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Abstract: As an emerging framework in neuroscience, brain connectomics is well suited for investigating key ques-
tions on brain complexity by combining viral transneuronal tracing and whole brain graphic methodologies using 
analytical tools of network science. Transsynaptic viral tract-tracing in the toolbox of neural labeling methods has 
been a significant development in the connectomics field to decipher the circuit-level architecture of the cerebral 
cortex. In the present work, we reviewed the current methods enabling structural connectivity from the viscera to the 
cerebral cortex mapping with viral transneuronal tracers and showed how such neuroanatomic connectomic data 
could be used to infer new structural and functional information in viscera-cerebral cortex circuits.
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Introduction

The brain can control visceral functions using 
complex neural circuits. Viral tracers are kn- 
own to represent a potent tool for anatomical 
and physiological analyses of specific brain-
viscera neural pathways. The neurotropic viral 
tracers include both retrograde and antero-
grade transneuronal tracers with poly or mono 
synaptic methods. A variety of retrograde  
trans-polysynaptic viral tracers (e.g., the pseu-
dorabies virus (PRV) [1-3]), monosynaptic re- 
trograde labeling (e.g., the glycoprotein-delet- 
ed rabies (ΔG-rabies) virus vector [4-6]), and 
anterograde trans-polysynaptic viral tracers 
(e.g., herpes simplex virus 1, strain H129 (HSV-
1-H129) [7-9]), have widely been used for iden-
tifying neural pathways underlying distinct be- 
haviors or brain functions.

Viral-based transneuronal tracing technologies 
are broadly used as neuroscience research 
tools for the anatomy of both the central and 

peripheral nervous systems [2, 3, 10, 11]. 
Highly sensitive viral transneuronal tracers are 
available for connectomic studies [12]. Th- 
erefore, understanding in depth neurotropic 
viral properties and genetically modified viral 
tools is essential for constructing connectomic 
studies from internal organs to the brain. For 
the direction viral tracers take, describing con-
nections ‘from the viscera to the cerebral cor-
tex’ is crucial. However, it should be noted that 
this is a retrograde direction, and, in our view, it 
would be much more logical to state that the 
connections run from the cerebral cortex to the 
viscera (Reviewer’s suggestion). Indeed, con-
nectivity mapping may be done from the vis-
cera to the cerebral cortex as well as from the 
cerebral cortex to the viscera. In this review, we 
describe connections from the cortex to the vis-
cera using retrograde transneuronal transport.

Over the past few decades, the genetically 
modified technique has brought revolutionary 
breakthroughs to fluorescence labelling imag-
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ing [13-16]. Using this powerful molecular la- 
belling technique, the viruses are genetically 
engineered to serve as vectors for fluorescent 
protein expression in host cells, which enables 
the analysis of neuroanatomic localization and 
evaluation of the biological function. For exam-
ple, the recombinant strains of the pseudora-
bies virus (PRV) Bartha are conjugated to eith- 
er green (PRV152-EGFP) or red (PRV614-RFP) 
fluorescent protein [17-24], which provides a 
good foundation for intracellular targeting of 
the labeled neurons in future connectomic 
studies [1].

Using viral-genetic methods, neuroscientists 
can label polysynaptic tracing of restricted  
neuronal networks across multiple synapses 
for monitoring neuronal activity [10, 25-28], as 
well as dual or three genetically engineered 
viral tracers for transneuronal tracing. These 
developments of transneuronal tracers give 
rise to a major step forward in our understand-
ing of brain connectomics. The duration of the 
labeling period upon application of the virus in 
different viscera is summarized in Table 1.

Based on the use of neutrophilic viruses as 
neuronal markers, connectomic studies have 
shown that viruses can specifically transfer 
between connected neurons by replicating in 
recipient neurons and entire functional net-
works including first-, second-, third-order neu-
rons, etc. For example, Stanley [29] mapped 
the hierarchy of synaptically linked multineuro-
nal efferent pathways following sites of PRV 
infection over time after injection of PRV152 
into the liver. He found five infection phases 
based on the postinfection pattern at various 
times, suggesting that there exist five chains 
(also named five order synapses) of synaptical- 
ly connected neurons from the CNS to the liver.

