3.12] Spannella2019(6m) 32.7 5.6 54 30.8 4 30 21.0% 1.90 [-0.17, 3.97] Subtotal (95% Cl) 208 160 75.5% 2.33 [1.02, 3.64] Heterogeneity: Tau ² = 0.33; Chi ² = 3.66, df = 3 (P = 0.30); I ² = 18% Test for overall effect: Z = 3.48 (P = 0.0005) Total (95% Cl) 333 285 100.0% 3.12 [1.40, 4.84] Heterogeneity: Tau ² = 2.56; Chi ² = 12.58, df = 4 (P = 0.01); I ² = 68% Test for overall effect: Z = 3.55 (P = 0.0004)		•								
Test for overall effect: $Z = 6.79$ (P < 0.00001) 1.8.2 Sample Size ≤ 100 Bayard2019 36 6 41 32.6 5 41 19.1% 3.40 [1.01, 5.79] El-Battrawy2019 30 10.3 59 26 6.3 59 15.3% 4.00 [0.92, 7.08] Spannella2019(12m) 32.2 7.2 54 31.3 3.1 30 20.1% 0.90 [-1.32, 3.12] Spannella2019(6m) 32.7 5.6 54 30.8 4 30 21.0% 1.90 [-0.17, 3.97] Subtotal (95% Cl) 208 160 75.5% 2.33 [1.02, 3.64] Heterogeneity: Tau ² = 0.33; Chi ² = 3.66, df = 3 (P = 0.30); I ² = 18% Test for overall effect: Z = 3.48 (P = 0.0005) Total (95% Cl) 333 285 100.0% 3.12 [1.40, 4.84] Heterogeneity: Tau ² = 2.56; Chi ² = 12.58, df = 4 (P = 0.01); I ² = 68% Test for overall effect: Z = 3.55 (P = 0.0004)		nlicable								
Bayard2019 36 6 41 32.6 5 41 19.1% 3.40 [1.01, 5.79] El-Battrawy2019 30 10.3 59 26 6.3 59 15.3% 4.00 [0.92, 7.08] Spannella2019(12m) 32.2 7.2 54 31.3 3.1 30 20.1% 0.90 [-1.32, 3.12] Spannella2019(6m) 32.7 5.6 54 30.8 4 30 21.0% 1.90 [-0.17, 3.97] Subtotal (95% CI) 208 160 75.5% 2.33 [1.02, 3.64] 1.40 </td <td></td> <td></td> <td>(P < 0.0</td> <td>00001)</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>			(P < 0.0	00001)						
Bayard2019 36 6 41 32.6 5 41 19.1% 3.40 [1.01, 5.79] El-Battrawy2019 30 10.3 59 26 6.3 59 15.3% 4.00 [0.92, 7.08] Spannella2019(12m) 32.2 7.2 54 31.3 3.1 30 20.1% 0.90 [-1.32, 3.12] Spannella2019(6m) 32.7 5.6 54 30.8 4 30 21.0% 1.90 [-0.17, 3.97] Subtotal (95% CI) 208 160 75.5% 2.33 [1.02, 3.64] 1.40 </td <td>1 8 2 Sample Size ≤ 1</td> <td>00</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	1 8 2 Sample Size ≤ 1	00								
El-Battrawy2019 30 10.3 59 26 6.3 59 15.3% 4.00 $[0.92, 7.08]$ Spannella2019(12m) 32.2 7.2 54 31.3 3.1 30 20.1% 0.90 $[-1.32, 3.12]$ Spannella2019(6m) 32.7 5.6 54 30.8 4 30 21.0% 1.90 $[-0.17, 3.97]$ Subtotal (95% Cl) 208 160 75.5% 2.33 $[1.02, 3.64]$ Heterogeneity: Tau ² = 0.33; Chi ² = 3.66, df = 3 (P = 0.30); l ² = 18% Test for overall effect: Z = 3.48 (P = 0.0005) Total (95% Cl) 333 285 100.0% 3.12 $[1.40, 4.84]$ Heterogeneity: Tau ² = 2.56; Chi ² = 12.58, df = 4 (P = 0.01); l ² = 68% Test for overall effect: Z = 3.55 (P = 0.0004) Total (95% Cl) 50 100 Favours [Non-ARNI] Eavours [ARNI]			a a		32.6	. 6	41	10.1%	3 40 [1 01 5 70]	•
