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Abstract: Background: Acute respiratory distress syndrome (ARDS) is a severe form of respiratory failure character-
ized by altered lung mechanics and poor oxygenation. Bronchial hyperresponsiveness has been reported in ARDS 
survivors and animal models of acute lung injury. Whether this hyperreactivity occurs at the small airways or not 
is unknown. Objective: To determine ex-vivo small airway reactivity in a rat model of acute lung injury (ALI) by hy-
drochloric acid (HCl) instillation. Methods: Twelve anesthetized rats were connected to mechanical ventilation for 
4-hour, and randomly allocated to either ALI group (HCl intratracheal instillation; n=6) or Sham (intratracheal instil-
lation of 0.9% NaCl; n=6). Oxygenation was assessed by arterial blood gases. After euthanasia, tissue samples 
from the right lung were harvested for histologic analysis and wet-dry weight ratio assessment. Precision cut lung 
slice technique (100-200 μm diameter) was applied in the left lung to evaluate ex vivo small airway constriction in 
response to histamine and carbachol stimulation, using phase-contrast video microscopy. Results: Rats from the ALI 
group exhibited hypoxemia, worse histologic lung injury, and increased lung wet-dry weight ratio as compared with 
the sham group. The bronchoconstrictor responsiveness was significantly higher in the ALI group, both for carbachol 
(maximal contraction of 84.5±2.5% versus 61.4±4.2% in the Sham group, P<0.05), and for histamine (maximal 
contraction of 78.6±5.3% versus 49.6±5.3% in the Sham group, P<0.05). Conclusion: In an animal model of acute 
lung injury secondary to HCL instillation, small airway hyperresponsiveness to carbachol and histamine is present. 
These results may provide further insight into the pathophysiology of ARDS.
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Introduction

Acute Respiratory Distress Syndrome (ARDS) is 
a severe form of acute lung injury (ALI) charac-
terized by increased permeability of the alveo-
lo-capillary barrier, edema with high protein 
content, hyaline membrane formation, and sur-
factant inactivation, determining an inadequ- 
ate ventilation perfusion (V/Q) ratio [1].

Small airway remodeling [2] and dysfunction 
have been observed in ARDS patients [3-5], 

which may potentially cause changes in small 
airway reactivity and resistance. In normal con-
ditions, due to the large global cross-sectional 
area, small airways contribute to 20% of total 
airway resistance [6] and might play a key role 
in the adequate distribution of ventilation. 
Airway hyperresponsiveness to methacholine 
has been reported in patients who survived the 
ARDS [7], as well as in animal models of ALI  
[8, 9]. Nevertheless, these studies were not 
able to differentiate whether increased reactiv-
ity occurred at large or small airways. Due to 
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technical limitations, the contribution of small 
airways to general airway reactivity remains 
uncertain. In this context, precision cut lung 
slices (PCLS), a technique widely used to study 
intrapulmonary blood vessels [10], allows to 
isolate small airways, perform stimulation and 
ex vivo analysis maintaining the architectural 
relationship between tissues and cell types 
involved in immune responses and broncho-
constriction [11-14]. This technique has been 
used to evaluate small airways of models of 
chronic obstructive pulmonary disease (COPD) 
and asthma [12, 15]. However, according to  
our knowledge, it has never been used in ALI 
models. In the present study, we aimed to eval-
uate the ex vivo reactivity of small airways, in 
an experimental model of ALI.

Materials and methods

This protocol was approved by the Scientific 
Ethics Committee for the Care of Animals and 
Environment of the Pontificia Universidad 
Católica de Chile (N° 170801004) and by the 
Institutional Animal Care and Use Committee 
(IACUC) of Facultad de Medicina, Universidad 
de Chile (CBA#0614 FMUCH).

Animal preparation

Twelve male Sprague Dawley rats (300-350 
grams) were anesthetized with 10 mg/kg xyla-
zine and 100 mg/kg ketamine intraperitoneal- 
ly (IP). After anesthesia, a 14 G cannula con-
nected to a pressure transducer was inserted 
into the trachea. Then animals were connected 
to a mechanical ventilator for small animals 
(series SAR-830, CWE Inc., PA, USA). Ventila- 
tion strategy included tidal volume of 7 ml/kg, 
positive end-expiratory pressure (PEEP) of 2  
cmH2O, inspiratory to expiratory ratio of 1:2, 
respiratory rate of 95 breaths per minute, and 
inspired oxygen fraction of 100%. In addition,  
a 22 G catheter was inserted into the right 

carotid artery for blood extraction and blood 
pressure monitoring. Anesthesia was adminis-
tered through intravenous boluses of ketamine 
(50 mg/kg every 30 minutes), and muscle 
paralysis was achieved by intravenous boluses 
of rocuronium bromide 0.7 mg/kg every 20 
minutes. Animals were kept at 37°C through- 
out the whole experiment.