The properties and application of the com-
monly used neurotropic viral tracers

The use of viral transneuronal tracers will help 
significantly in unraveling connections not only 
in the somatic part of the nervous system but 
also in its visceral part and in elucidating to 
what extent these connections are linked. 
Based on the inherent property of propagating 
among synaptically linked neurons, the com-
monly used neurotropic viral tracers are divid-
ed into the retrogradely transported virus [30, 
31], including PRV, rabies virus (RV) and many 

adeno-associated virus (AAV) serotypes (such 
as the rAAV2-retro vector) [32], and the an- 
terogradely transported virus, including HSV-
1-H129 [7-9], vesicular stomatitis virus (VSV) 
[33], and AAV1 [11, 34, 35].

Some studies from Strick [36-38] demonstrate 
retrograde trans-polysynaptic transport of the 
N2c strain of RV (CVS-N2c), whereas a report of 
Choi and Callaway [39] suggests that a novel 
type of retrograde gene transfer RV vector is 
only an anterograde monosynaptic tracer. Cal- 
laway and Luo [40] advocate that the glycopro-
tein-deleted rabies (ΔG-rabies) virus vector is 
commonly used for monosynaptic retrograde 
labeling, but the high cytotoxicity of this vector 
is limited in its application to anatomical and 
physiological analyses of specific neural path- 
ways.

For the use of such tracing tools, further 
research is necessary to examine the advan-
tages and disadvantages of using PRV and RV. 
For example, the types of viruses suitable for 
retrograde infection of specific organs, i.e., cell 
and tissue specificity of viral tracers; the speci-
ficity of transneuronal tracing of synaptically 
linked neural circuits using recombinant viral 
strains, i.e., risk of runaway second-order or 
higher order virus infection. Development of 
better recombinant strains with higher cell/tis-
sue specificity and labeling efficiency is thus 
essential for pushing forward the field of con-
nectomic studies using viral tracing.

Current methods for viscera-brain connec-
tome studies

Elucidating connectomics at the whole-brain 
level is attracting increasing attention [41-44], 
as a variety of technological solutions for dif- 
ferent biological applications have been opti-
mized. We have defined the viscera-brain con-
nectome as the specific region in the CNS that 
projects to the viscera via synaptic connec-
tions. Based on this definition, we found that 
the viscera-brain connectome is composed of 
multiple, spatially separate subareas.

Nonetheless, it is well known that the viscera-
brain connectome is important in defining spe-
cific sources of the central command for the 
neural regulation of these viscera. A variety of 
new methods are being developed to perform 
computer-assisted high-throughput image ac- 
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Table 1. Duration of the labeling period upon virus application in different viscera
Species of the  
animal model Species of the virus Labeling 

period Application site Labeling destination Reference

Mice HSV-1 2-3 days stomach Nodose ganglia, enteric ganglia [116] 

Mice RV 3-5 day diaphragm/intercostal muscles spinal cord, pons and medulla, cerebellum, mesencephalon, diencephalon, and 
telencephalon

[117]

Rat RV 3-3.5 days Orbicularis Oculi muscle trigeminal nuclei, oculomotor nucleus [118]

4-5 days lateral hypothalamus, cerebral cortex

Rat RV 3-4 days stomach dorsal motor nucleus of the vagus [69]

3-4 days The nucleus of the solitary tract

~89.5 h the insula, medial prefrontal cortex

3-4 days stomach (vagus nerves cut) Rostral ventrolateral medulla

~114.5 h primary motor cortex, primary somatosensory cortex, secondary motor cortex

Rat RV ~82 h kidney RVLM [37]