Spannella2019(12m) 32.2 7.2 54 31.3 31 30 20.1% 0.90 $[-1.32, 3.12]$ Spannella2019(6m) 32.7 5.6 54 30.8 4 30 21.0% 1.90 $[-0.17, 3.97]$ Subtotal (95% Cl) 208 160 75.5% 2.33 [1.02, 3.64] Heterogeneity: Tau ² = 0.33; Chi ² = 3.66, df = 3 (P = 0.30); I ² = 18% 2.33 [1.02, 3.64] Test for overall effect: Z = 3.48 (P = 0.0005) 3.33 285 100.0% Total (95% Cl) 333 285 100.0% 3.12 [1.40, 4.84] Heterogeneity: Tau ² = 2.56; Chi ² = 12.58, df = 4 (P = 0.01); I ² = 68% -100 -50 0 50 100 Favoures [Non-ARNI] Favoures [ARNI] Favoures [ARNI] Favoures [ARNI] 100	,									
Spannella 2019(6m) 32.7 5.6 54 30.8 4 30 21.0% 1.90 [-0.17, 3.97] Subtotal (95% Cl) 208 160 75.5% 2.33 [1.02, 3.64] Heterogeneity: Tau ² = 0.33; Chi ² = 3.66, df = 3 (P = 0.30); I ² = 18% 2.33 [1.02, 3.64] Test for overall effect: Z = 3.48 (P = 0.0005) 3.33 285 100.0% Heterogeneity: Tau ² = 2.56; Chi ² = 12.58, df = 4 (P = 0.01); I ² = 68% 3.12 [1.40, 4.84] -100 -50 0 50 100 Fest for overall effect: Z = 3.55 (P = 0.0004) Sate (P = 0.001); I ² = 68% Sate (P = 0.0004) Sate (P = 0.0004) Sate (P = 0.0004) Sate (P = 0.0004)	/									
Subtotal (95% Cl) 208 160 75.5% 2.33 [1.02, 3.64] Heterogeneity: Tau ² = 0.33; Chi ² = 3.66, df = 3 (P = 0.30); I ² = 18% 2.33 [1.02, 3.64] Image: Chi = 12.68, df = 3 (P = 0.0005) Total (95% Cl) 333 285 100.0% 3.12 [1.40, 4.84] Heterogeneity: Tau ² = 2.56; Chi ² = 12.58, df = 4 (P = 0.01); I ² = 68% 3.12 [1.40, 4.84] Image: Chi = 12.58, df = 4 (P = 0.01); I ² = 68% Test for overall effect: Z = 3.55 (P = 0.0004) Supervised on the second secon										
Heterogeneity: Tau ² = 0.33; Chi ² = 3.66, df = 3 (P = 0.30); I ² = 18% Test for overall effect: Z = 3.48 (P = 0.0005) Total (95% Cl) 333 285 100.0% Heterogeneity: Tau ² = 2.56; Chi ² = 12.58, df = 4 (P = 0.01); I ² = 68% Test for overall effect: Z = 3.55 (P = 0.0004) Favours [Non-ARNI] Eavours [ARNI]		32.1	r 0.0			, 4	~~			
Test for overall effect: Z = 3.48 (P = 0.0005) Total (95% CI) 333 285 100.0% 3.12 [1.40, 4.84] Heterogeneity: Tau ² = 2.56; Chi ² = 12.58, df = 4 (P = 0.01); i ² = 68% Test for overall effect: Z = 3.55 (P = 0.0004) Favours [Non-ARNI] Favours [ARNI]		0.22.04	12 - 2 G			201			2.55 [1.02, 5.04]	ľ
Heterogeneity: Tau ² = 2.56; Chi ² = 12.58, df = 4 (P = 0.01); i ² = 68% Test for overall effect: Z = 3.55 (P = 0.0004) Favours (Non-ARNI) Eavours (ARNI)					3 (P = 0	.30),	-= 107	10		
Test for overall effect: Z = 3.55 (P = 0.0004) -100 -50 0 -100 -50 100	Total (95% CI)			333			285	100.0%	3.12 [1.40, 4.84]	•
Test for overall effect: Z = 3.55 (P = 0.0004) -100 -50 0 -100 -50 100	Heterogeneity: Tau ² =	2.56; Ch	ni ^z = 12.	58, df =	: 4 (P =	0.01)	; I ² = 68	3%		
Eavours INOD-ARNIE Eavours IARINIE										
			•	,	f=1 (P	= 0.0	05). I ² =	87.4%		Favours (Non-ARNI) Favours (ARNI)