Study protocol and experimental groups

Following a stabilization period of 30 minutes, 
rats were randomly allocated into 2 groups: (i) 
Sham (n=6), which received intratracheal in- 
stillation of 2 ml/kg of saline solution (0.9%); 
and (ii) ALI group (n=6), treated with intratra-
cheal instillation of 2 ml/kg of HCl 0.1 N  
and pH 1.5, as previously described [16, 17]. 
Thereafter, animals were mechanically venti-
lated for 4 hours according to the ventilation 
strategy described above. Arterial blood sam-
ples (100 μl) were obtained every 60 minutes 
for blood gas analysis (i-STAT, Abbott Labor- 
atories, Abbott Park, IL, USA). At the end of the 
study period, animals were euthanized with an 
anesthetic overdose. Middle and accessory 
right lung lobes were extracted to determine 
the lung wet-dry weight ratio. The right lower 
lobe was used for histological analysis, while 
the left lung was excised for PCLS and ex vivo 
experiments. Figure 1 illustrates the study pro-
tocol and tissue sampling diagram.

Histology

Lung tissue was harvested and fixed with 10% 
buffered formaldehyde solution in cold forma- 
lin for histological analysis. Sections of 5 mm 
thick were obtained and stained with hematox-
ylin and eosin for analysis by light microscopy 
(0= not present and 4= severe) that included 
alveolar disruption, alveolar edema, neutrophil 
infiltration, and hemorrhage, as previously de- 
scribed [18]. Histological assessment was per-

Figure 1. Diagram showing animal groups, intervention tissue sampling, and analysis.
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formed by an experienced investigator in lung 
pathology.

Precision cut lung slices (PCLS) preparation

The left lung was filled with 2% low-melting  
agarose solution at 37°C, with a volume of 
2.25% of body weight. Then agarose was solidi-
fied at 4°C, and a vibratome (Compresstome™ 
VF-300, Precisionary Instruments Inc.) was 
used to prepare 150 μm PCLS. Slices were 
incubated in 2 ml of Dulbecco’s modified Eagle 
medium and stored in an incubator (Incubator 
CO2 Precision Scientific 5410) at 37°C, 5% CO2, 
for 12 hours. Then, slices were washed and 
placed in a bath with Hanks’ Balanced Salt 
Solution (HBSS). Those with 100 to 200 µm of 
airway diameter and positive ciliary movement 
were selected for ex vivo experiments. At least 
3 lung slices per animal were used for stimula-
tion with carbachol (CCh) and another 3 for 
stimulation with histamine. Perfusion solution 
was changed every 3 minutes, starting with 
HBSS. For assessment of carbachol and hista-
mine dose-dependent bronchoconstriction, a 
range from 0.001 to 100 μM was applied every 
3 min at each concentration. A phase-contrast 
optical microscope connected to a camera 
(Digital Camera Type Color CMOS SXY-M90) 
was used, and pictures were recorded at 0.5 Hz 
(software S-VIEWER). Images were analyzed 
with the Image J software (version 1.52a). The 
initial lumen (baseline) was considered as the 
average of the first 90 images of each experi-
ment. Then the percentage of airway lumen 
obtained at the end of each concentration of 
CCh or histamine was obtained in proportion  
to the baseline lumen (number of total pixels 
was considered as 100%).

Statistics

Statistical analysis was performed using Gra- 
phPad Prism 7. Mann-Whitney and Kruskal-
Wallis tests were performed to determine the 
differences between groups. Friedman test 
was used to determine differences within 
groups, and Dunn’s test was used for post-hoc 
comparisons. For comparison of dose-respon- 
se curves and exponential curves between 
groups, the F-test was used. The concentra- 
tion-response curve is represented as mean ± 
SE and all other values as median and inter-
quartile ranges (IQR). The sample size was cal-
culated based on data from a previous study  
in a murine model of ozone-induced hyper-
responsiveness in which healthy animals ex- 
hibited a maximal bronchoconstriction to car-
bachol of 60±15% with the PCLS technique, 
while animals exposed to ozone exhibited a 
maximal bronchoconstriction of 85±15% [12]. 
We calculated that 6 animals per group would 
be required in our study to demonstrate a simi-
lar difference with a power of 0.8 and a two-
sided error of 0.05.