~92 h NTS

~99 h primary motor cortex, primary somatosensory cortex, secondary motor cortex

Rat RV 3 days adrenal medulla layer V of cerebral cortex [38]

Rat PRV 3 days heart stellate ganglia, sympathetic chain ganglia [119]

Rat PRV-263 3 days kidney sympathetic chain ganglia [120]

Rat H129 3 days stomach Nodose ganglia [121]

Rat PRV-Bartha 3 days stomach brainstem [122]

Rat PRV 2 days bladder and colon major pelvic ganglion [123]

Rat PRV 3 days bladder wall DRG [124]

Rat PRV-mRFP1, PRV-EGFP 4 days kidney sympathetic postganglionic neurons in celiac ganglia [87]

Cat RV 61.5-120 h diaphragm spinal cord, medulla, and pons, midbrain, diencephalon, and telencephalon [125]

Cebus monkeys RV 4-5 days adrenal medulla corticospinal tract [99]

5-6 days primary motor cortex, dorsal and ventral premotor areas, supplementary motor 
area, Medial prefrontal areas

monkeys (Cebus apella) RV adrenal medulla layer V of cerebral cortex [38]

rhesus monkeys RV ~3 days hand muscle Int and DRG of lower cervical and upper thoracic segments of the spinal cord [126]

4-5 days the red nucleus (RNm), and CM cells in layer V of M1

>5 days CM cells in in layers III and VI of M1

rhesus monkeys RV 4-4.5 days orbicularis oculi ventrolateral premotor, motor cortices (M1-M4), pre-supplementary motor cortex, 
somatosensory cortices, prefrontal cortex

[127]

rhesus monkeys RV 2.5 days lateral rectus eye muscle brainstem cell groups [128]

3 days Cerebellar nuclei

3.5 days Cerebellar cortex

Macaca fascicularis RV 3-4 days lateral rectus muscle superior colliculus neurons [129]

guinea pigs RV 50 h-86 h medial rectus oculomotor nucleus, medial vestibular nucleus, Scarpa’s ganglion, Purkinje cells [130]
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quisition and analysis to obtain viscera-brain 
connectome. There are various technologies of 
viscera-brain connectome studies as shown 
below.

The first is the two dimensional connectomic 
analysis mapping based on a standard atlas of 
the rat brain [45]. Rabies virus (RV) is a retro-
grade transneuronal tracer which transports in 
a time-dependent fashion and can identify a 
chain of synaptically connected neurons [46-
49]. For example, after injecting the rabies 
virus (RV) into the rat kidney, Levinthal and 
Strick [37] used a computer-based charting 
system (MD2, Accustage) [48] and their self-
designed laboratory software to create kidney-
cortex connectomic maps that displayed the 
distribution of RV-labeled neurons on a two 
dimensional surface [50].

The second are the high-throughput light sheet 
tomography [51, 52] and the micro-optical sec-
tioning tomography (MOST) [53-57]. Chen [1] 
reconstructed and compared the distinct distri-
bution patterns and quantitative statistics of 
the brain-wide PRV-infected neurons projecting 
to the skeletal muscle by using the high-th- 
roughput light sheet tomography platform. Sun 
[58] utilized monosynaptic rabies viral tracers 
in combination with fluorescence MOST to gen-
erate a whole-brain atlas of direct long-range 
inputs to GABAergic interneurons in the medial 
prefrontal cortex (mPFC) of male mice, thus 
providing the anatomical foundation for under-
standing the functional organization of the 
mPFC.

Connectivity of the stomach and the cerebral 
cortex

Neural pathways from the stomach are essen-
tial for normal gastrointestinal function [59]. 
Previous reports have suggested the impor-
tance of the parasympathetic and sympathetic 
control over the stomach function [60, 61]. The 
parasympathetic output to the stomach often 
promotes efficient digestion [62-64] whereas 
the sympathetic output to the stomach inhibits 
digestive activity [65-67]. The vagus nerve is 
known to be a crucial organ-brain connection 
that monitors the gastrointestinal physiological 
functions. Studies by Williams [68] clarified the 
key roles of vagal afferents in mediating par-
ticular gut hormone responses, suggesting the 

importance of vagal sensory neurons in sens-
ing gastrointestinal inputs.