Figure 8. Subgroup analysis of sample size in the improvement of LVEF in chronic heart failure with Sacubitril/ Valsartan.

left ventricular reverse remodeling is a dynamic process and could take many years to achieve [12, 13]. Recovery of left ventricular function is an important treatment goal for CHF, especially HFrEF. A prospective observational study of HFrEF patients indicated that the use of Sacubitril/Valsartan may produce "hemodynamic recovery" by reducing left ventricular filling pressure, mitral regurgitation from moderate to severe grade, and pulmonary artery systolic pressure, which associated with a reduction in NT-proBNP may ameliorate functional class capacity [14]. NT-proBNP is an epochmaking and specific marker for the determination of HF, which has been confirmed that the concentration of NT-proBNP was closely associated with left ventricular size and function [4]. And a greater reduction in NT-proBNP was associated with more extensive reverse remodeling and a better prognosis in HFrEF patients [8]. Results of the latest meta-analysis focused on cardiac reverse remodeling showed that patients with NT-proBNP reduction following Sacubitril/Valsartan initiation are more likely to experience reverse cardiac remodeling [15].

In terms of safety, compared with the traditional treatment group (the Non-ANRI group, the Valsartan group and the ACEI group), the number of events related to all-cause mortality and death from cardiovascular causes of Sacubitril/Valsartan group was reduced, but there was no significant difference. On the contrary, there were significant differences in the incidence of renal insufficiency. Serum potassium stability and renal function in patients with heart failure may benefit from Sacubitril/ Valsartan. But for angioedema and symptomatic hypotension, the control group was superior to the intervention group. Sacubitril is associated with cardiomyocyte cell death, hypertrophy, and impaired myocardial contractility by a

		erimen		-	ontrol			Mean Difference	Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% Cl	IV, Random, 95% Cl
1.1.1 LA									
Gao2019	42.18			46.53		60	12.4%	-4.35 [-6.08, -2.62]	_ _
<ang2018< td=""><td>47</td><td>9.2</td><td>51</td><td>48.5</td><td>6.9</td><td>53</td><td>5.0%</td><td>-1.50 [-4.63, 1.63]</td><td></td></ang2018<>	47	9.2	51	48.5	6.9	53	5.0%	-1.50 [-4.63, 1.63]	
Subtotal (95% CI)			111			113	17.4%	-3.24 [-5.96, -0.51]	
Heterogeneity: Tau² :				= 1 (P =	0.12);	l² = 59%	6		
Fest for overall effect	: Z = 2.33	8 (P = 0).02)						
1.1.5 LVED									
Gao2019	60.35	7 1 2	60	64.51	4.24	60	9.4%	-4.16 [-6.27, -2.05]	
Kang2018		7.8	51	66.6		53	9.4%	-3.20 [-6.54, 0.14]	
Subtotal (95% CI)	03.4	7.0	111	00.0	9.0	113	4.5%	-3.89 [-5.67, -2.10]	
Heterogeneity: Tau ² :	- 0.00: 01	hiz _ 0		- 1 /0 -	0.600			-5.69 [-5.67, -2.10]	•
Fest for overall effect					0.63),	1-= 0%			
restion overall ellect	. 2 - 4.27	(F ~ (
1.1.6 E/A ratio									
Solomon2012(3m)	1.01	0.65	72	1.02	0.65	78	34.3%	-0.01 [-0.22, 0.20]	•
Solomon2012(9m)	1.05	0.58	60	1.07	0.68	68	34.3%	-0.02 [-0.24, 0.20]	+
Subtotal (95% CI)			132			146	68.6%	-0.01 [-0.17, 0.14]	
Heterogeneity: Tau ² :	= 0.00; Cl	hi² = 0.	.00. df=	= 1 (P =	0.95);	l² = 0%			
Test for overall effect	: Z = 0.19	9 (P = 0).85)						
Fotal (95% CI)			354			372	100.0%	-1.16 [-1.92, -0.41]	•
Heterogeneity: Tau ² :	- 0.42: 01	hi2 - 41		- 5 /0	~ 0 000			- 1. 10 [- 1.52, -0.4 1]	
Fest for overall effect				= 5 (F	< 0.00i	501), 1	- 00%		-10 -5 0 5 10
Fest for subgroup dif				df = 2	/0 ~ 0	000043	12 - 01	04	Favours [ARNI] Favours [Valsartan]
restion subgroup un		erimen			ontrol		.1 - 91.4	Mean Difference	Mean Difference
Study or Subgroup	Mean			Mean			Weight	IV, Random, 95% Cl	IV, Random, 95% Cl
.2.1 E/A ratio	mean	50	Total	mean	50	Total	Weight	14,14010,00% 61	
Bayard2019	1	0.5	41	1.1	0.6	41	54.5%	-0.10 [-0.34, 0.14]	— — —
Aartens2018	-	0.88	96		1.13	96	45.5%	-0.37 [-0.66, -0.08]	_
Subtotal (95% CI)	1.30	0.00	137	1.75	1.13		40.0%	-0.22 [-0.49, 0.04]	
Heterogeneity: Tau ² :	= 0.02: 01	hi²= 2		= 1 (P -	0.161			-0.22 [-0.40, 0.04]	
Fest for overall effect					0.10),				
restion overall effect	. 2 - 1.00	(r = t							
Fotal (95% CI)			137			137	100.0%	-0.22 [-0.49, 0.04]	
Heterogeneity: Tau ² :	= 0.02 C	hi²= 2		= 1 (P =	0.16)				-++-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
Fest for overall effect					0.10),	50%			-1 -0.5 0 0.5 1
Fest for subgroup dif		· ·		alo					Favours (ARNI) Favours (Non-ARNI)
esciol subgroup all	referices	. NUL 8	nningi	ne					

Figure 9. Forest plots for effect of Sacubitril/Valsartan on other echocardiography indices.