Results

Lung injury markers

At the end of 4-hour study period the ALI  
group exhibited a significant alteration in gas 
exchange and increased peak airway pres- 
sure (Pawpeak) compared with the Sham group 
(PaO2/FiO2 of 117 [81-135] vs. 274 [255-396], 
P=0.02; PaCO2 of 62 [53-70] mmHg vs. 43  
[38-47] mmHg, P=0.007; Pawpeak 17.8 [17.8-
18.5] vs. 13.2 [12.0-14.7] cmH2O; P=0.004) 
(Figure 2). The lung wet-dry weight ratio was 
significantly higher in the ALI group in middle 

Figure 2. HCl instillation induces impaired gas exchange and pulmonary mechanics. (A) Partial pressure of O2 
(PaO2), (B) Partial pressure of CO2 (PaCO2) and (C) Peak airway pressure (Pawpeak) in 4 hours of experimental period. 
#P<0.05, compared to baseline of their group; *P<0.05, ALI compared to Sham. ALI: Acute Lung Injury.
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and accessory lobe (7.9 [5.8-8.7] vs. 5.4 [4.9-
5.9]; P=0.03 and 7.15 [6.99-7.64] vs. 5.84 
[4.96-6.25]; P=0.002, respectively) (Figure 
3A). Histological analysis showed that the ALI 
group in comparison with the Sham group had 
higher hemorrhage (2 [1-2.75] vs. 0.25 [0- 
1.25]; P=0.0281), neutrophil infiltration (1.32 
[1.19-1.63] vs. 0 [0-0.63]; P=0.0043), alveolar 
edema (3.75 [2.5-4] vs. 1.5 [0.75-2]; P=0.026) 
and a greater alveolar disruption trend (1.75 
[1-2] vs. 1 [0-1.25]; P=0.0584) (Figure 3B and 
3C). No differences were found in heart rate 
and blood pressure between the groups.

Small airway responsiveness to carbachol and 
histamine

An increase in small airway responsiveness  
to CCh was observed in ALI compared to the 
Sham group (Figure 4 and Supplementary 
Material). Airway contraction was detected at 
concentrations above 0.1 µM of CCh in both 
groups, and reached a maximal response at  

10 µM, with higher contraction in the ALI group 
(84.5±2.5% for Ali group vs. 61.4%±4.2% for 
Sham group) (P<0.05) (Figure 4B). See the 
additional video file for more details.

A similar pattern was observed with Histamine, 
in which airway contraction started at 10 µM, 
and the maximal response was observed at 
100 µM. However, a plateau was not reached 
even with maximal histamine concentration 
applied (Figure 5). The maximal contraction 
was 78.6±5.3% in the ALI group compared to 
49.6±5.3% in the Sham group (P<0.05) (Figure 
5B).

Discussion

In the present study, we observed the presen- 
ce of small airway hyperresponsiveness in an 
ALI rat model secondary to intratracheal instil-
lation of HCl. Although previous studies had 
shown evidence of small airway dysfunction in 
ALI models and in ARDS patients [7-9], to our 
knowledge, this is the first study showing small 

Figure 3. HCl instillation induces severe acute lung injury. A. Pulmonary edema represented by lung wet/dry weight 
ratio. B. Representative hematoxylin and eosin stain from 3 rats, left Sham and right ALI samples (scale 200 µm). 
C. Semiquantitative score for lung injury by a semiquantitative score based on severity (0= not present, 4= severe) 
in 5 regions of right lower lobe. Values are represented as median and interquartile ranges. #P<0.05, compared to 
baseline of their group; *P<0.05, ALI compared to Sham. ALI: Acute Lung Injury.
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airway hyperresponsiveness in ALI model as- 
sessed by PCLS.

Since gastric content aspiration constitutes an 
important cause of ARDS [19], the acid aspira-
tion model by HCl instillation can be consider- 

ed a representative clinical model to study this 
condition in a controlled and reproducible way 
[20]. The refractory hypoxemia and worse his- 
tologic lung injury observed in the ALI group 
were expected and explained by several rea-
sons. The pH of HCl would result in the loss of 

Figure 4. Acute lung injury induces small airway hyperresponsiveness to carbachol in precision cut lung slices 
(PCLS). A. Representative microscopic images of a lung slice showing contraction of a single airway treated with 
increasing concentrations of carbachol (from 0.001 to 100 micromolar) and graphical representation of the air-
way area (percentage relative to initial area). B. Concentration-response curve calculated by percentage of airway 
contraction with respect to the baseline. 37 lung slices from sham group and 36 from ALI group were used. Data 
are represented in mean ± SE. *P<0.05. Black line: Sham group, red line: ALI group. ALI: Acute Lung Injury; HBSS: 
Hanks’ Balanced Salt Solution.