Emerging evidence indicates that the cerebral 
cortex directly influences the parasympathetic 
and sympathetic control of the rat stomach 
[69]. Levinthal and Strick [69] used RV as a 
transneuronal tracer to study stomach-cere- 
bral cortex connectivity. They injected RV into 
the rat stomach to identify the areas of the 
cerebral cortex that are most directly connect-
ed to the stomach (Figure 1). When the rabies 
virus was injected into the ventral stomach 
wall, it was transported in the retrograde di- 
rection to infect the CNS via sympathetic and 
parasympathetic pathways. In the sympathetic 
network, RV firstly infected the celiac ganglion 
(CG) (i.e., first-order neurons) that innervates 
the stomach. Then the virus was transported 
transneuronally in the retrograde direction to 
label the spinal cord intermediolateral cell col-
umn (IML) (i.e., second-order neurons) that syn-
apse onto the infected CG neurons and rostral 
ventrolateral medulla (RVLM) (i.e., third-order 
neurons) of the brainstem that synapse onto 
the infected IML second-order neurons. At lon-
ger survival times, the RV may go to the next 
step of retrograde transneuronal transporta-
tion and label layer V of the motor cortex (i.e., 
fourth-order neurons) that synapse onto the 
infected third-order RVLM neurons.

In the parasympathetic network, RV infected 
transneuronally in the retrograde direction to 
the dorsal motor nucleus of the vagus (DMV) 
(i.e., first-order neurons) via the vagal ganglion 
(VG) that innervates the stomach. Then the 
virus was transported to label the nucleus of 
the solitary tract (NTS) (i.e., second-order neu-
rons) that synapse onto the infected DMV neu-
rons. At longer survival times, the virus moved 
from the second-order neurons in the NTS to 
the third-order neurons in Layer V of the in- 
sular cortex (Figure 1).

Connectivity of the heart and the cerebral 
cortex

Normal cardiac function is contingent upon a 
complex hierarchy of CNS regulation [70]. Arm- 
our indicated that cardiac peripheral and cen-
tral neurons are in constant communication 
with one another such that, for the most part, 
they behave as cardiac neuronal hierarchy [71, 
72]. Rajendran identified peripheral neural cir-
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Figure 1. Schematic drawing of the connectivity from the stomach to the cerebral cortex. When the rabies virus is injected into the ventral stomach wall, it is 
transported in the retrograde direction to infect the CG (i.e., first-order neurons) that innervates the stomach via the sympathetic network. Then RV is transported 
transneuronally in the retrograde direction to label spinal cord IML neurons (i.e., second-order neurons) that synapse onto the infected CG neurons and the RVLM 
neurons (i.e., third-order neurons) that synapse onto the infected IML second-order neurons. At longer survival times, RV can undergo another stage of retrograde 
transneuronal transportation and label layer V of the motor cortex (i.e., fourth-order neurons) that synapse onto the infected third-order neurons. In the parasym-
pathetic network, transport of RV in parasympathetic circuits labeled first-order neurons in the DMV, second-order neurons in the NTS, and third-order neurons in 
Layer V of the insular cortex. CG, celiac ganglion; DMV, dorsal motor nucleus of the vagus; NTS, nucleus of the solitary tract; RVLM, rostral ventrolateral medulla.
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cuits that regulate the heart rate using optoge-
netic and viral vector strategies [73]. Stellate 
ganglion (SG), a sympathetic ganglion formed 
by the fusion of the inferior cervical ganglion 
and the first thoracic ganglion, relays vital for-
mation from the heart to the brain about the 
physiological state [74-80]. It is well-estab-
lished that the sympathetic nervous system is  
a major information highway for the heart sig-
naling health and disease whereas parasy- 
mpathetic responsive neural circuits regulate 
cardiac physiology.