	Expe	rimen	tal	C	ontrol			Mean Difference	Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% Cl	IV, Random, 95% Cl
1.13.1 SBP									
EI-Battrawy2019	121	18	59	129	21	59	5.6%	-8.00 [-15.06, -0.94]	
Martens2018	116	17	125	121	19	125	11.0%	-5.00 [-9.47, -0.53]	
Spannella2019(12m)	114.8	15.8	54	114.7	8.4	30	9.0%	0.10 [-5.08, 5.28]	
Spannella2019(6m)	113.3	15.5	54	116.2	12.7	30	7.0%	-2.90 [-9.04, 3.24]	
Subtotal (95% CI)			292			244	32.7%	-3.65 [-6.80, -0.49]	\bullet
Heterogeneity: Tau ² = 2	38; Chi ²	= 3.88	3, df = 3	(P = 0.)	27); l² :	= 23%			
Test for overall effect: Z	= 2.27 (F	P = 0.0	2)						
1.13.2 DBP									
El-Battrawy2019	70	15.8	59	78	11.8	59	9.4%	-8.00 [-13.03, -2.97]	
Martens2018	67	11	125	69	11	125	18.4%	-2.00 [-4.73, 0.73]	
Spannella2019(12m)	67.3	11.1	54	67.8	7.7	30		Not estimable	
Spannella2019(6m)	67.5	10	54	67	6.2	30	14.8%	0.50 [-2.97, 3.97]	
Subtotal (95% CI)			238			214	42.5%	-2.76 [-6.81, 1.30]	
Heterogeneity: Tau ² = 9	22; Chi ²	= 7.44	1, df = 2	(P = 0.0)	02); i ² :	= 73%			
Test for overall effect: Z	= 1.33 (F	P = 0.1	8)						
1.13.3 HR									
El-Battrawy2019	69	20.8	59	74	15	59	6.4%	-5.00 [-11.54, 1.54]	
Martens2018	67	11	125	71	11	125	18.4%	-4.00 [-6.73, -1.27]	
Subtotal (95% CI)			184			184	24.7%	-4.15 [-6.67, -1.63]	◆
Heterogeneity: Tau ² = 0.	00; Chi ²	= 0.08	3, df = 1	(P = 0.1)	78); l² :	= 0%			
Test for overall effect: Z	= 3.23 (F	P = 0.0	01)						
Total (95% CI)			714			642	100.0%	-3.30 [-5.15, -1.44]	◆
Heterogeneity: Tau ² = 2	94; Chi ²	= 13.1	6, df =	8 (P = 0).11); F	² = 39%			
Test for overall effect: Z									-10 -5 0 5 10
Test for subgroup differ				- 2 /P -	0.065	$I^{2} = 0.9$	6		Favours [ARNI] Favours [Non-ARNI]

Figure 10. Forest plots for effect of Sacubitril/Valsartan on vital signs.

study or Subgroup	sacubitril/val Events		ACEI/A Events		Weight	Odds Ratio M-H, Random, 95% Cl	Odds Ratio M-H, Random, 95% Cl
.1.1 All-cause mortal		Total	Lvents	Total	aacidiur	m-n, random, 95% CI	
ang2018	1	60	0	58	0.3%	2.95 [0.12, 73.89]	
Solomon2012	1	149	2	152	0.6%	0.51 [0.05, 5.65]	
Solomon2019	342	2407	349	2389	22.1%	0.97 [0.82, 1.14]	+
Subtotal (95% CI)	0.12	2616	0.10	2599	23.0%	0.97 [0.82, 1.14]	
Fotal events	344		351				1
Heterogeneity: Tau ² = (74 df = 20): I ² = 0.9	6		
Fest for overall effect: 2				,,,	•		
1.1.2 Death from card	iovascular ca	uses					
Solomon2019	204	2407	212	2389	20.3%	0.95 [0.78, 1.16]	+
Subtotal (95% CI)		2407		2389	20.3%	0.95 [0.78, 1.16]	♦
Fotal events	204		212				
Heterogeneity: Not app	licable						
Fest for overall effect: Z		.62)					
1.1.3 Angioedema							
Gao2019	0	60	0	60		Not estimable	
<ang2018< td=""><td>0</td><td>60</td><td>0</td><td>58</td><td></td><td>Not estimable</td><td></td></ang2018<>	0	60	0	58		Not estimable	
Solomon2019	14	2407	4	2389	2.6%	3.49 [1.15, 10.61]	
Subtotal (95% CI)		2527		2507	2.6%	3.49 [1.15, 10.61]	
Fotal events	14		4				
Heterogeneity: Not app	licable						
Fest for overall effect: Z		.03)					
1.1.5 Hyperkalemia							
Gao2019	0	60	3	60	0.4%	0.14 [0.01, 2.69]	•
<ang2018< td=""><td>1</td><td>60</td><td>2</td><td>58</td><td>0.6%</td><td>0.47 [0.04, 5.38]</td><td></td></ang2018<>	1	60	2	58	0.6%	0.47 [0.04, 5.38]	
Solomon2012	12	149	9	152	3.8%	1.39 [0.57, 3.41]	•
Solomon2019	316	2407	361	2389	22.0%	0.85 [0.72, 1.00]	
Subtotal (95% CI)		2676		2659	26.8%	0.86 [0.73, 1.00]	•
Fotal events	329		375				
Heterogeneity: Tau² = (Fest for overall effect: 2			P = 0.42); I* = 09	6		
1.1.6 Symptomatic hy	potension						
Gao2019	7	60	7	60	2.6%	1.00 (0.33, 3.05)	
<ang2018< td=""><td>2</td><td>60</td><td>1</td><td>58</td><td>0.6%</td><td>1.97 [0.17, 22.28]</td><td></td></ang2018<>	2	60	1	58	0.6%	1.97 [0.17, 22.28]	
Solomon2012	28	149	27	152	7.5%	1.07 [0.60, 1.92]	- -
Solomon2019	7	44	5	88	2.2%	3.14 [0.94, 10.55]	
Subtotal (95% Cl)		313		358	13.0%	1.27 [0.80, 2.03]	₹
Fotal events	44		40				
Heterogeneity: Tau² = (Fest for overall effect: 2			(P = 0.43); I² = 09	6		
1.1.7 Renal dysfunctio Gao2019		60	7		0.00	0.43 (0.03.4.00)	
	1	60 60	7	60 69	0.8%	0.13 [0.02, 1.08]	
Kang2018	0	60 140	1	58 162	0.3%	0.32 [0.01, 7.94]	
Bolomon2012	3	149	7	152	1.8%	0.43 [0.11, 1.68]	_
Solomon2019 Subtotal (95% CI)	33	2407 2676	64	2389 2659	11.4% 14.3 %	0.50 [0.33, 0.77]	▲
Subtotal (95% CI)	27	2070	70	2059	14.3%	0.47 [0.32, 0.70]	•
Fotal events Hotorogonoity: Tou? = (37 0.00: Chiz = 1	60 df - 0 f	79 10 - 0.65	V-18 - 00	6		
Heterogeneity: Tau² = (Fest for overall effect: Z			r = 0.05	7,1-=09	0		
		13215		13171	100.0%	0.91 [0.75, 1.10]	•
otal (95% CI)	070	15215	1061	13111	100.070	0.01 [0.10, 1.10]	٦
Fotal (95% CI) Fotal events							
Fotal events	972 1 04: Chiế – 23	7 AQ AF- 1		04118-	12%		
	0.04; Chi² = 27	•		04); I² =	42%		0.01 0.1 1 10 Favours [ARNI] Favours [Valsartan]