Figure 5. Acute lung injury induces small airway hyperresponsiveness to histamine in precision cut lung slices 
(PCLS). A. Representative microscopic images of a lung slice showing contraction of a single airway treated with 
increasing concentrations of histamine and graphical representation of the airway area (percentage relative to 
initial area). B. Concentration-response curve calculated by percentages of airway contraction with respect to the 
baseline. 30 lung slices from sham group and 29 from ALI group were used. Data are represented in mean ± SE. 
*P<0.05. Black line: Sham group, red line: ALI group. ALI: Acute Lung Injury; HBSS: Hanks’ Balanced Salt Solution.
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microvascular integrity, followed by an acute 
neutrophilic inflammatory response with ex- 
travasation of fluid and proteins into the lungs, 
which finally results in pulmonary edema. All 
these characteristics were verified in our study 
by histology, wet-dry weight ratio, and gas 
exchange [21, 22].

In terms of airway dysfunction, previous stu- 
dies have shown airway hyperresponsiveness 
in a mice model of HCl aspiration by measuring 
global changes in respiratory system resistan- 
ce in response to methacholine [9]. Our results 
confirm these findings and, by applying PCLS, 
we found that hyperresponsiveness occurs at 
the small airways.

Chronic obstructive pulmonary disease (COPD) 
is characterized by airway remodeling and 
hyperresponsiveness with limited expiratory 
flow and the consequent gas trapping. Maar- 
singh and colleagues using a PCLS technique  
in a guinea pig model of COPD and COPD 
patients demonstrated small airway hyperre-
sponsiveness. They observed that the maximal 
contraction in the small airway from COPD 
patients was 22% greater than that of controls; 
a similar difference was found in the animal 
model [15]. Interestingly, we observed that the 
maximum contraction of the small airways of 
the rats with ALI was 23% greater than that of 
the sham group, a similar difference to what 
was found by Maarsingh et al. Likewise, the 
results found in our model are very similar to 
those of Cooper et al., who used PCLS from 
mice exposed to ozone, a classic model of air-
way hyperreactivity, observing similar dose-
response curves from HCL rat model, with a 
maximum contraction close to 80% with 100 
µM CCh [12].

Pathology of acute lung injury has been usually 
focused on alveolar damage with scarce infor-
mation about airway involvement. Thus, small 
airways have been proposed to be a “silent 
zone” as their contribution to respiratory sys-
tem resistance is rather low [4, 6, 23]. Never- 
theless, structural analysis of small airways by 
histology has revealed epithelial denudation, 
inflammation, wall thickening, and extracellular 
matrix remodeling, both in ALI animal models 
and in ARDS patients [2, 4, 24]. The structural 
and functional alterations described in small 
airways may be implicated in the hyperrespon-
siveness observed in the present study.

Expiratory flow limitation with the presence  
of intrinsic positive end-expiratory pressure 
(PEEPi) and airway closure has been consis-
tently reported in a high proportion of ARDS 
patients [3, 5, 25-27] and ALI models [28]. Al- 
though this phenomenon has been attributed 
to edema (29) and instability of airway walls 
[29-31], the possible relation with hyperres- 
ponsiveness has not been explored. Farrow et 
al. studied a group of asthmatic patients with 
single-photon emission computed tomography 
before and after a methacholine test and 
observed that airway hyperresponsiveness is 
directly implicated in airway closure (39). 
Whether small airway hyperresponsiveness is 
involved in the airway closure phenomenon of 
ARDS patients is still unknown.

Our study presents limitations. Unfortunately, 
our ventilator setting did not allow us to calcu-
late airway or lung resistance or to detect air-
way closure, which could have contributed to 
better interpretation of the mechanical rele-
vance of our findings. In addition, we only stud-
ied one specific model of ALI. Although HCl 
induces diffuse alveolar damage, it may also 
cause direct injury to the airways. However, 
small airway inflammation and epithelial injury 
are consistently observed in most ALI models 
and in ARDS patients, which suggests that 
hyperreactivity may also be present.

Conclusions

We report for the first time using an animal 
model for acute lung injury by HCl exposure, 
small airway hyperresponsiveness to carbach- 
ol and histamine. Nevertheless, further studies 
using PCLS in different ARDS models, as well 
as in lung tissues obtained from ARDS pa- 
tients, are needed to determine the clinical  
relevance of the small airway hyperresponsive- 
ness.
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