The cerebral cortex is involved in processing 
sensory information and motor function. Ele- 
ctrical stimulation of the prefrontal cortex or 
insular cortex is known to elicit changes in 
heart rate [81-84], however, its mechanisms of 
neural circuits remain elusive. Transsynaptic 
viral labeling of the neural tract-tracing method 
has been a significant development in the con-
nectomics field to decipher circuit-level archi-
tecture of the cerebral cortex. Tracing with PRV 
has proven to be especially useful for connec-
tivity of the heart and cerebral cortex.

Ter Horst and Postema [85] reported forebrain 
parasympathetic control of the heart activity by 
retrograde transneuronal viral labeling in spinal 
cord-transected rats. Before injecting PRV into 
the left ventricular myocardium of the heart, 
spinal cord transection C8-T1 was performed. 
This enabled PRV to transneuronally transport 
via parasympathetic networks and PRV labeled 
first-order neurons in the DMV, second-order 
neurons in the NTS, and third-order neurons in 
Layer V of the dysgranular insular cortex. 
Thereby, a network of 3 interconnected neu-
rons may allow the output of the cerebral cor- 
tex to influence parasympathetic control of the 
heart. Transport of PRV in the sympathetic 
pathway labeled first-order neurons in the sym-
pathetic ganglia (SG), second-order neurons in 
the intermediolateral column (IML) in the spinal 
cord, third-order neurons in the rostral ventro-
lateral medulla (RVLM) and fourth-order neu-
rons in Layer V of the motor cortex (Figure 2). 
These results demonstrate the power of trans-
neuronal tracing with PRV to unravel multi-syn-
aptic circuits from the heart to the cerebral 
cortex.

Connectivity of the kidney and the cerebral 
cortex

Retrograde transneuronal transport of neuro-
tropic viruses including the pseudorabies virus 

(PRV) and rabies virus (RV) has been used pre-
viously to interrogate the distribution of neu-
rons that are disynaptically linked to the kidney 
[17-22, 86-92]. The adaptation of PRV for trans-
neuronal tracing in rats and mice enabled us to 
reveal kidney-brain connections in chains of 
three or more synaptically linked neurons [87, 
93, 94]. Many studies examined kidney-cere-
bral cortex neural circuits following the PRV 
injection into the kidney. Liu reported that PRV-
614 immunopositive neurons were located in 
the cerebral cortex 6-7 days after injecting PRV-
614 into the kidney [3, 22].

Transneuronal tracing of RV provides a renais-
sance in our understanding of kidney-cerebral 
cortex neural circuits. Levinthal and Strick [37] 
used retrograde transneuronal transport of the 
rabies virus from the rat kidney parenchyma to 
identify the areas of the cerebral cortex for the 
neural regulation of the kidney and found that 
an important network of five interconnected 
neurons was sufficient to allow the output of 
the cerebral cortex to influence sympathetic 
control of the kidney (Figure 3). When RV was 
injected into the kidney, it was transported in 
the retrograde direction to infect the sympa-
thetic ganglia (SG) (i.e., first-order neurons) that 
innervate the kidney. Then RV was transported 
transneuronally in the retrograde direction to 
label spinal cord IML neurons (i.e., second-
order neurons), where sympathetic pregangli-
onic neurons (SPNs) that project to the kidney 
are located and synapse onto the infected SG 
neurons.