Figure 11. Forest plot of major adverse reactions.

systems biology approach, valsartan mainly blocks the AT1 receptor mechanistically [16]. Improved ventricular remodeling may be one of the mechanisms by which Sacubitril/Valsartan reduces cardiovascular and all-cause mortality, so Sacubitril/Valsartan has an advantage over ACEIs/ARBs in terms of therapeutic safety. Sacubitril/Valsartan sodium tablet is a salt compound crystal formed by the combination of Sacubitril and Valsartan in a ratio of 1:1 molar mass [17]. Because of its special crystal structure, it may be more susceptible to anaphylaxis, known as angioedema. Sacubitril/ Valsartan is a precursor drug, which can be

Study	Risk Ratio	RR	95%-CI	Weight
var = CerebralInfarctionkang2018gao2019Random effects modelHeterogeneity: not applicable			[0.12; 69.78] [0.12; 69.78]	0.1% 0.0% 0.1%
var = HeartFailureDeterioration solomon2012 kang2018 Random effects model Heterogeneity: $I^2 = 0\%$, $\tau^2 = 0$, $p = 0.8$	37	0.68 0.58 0.63	[0.20; 2.36] [0.15; 2.32] [0.25; 1.60]	0.5% 0.4% 0.8%
var = Rehospitalization Gao2019 Solomon2019 Random effects model Heterogeneity: I^2 = 66%, τ^2 = 0.1918,	ρ = 0.09	0.40 0.86 0.67	[0.17; 0.96] [0.79; 0.94] [0.33; 1.35]	0.9% 98.2% 99.1%
Random effects model Heterogeneity: $I^2 = 0\%$, $\tau^2 = 0$, $p = 0.4$ 0.1	42 1 1 1 0.51 2 10	0.85	[0.78; 0.93]	100.0%

Figure 12. Forest plot of other adverse reactions.

metabolized into active enkephalinase inhibitor LBQ657 and valsartan in vivo [18], valsartan mainly blocks the AT1 receptor mechanistically to lower blood pressure.

Study limitations: the current meta-analysis included mainly observational studies, while RCT studies were few. Because randomized controlled trials have strict inclusion criteria. there is an observation phase prior to randomization to ensure patient tolerability. This suggests that randomized controlled trials may include healthier patients than observational studies. In addition, in observational studies, some patients may have received ACEIs/ARBs before receiving Sacubitril/Valsartan, and indicators of cardiac remodeling such as LVEF may have progressed from HFrEF to HFmrEF or HFpEF. Therefore, we need more and better RCTs in the future to focus on the efficacy and safety of Sacubitril/Valsartan. At the same time, some of the observational study may have unpredictable factors, so the interpretation of the results should be cautious. In addition, the sample size of some studies was not statistically controlled, and uneven changes in outcome indicators and follow-up time may have influenced the results.

Conclusions

This meta-analysis confirmed that Sacubitril/ Valsartan could improve cardiac remodeling regardless of gender, age, sample size and follow-up time, and improve the patient's vital signs. For safety, Sacubitril/Valsartan can reduce renal insufficiency, but for angioedema and symptomatic hypotension, it showed no difference with the traditional intervention group.

The results of the current study suggest that if patients are treated with Sacubitril/Valsartan as early as possible, they may benefit more from the reversal of cardiac remodeling. Further studies on the long-term effects of Sacubitril/ Valsartan on patients with CHF are needed to clarify the relationship between cardiac remodeling and long-term clinical outcomes, as well as the safety of the drug.

Acknowledgements

This study was supported by the Startup Fund for Scientific Research, Fujian Medical University (Grant number: 2020QH1346) and Fuzhou Health and Family Planning Science and Technology Innovation Platform Construction Project (2018-S-wp1).

Disclosure of conflict of interest

None.

Address correspondence to: Dr. Hengfen Dai, Department of Clinical Pharmacy, Affiliated Fuzhou First Hospital of Fujian Medical University, No. 190, Dadao Road, Taijiang District, Fuzhou 350009, Fujian, China. Tel: +86-0591-83269925 Ext. 6436; E-mail: hengfendai2011@163.com

References

- Blair JE, Huffman M and Shah SJ. Heart failure in North America. Curr Cardiol Rev 2013; 9: 128-146.
- [2] Moser DK. Pathophysiology of heart failure update: the role of neurohumoral activation in the progression of heart failure. AACN Clin Issues 1998; 9: 157-171.
- [3] Volpe M, Carnovali M and Mastromarino V. The natriuretic peptides system in the pathophysiology of heart failure: from molecular basis to treatment. Clin Sci (Lond) 2016; 130: 57-77.
- [4] McMurray JJ, Packer M, Desai AS, Gong J, Lefkowitz MP, Rizkala AR, Rouleau JL, Shi VC, Solomon SD, Swedberg K and Zile MR. Angiotensin-neprilysin inhibition versus enalapril in heart failure. N Engl J Med 2014; 371: 993-1004.
- [5] Solomon SD, McMurray JJV, Anand IS, Ge J, Lam CSP, Maggioni AP, Martinez F, Packer M, Pfeffer MA, Pieske B, Redfield MM, Rouleau JL, van Veldhuisen DJ, Zannad F, Zile MR, Desai AS, Claggett B, Jhund PS, Boytsov SA, Comin-Colet J, Cleland J, Düngen HD, Goncalvesova E, Katova T, Kerr Saraiva JF, Lelonek M, Merkely B, Senni M, Shah SJ, Zhou J, Rizkala AR, Gong J, Shi VC and Lefkowitz MP. Angiotensinneprilysin inhibition in heart failure with preserved ejection fraction. N Engl J Med 2019; 381: 1609-1620.
- [6] Zile MR, O'Meara E, Claggett B, Prescott MF, Solomon SD, Swedberg K, Packer M, McMurray JJV, Shi V, Lefkowitz M and Rouleau J. Effects of Sacubitril/Valsartan on biomarkers of extracellular matrix regulation in patients with HFrEF. J Am Coll Cardiol 2019; 73: 795-806.

- Packer M, McMurray JJ, Desai AS, Gong J, [7] Lefkowitz MP, Rizkala AR, Rouleau JL, Shi VC, Solomon SD, Swedberg K, Zile M, Andersen K, Arango JL, Arnold JM, Bělohlávek J, Böhm M, Boytsov S, Burgess LJ, Cabrera W, Calvo C, Chen CH, Dukat A, Duarte YC, Erglis A, Fu M, Gomez E, Gonzàlez-Medina A, Hagège AA, Huang J, Katova T, Kiatchoosakun S, Kim KS, Kozan Ö, Llamas EB, Martinez F, Merkely B, Mendoza I, Mosterd A, Negrusz-Kawecka M, Peuhkurinen K, Ramires FJ, Refsgaard J, Rosenthal A, Senni M, Sibulo AS Jr, Silva-Cardoso J, Squire IB, Starling RC, Teerlink JR, Vanhaecke J, Vinereanu D and Wong RC; PARADIGM-HF Investigators and Coordinators. Angiotensin receptor neprilysin inhibition compared with enalapril on the risk of clinical progression in surviving patients with heart failure. Circulation 2015; 131: 54-61.
- [8] Daubert MA, Adams K, Yow E, Barnhart HX, Douglas PS, Rimmer S, Norris C, Cooper L, Leifer E, Desvigne-Nickens P, Anstrom K, Fiuzat M, Ezekowitz J, Mark DB, O'Connor CM, Januzzi J and Felker GM. NT-proBNP goal achievement is associated with significant reverse remodeling and improved clinical outcomes in HFrEF. JACC Heart Fail 2019; 7: 158-168.
- [9] Januzzi JL Jr, Prescott MF, Butler J, Felker GM, Maisel AS, McCague K, Camacho A, Piña IL, Rocha RA, Shah AM, Williamson KM and Solomon SD; PROVE-HF Investigators. Association of change in N-terminal Pro-B-type natriuretic peptide following initiation of Sacubitril-Valsartan treatment with cardiac structure and function in patients with heart failure with reduced ejection fraction. JAMA 2019; 322: 1085-1095.
- [10] Higgins JP, Altman DG, Gøtzsche PC, Jüni P, Moher D, Oxman AD, Savovic J, Schulz KF, Weeks L and Sterne JA; Cochrane Bias Methods Group; Cochrane Statistical Methods Group. The Cochrane Collaboration's tool for assessing risk of bias in randomised trials. BMJ 2011; 343: d5928.
- [11] Stang A. Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. Eur J Epidemiol 2010; 25: 603-605.
- [12] Matsumura Y, Hoshikawa-Nagai E, Kubo T, Yamasaki N, Furuno T, Kitaoka H, Takata J, Sugiura T and Doi Y. Left ventricular reverse remodeling in long-term (>12 years) survivors with idiopathic dilated cardiomyopathy. Am J Cardiol 2013; 111: 106-110.
- [13] Ikeda Y, Inomata T, Iida Y, Iwamoto-Ishida M, Nabeta T, Ishii S, Sato T, Yanagisawa T, Mizutani T, Naruke T, Koitabashi T, Takeuchi I, Nishii M and Ako J. Time course of left ventricular reverse remodeling in response to pharmaco-