In the sympathetic network, RV was transport-
ed transneuronally in the retrograde direction 
to label RVLM neurons (i.e., third-order neu-
rons) that synapse onto the infected IML sec-
ond-order neurons and the NTS neurons (i.e., 
fourth-order neurons) that synapse onto the 
infected third-order RVLM neurons. When the 
survival time was extended, RV underwent 
another stage of retrograde transneuronal 
transport and labeled layer V of the motor cor-
tex (i.e., fifth-order neurons) that synapse onto 
the infected fourth-order neurons. Moreover, in 
the corticospinal tract pathway, RV was trans-
ported to spinal cord interneurons (Ins) (i.e., 
third-order neurons) that synapse onto the 
infected SPNs second-order neurons. Next, the 
virus moved from third-order neurons in the Ins 
to fourth-order neurons in layer III of the motor 
cortex (Figure 3).
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Figure 2. Schematic drawing of the connectivity from the heart to the cerebral cortex. A. Schematic representation of a spinal cord cross-section and the heart of 
the mouse. The left ventricle of the heart was injected with recombinant strains of the PRV Bartha virus conjugated to red (PRV-614-RFP) fluorescent protein. B. 
Low magnification confocal image of the thoracic spinal cord illustrating SPNs and Ins retrogradely labelled with the neurotropic PRV-614-RFP 3 days after the injec-
tion. Following different post-injection times, viral replication leads to a strong amplification of the reporter protein in the infected neurons revealing their detailed 
morphology. Scale bar 100 µm. C. Overview of PRV-614 labelling and processing protocol. D, E. Sagittal brain atlas images (20 µm) from the Allen Institute that 
encompass the CEA (Bregma 1.22 mm) and layer V of M1/S1 (Bregma 0.14 mm). IML, intermediolateral nucleus of the spinal cord. Ins, interneurons. M1, primary 
motor cortex. S1, primary somatic sensory cortex. SPNs, sympathetic preganglionic neurons. The fluorescent plots were from our unpublished results.
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Figure 3. Schematic drawing of the connectivity from the kidney to the cerebral cortex. When the rabies virus is injected into the kidney, it is transported in the 
retrograde direction to infect the SG (i.e., first-order neurons) that innervate the kidney. Then the virus is transported transneuronally in the retrograde direction to 
label spinal cord IML neurons (i.e., second-order neurons) that synapse onto the infected SG neurons. At longer survival times, the RV can undergo another stage 
of retrograde transneuronal transportation and label all those third-order neurons that synapse onto the infected second-order neurons. For example, the RV can 
move from fourth-order neurons in layer V to fifth-order neurons in layer III. Similarly, the RV can move from third-order interneurons in the RVLM to fourth-order 
cortical neurons in layer V. In the corticospinal tract pathway, the RV was transported to spinal cord interneurons (Ins) (i.e., third-order neurons) that synapse onto 
the infected SPNs second-order neurons. Next, the virus moved from third-order neurons in the Ins to fourth-order neurons in layer V of the motor cortex. Ins, inter-
neurons; NTS, nucleus of the solitary tract; RVLM, rostral ventrolateral medulla 1; SG, sympathetic ganglia. The fluorescent plots were from Levinthal and Strick (J 
Neurosci. 2012).
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Connectivity of the adrenal medulla and the 
cerebral cortex

A major challenge facing connectomics neuro-
science is to unravel the complex matrix of  
neural connections that characterize anatomi-
cal circuits within the CNS. The cerebral cortex 
is known to receive and process information 
related to the sensory and motor pathways  
[95-98]. Retrograde transneuronal transport of 
RV has proven to be useful at identifying the 
microarchitecture of complex neural circuits in 
the cerebral cortex [46-48].