therapy: clinical implication for heart failure prognosis in patients with idiopathic dilated cardiomyopathy. Heart Vessels 2016; 31: 545-554.

- [14] Romano G, Vitale G, Ajello L, Agnese V, Bellavia D, Caccamo G, Corrado E, Di Gesaro G, Falletta C, La Franca E, Minà C, Storniolo SA, Sarullo FM and Clemenza F. The effects of Sacubitril/ Valsartan on clinical, biochemical and echocardiographic parameters in patients with heart failure with reduced ejection fraction: the "hemodynamic recovery". J Clin Med 2019; 8: 2165.
- [15] Wang Y, Zhou R, Lu C, Chen Q, Xu T and Li D. Effects of the angiotensin-receptor neprilysin inhibitor on cardiac reverse remodeling: metaanalysis. J Am Heart Assoc 2019; 8: e012272.
- [16] Iborra-Egea O, Gálvez-Montón C, Roura S, Perea-Gil I, Prat-Vidal C, Soler-Botija C and Bayes-Genis A. Mechanisms of action of sacubitril/valsartan on cardiac remodeling: a systems biology approach. NPJ Syst Biol Appl 2017; 3: 12.
- [17] Havakuk O and Elkayam U. Angiotensin receptor-neprilysin inhibition. J Cardiovasc Pharmacol Ther 2017; 22: 356-364.
- [18] Gu J, Noe A, Chandra P, Al-Fayoumi S, Ligueros-Saylan M, Sarangapani R, Maahs S, Ksander G, Rigel DF, Jeng AY, Lin TH, Zheng W and Dole WP. Pharmacokinetics and pharmacodynamics of LCZ696, a novel dual-acting angiotensin receptor-neprilysin inhibitor (ARNi). J Clin Pharmacol 2010; 50: 401-414.
- [19] Solomon SD, Zile M, Pieske B, Voors A, Shah A, Kraigher-Krainer E, Shi V, Bransford T, Takeuchi M, Gong J, Lefkowitz M, Packer M and McMurray JJ; Prospective comparison of ARNI with ARB on Management Of heart fail-Ure with preserved ejectioN fracTion (PARAM-OUNT) Investigators. The angiotensin receptor neprilysin inhibitor LCZ696 in heart failure with preserved ejection fraction: a phase 2 double-blind randomised controlled trial. Lancet 2012; 380: 1387-1395.

- [20] Kang DH, Park SJ, Shin SH, Hong GR, Lee S, Kim MS, Yun SC, Song JM, Park SW and Kim JJ. Angiotensin receptor neprilysin inhibitor for functional mitral regurgitation. Circulation 2019; 139: 1354-1365.
- [21] Gao Y, Xing C, Hao W, Zhao H, Wang L, Luan B and Hou A. The impact of sacrubitril/valsartan on clinical treatment and hs-cTnT and NT-ProBNP serum levels and the left ventricular function in patients with chronic heart failure. Int Heart J 2020; 61: 1-6.
- [22] Martens P, Beliën H, Dupont M, Vandervoort P and Mullens W. The reverse remodeling response to sacubitril/valsartan therapy in heart failure with reduced ejection fraction. Cardiovasc Ther 2018; 36: e12435.
- [23] Bayard G, Da Costa A, Pierrard R, Roméyer-Bouchard C, Guichard JB and Isaaz K. Impact of sacubitril/valsartan on echo parameters in heart failure patients with reduced ejection fraction a prospective evaluation. Int J Cardiol Heart Vasc 2019; 25: 100418.
- [24] El-Battrawy I, Pilsinger C, Liebe V, Lang S, Kuschyk J, Zhou X, Borggrefe M, Röger S and Akin I. Impact of Sacubitril/Valsartan on the long-term incidence of ventricular arrhythmias in chronic heart failure patients. J Clin Med 2019; 8: 1582.
- [25] Spannella F, Marini M, Giulietti F, Rosettani G, Francioni M, Perna GP and Sarzani R. Renal effects of Sacubitril/Valsartan in heart failure with reduced ejection fraction: a real life 1-year follow-up study. Intern Emerg Med 2019; 14: 1287-1297.