The adrenal medulla has been recognized as  
a major sympathetic effector [99-101]. More 
recently, many neuropsychological processes 
have been attributed to the adrenal medulla-
cerebral cortex axis and these include anxiety, 
depression, cognition, and affection [102-110]. 
Previous studies have indicated that there are 
neurons in the CNS that contribute to the trans-
neuronal innervation of the adrenal medulla 
[111]. A study by Dum provided a comprehen-
sive and critical resource on the connectivity 
between the adrenal medulla and cerebral cor-
tex [99] and the connectivity from the cortical 
motor areas to the adrenal medulla is likely 
mediated by corticospinal and corticobulbar-
spinal pathways [112-114]. In the corticospinal 
pathway, RV was transported to the spinal cord 
SPNs (1st-order neurons), interneurons (Ins) 
(2nd-order neurons), layer V of motor cortex 
(3rd-order neurons) and layer III of motor cor- 
tex (4th-order neurons). In the corticobulbar-
spinal pathway, RV was transported to SPNs 
(1st-order), brainstem (2nd-order), layer V (3rd-
order) and layer III of motor cortex (4th-order) 
(Figure 4).

Dum showed that motor, cognitive and affec-
tive areas of the cerebral cortex influence the 
adrenal medulla [38]. After RV injections into 
the adrenal medulla of monkeys (Cebus  
apella), three distinct connectomic networks 
including cortical areas involved in movement, 
cognition and affection were observed [38]. In 
the motor network, the cortical motor areas 
consist of M1, dorsal (PMd) and ventral (PMv) 
premotor areas, S1 on the lateral surface and 
the supplementary motor area (SMA), and dor-
sal cingulate motor (CMAd) on the medial wall 
(Figure 4). In the cognitive network, the cor- 
tical cognitive areas include the rostral cingu-
late motor (CMAr) and ventral cingulate motor 

(CMAv) areas on the medial wall (Figure 4). In 
the affective network, the cortical affective 
areas consist of areas 24c, 32 and 25 on the 
rostral medial wall in the monkey (Figure 4).

Connectivity of the other viscera and the cere-
bral cortex

Cortical innervation of the mouse liver has 
been experimentally investigated by Stanley 
[29] using PRV strains expressing different 
reporters together with BAC transgenesis and 
immunohistochemistry. Seven to eight days 
after hepatic PRV152 infection, M1 cortical 
infection occurred, indicating that the central 
multisynaptic outflow pathway to the liver com-
prises cerebral cortex regions that involve the 
M1. Further research is needed to understand 
the neural substrate that links the cerebral cor-
tex to the function of the liver. Yao [115] report-
ed retrograde and trans-synaptic identification 
of a cluster of cortical L5 pyramidal neurons 
after PRV injection into the bladder wall, sug-
gesting that urination (also called micturition) 
may be regulated by a neural network that is 
distributed in both subcortical and cortical 
regions.

Conclusion

Over the past several decades, viral transneu-
ronal labeling in the toolbox of neural tract- 
tracing technologies has provided new sights 
for understanding the neural connectomic  
substrate that links the cerebral cortex to the 
function of internal organs. New technologies 
are beginning to emerge providing connecti- 
vity mapping from the viscera to the cerebral 
cortex combined with viral transneuronal trac-
ers. These technologies demonstrate how  
such neuroanatomic connectomic data could 
be used to infer new structural and functional 
information in the viscera-cerebral cortex 
circuits.
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Figure 4. Schematic drawing of the connectivity from the adrenal medulla to the cerebral cortex. When the RV is injected into the adrenal medulla, it is transported 
in the retrograde direction to infect the SPNs (first-order neurons) that innervate the adrenal medulla. Then the virus is transported transneuronally in the retrograde 
direction to label all those second-order neurons including Ins of the spinal cord, brainstem, and hypothalamus. Yellow line (the motor network): the cortical motor 
areas consist of M1, dorsal (PMd) and ventral (PMv) premotor areas, S1 on the lateral surface and the supplementary motor area (SMA), and dorsal cingulate mo-
tor (CMAd) on the medial wall. Red line (the cognitive network): the cortical cognitive areas include the rostral cingulate motor (CMAr) and ventral cingulate motor 
(CMAv) areas on the medial wall. Blue line (the affective network): the cortical affective areas consist of areas 24c, 32, and 25 on the rostral medial wall in the 
monkey. Ins, interneurons; SPNs, sympathetic preganglionic neurons.
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