Pubmed

#1 Search (((((((LCZ696[Title/Abstract]) OR LCZ-696[Title/Abstract]) OR sacubitril[Title/Abstract]) OR sacubitril-valsartan [Title/Abstract]) OR entresto[Title/Abstract]) OR endopeptidase[Title/Abstract]) OR neutral endopeptidase[Title/Abstract]) OR neprilysin[Title/Abstract] OR Angiotensin receptor neprilysin inhibitor

#3 #1 and #2

EMBASE

#1 'sacubitril plus valsartan'/exp OR 'lcz696':ti,ab OR 'lcz-696':ti,ab OR 'entresto':ti,ab OR 'sacubitrilvalsartan':ti,ab OR 'sacubitril':ti,ab OR 'endopeptidase':ti,ab OR 'neutral endopeptidase':ti,ab OR 'neprilysin inhibitor':ti,ab

#2 'dipeptidyl carboxypeptidase inhibitor'/exp OR 'angiotensin converting enzyme inhibitors':ti,ab OR 'angiotensin i-converting enzyme inhibitors':ti,ab OR 'angiotensin i-converting enzyme inhibitors':ti,ab OR 'antagonists, angiotensin-converting enzyme':ti,ab OR 'antagonists, angiotensin converting enzyme':ti,ab OR 'inhibitors, ace':ti,ab OR 'ace inhibitors':ti,ab OR 'inhibitors, angiotensin-converting enzyme':ti,ab OR 'inhibitors, angiotensin-converting enzyme':ti,ab OR 'inhibitors, angiotensin-converting enzyme':ti,ab OR 'enzyme inhibitors, angiotensin-converting 'inhibitors, angiotensin converting enzyme':ti,ab OR 'enzyme inhibitors, angiotensin-converting':ti,ab OR 'inhibitors, angiotensin converting enzyme':ti,ab OR 'angiotensin-converting enzyme antagonists':ti,ab OR 'angiotensin receptor antagonists':ti,ab OR 'angiotensin receptor antagonists':ti,ab OR 'angiotensin receptor antagonists, angiotensin receptor blockers, angiotensin':ti,ab OR 'angiotensin':ti,ab OR 'angiotensin ii receptor blockers, angiotensin':ti,ab OR 'angiotensin ii receptor antagonists':ti,ab OR 'angiotensin ii receptor blockers':ti,ab OR 'angiotensin receptor antagonists':ti,ab OR 'angiotensin ii receptor blockers':ti,ab OR 'angiotensin receptor antagonists':ti,ab OR 'angiotensin ii receptor blockers':ti,ab OR 'angiotensin receptor antagonists':ti,ab OR 'angiotensin ii receptor antagonists':ti,ab OR 'angiotensin ii receptor blockers':ti,ab OR 'angiotensin receptor antagonists':ti,ab OR 'angiotensin ii receptor antagonists':ti,ab OR 'angiotensin receptor antagonists':ti,ab OR 'angiotensin ii receptor blockers':ti,ab OR 'angiotensin receptor antagonists':ti,ab OR 'angiotensin ii receptor blockers':ti,ab OR 'angiotensin receptor antagonists':ti,ab OR 'angiotensin ii receptor blockers':ti,ab OR 'angiotensin receptor antagonists':ti,ab OR 'angiotensin receptor antago

The Cochrane Library search strategy

#1 MeSH descriptor: [Heart Failure, Systolic] explode all trees

#2 ((cardi*):ti,ab,kw OR (myocardi*):ti,ab,kw OR (heart):ti,ab,kw) AND ((failure):ti,ab,kw OR (dysfunction):ti,ab,kw)

#3 ("heart failure with reduced ejection fraction"):ti,ab,kw OR #1 OR #2

#4 (LCZ696):ti,ab,kw OR (sacubitril-valsartan):ti,ab,kw OR (sacubitril):ti,ab,kw OR (LCZ-

696):ti,ab,kw OR (entresto):ti,ab,kw OR (endopeptidase):ti,ab,kw OR (neutral endopeptidase):ti,ab,kw OR (neprilysin inhibitor):ti,ab,kw

#5 #3 and #4

Web of Science search strategy

#1 (TS=(LCZ696 OR entresto OR "sacubitril-valsartan" OR "neprilysin inhibitor"))
#2 (TS=(heart OR myocardi* OR cardio* OR cardia*))

#3 (TS=(failure OR dysfunction)) #4 #2 AND #3 #5 (TS=("systolic heart failure" OR "heart failure with reduced ejection fraction" OR "ventricular dysfunction")) #6 #4 OR #5 #7 #1 AND #6