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Abstract: Osteosarcoma is a primary malignant bone tumor that occurs frequently in children and adolescents and 
has a propensity for drug resistance, recurrence, and metastasis. The purpose of this study was to identify poten-
tial target genes to predict metastasis and survival in patients with osteosarcoma. We analyzed gene expression 
profiles and corresponding clinical data of patients with osteosarcoma in the Gene Expression Omnibus database 
and identified 202 genes that were differentially expressed between osteosarcoma cells and normal osteoblasts. 
Univariate and multivariable Cox regression analyses identified four risk genes that affected osteosarcoma prog-
nosis: MCAM, ENPEP, LRRC1, and CPE. Independent prognostic analyses and clinical correlation studies showed 
that the four risk genes constituted an independent prognostic signature that correlated with survival and clinical 
parameters including age and distant metastasis. In a single-sample Gene Set Enrichment Analysis, risk scores 
based on the prognostic signature correlated with tumor infiltration by immune cells and immune functions in os-
teosarcoma. A subsequent analysis showed that the expression levels of the four genes in the prognostic signature 
were predictive of overall survival and metastasis-free survival of patients with osteosarcoma. Furthermore, Human 
Cancer Metastasis Database and qRT-PCR analyses demonstrated that the four risk genes are overexpressed in 
osteosarcoma tissues and cell lines. In summary, we developed and validated a four-gene prognostic signature that 
may be useful in osteosarcoma diagnosis and metastasis prediction.
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Introduction

Osteosarcoma is a common primary and malig-
nant bone tumor that originates from mesen-
chymal tissue and typically affects the fast-
growing metaphysis of long bones, including 
the distal femur, proximal tibia, or proximal 
humerus [1]. Osteosarcoma has a high inci-
dence among children and adolescents [2, 3], 
with a predilection for drug resistance, recur-
rence, and distant metastasis, mainly in the 
lungs [4]. A combination of neoadjuvant chemo-
therapy, surgery, chemotherapy, and biological 
therapy has led to significant progress in the 

treatment efficacy of osteosarcoma, resulting 
in a gradual increase in the overall survival (OS) 
of patients with non-metastatic osteosarcoma 
from less than 20% to as high as 70% [5-8]. 
Despite the progress, patients with metastatic 
or recurrent osteosarcoma still have a poor out-
look, with a 5-year OS rate of only 20% [7]. In 
order to improve the early diagnosis and treat-
ment of osteosarcoma, novel biomarkers and 
therapeutic targets are needed.

In recent years, analysis of public bioinformat-
ics databases such as the Gene Expression 
Omnibus (GEO) to explore target genes as pre-
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dictors of metastasis and survival has provided 
new insights into the treatment of osteosarco-
ma [9-11]. For example, Niu et al. [12] integrat-
ed three datasets (GSE14827, GSE21257, and 
GSE32981) with robust rank aggregation to 
examine tumor infiltration by immune cells in 
osteosarcoma and found that CXCL10 and  
MYC expression levels were significant predic-
tors of patients’ OS. Similarly, Xu et al. [13] 
investigated the association between expres-
sion of lncRNA SNHG4 and clinicopathological 
features and prognosis in patients with osteo-
sarcoma and found that high SNHG4 expres-
sion was linked to large tumor size and high 
patient mortality. In another study, a bioinfor-
matics analysis indicated that N6-Methyla- 
denosine (m6A) regulators may be involved  
in osteosarcoma metastasis and prognosis 
through the humoral immune response and  
cell cycle pathways [14]. An analysis of the rela-
tionship between osteosarcoma development 
and the tumor microenvironment using an algo-
rithm known as ESTIMATE showed that the 
polarization of M0 to M1 or M2 macrophages 
might be associated with improved prognosis, 
and that patients with increased immune cell 
infiltration in the tumor microenvironment had 
significantly better prognosis than patients  
with less immune cell infiltration [15]. A seven-
gene signature related to energy metabolism in 
osteosarcoma showed promise for osteosarco-
ma diagnosis, treatment, and prediction [16], 
although the molecular mechanisms of these 
genes in osteosarcoma need to be further 
explored. The previous success of projects to 
identify prognostic target genes in osteosarco-
ma suggests that it may be possible to uncover 
more molecular mechanisms in osteosarcoma 
and develop novel therapeutic targets through 
a combination of bioinformatics analysis and 
experimental validation.

We used microarray data from the GEO data-
base for differential expression analysis and 
identified 202 differentially expressed genes 

constructed a four-gene signature to predict 
osteosarcoma outcomes. We validated the sig-
nature by evaluating the association between 
the expression of the four genes and clinical 
characteristics and immune cell infiltration in 
osteosarcoma tumors. Finally, we used the 
Human Cancer Metastasis Database (HCMDB) 
and quantitative real-time PCR (qRT-PCR) to 
determine the expression levels of the four risk 
genes in osteosarcoma, so as to evaluate these 
four risk genes as possible markers for osteo-
sarcoma diagnostics and prognostics.

Materials and methods

Microarray data

We pooled three microarray expression datas-
ets (GSE12885, GSE14359, GSE21257) from 
the GEO database (https://www.ncbi.nlm.nih.
gov/gds). Table 1 lists the information from 
three selected GEO datasets that we used in 
the study. This information is freely available 
online.

Identification of DEGs

We used the GEO2R online analysis tool 
(https://www.ncbi.nlm.nih.gov/geo/geo2r/) to 
identify DEGs in osteosarcoma samples com-
pared with normal human osteoblasts in the 
GSE14359 and GSE12885 datasets [15]. 
Statistically significant DEGs had an absolute 
value of the log2 fold change (|log2FC|) ≥2 and 
an adjusted P-value (adj. P) <0.05. In addition, 
we visualized the DEGs in a volcano plot using 
“ggplot2”. We used Venn Diagram webtool (bio-
informatics.psb.ugent.be/webtools/Venn/) to 
identify DEGs that overlapped both datasets.

GO and KEGG pathway enrichment analysis of 
DEGs

To get a deeper understanding of the significant 
functional terms and biological pathways of 
these overlapping DEGs, we performed GO and 

Table 1. Characteristics of the GEO datasets selected in this study
GEO ID Author, year Platform Country Samples (T:N)
GSE14359 Guenther et al., 2010 GPL96 Germany 18:2
GSE12885 Sadikovic et al., 2009 GPL6244 Canada 52:6
GSE21257 Kuijjer et al., 2011 GPL10295 Norway 53:0
GEO: Gene Expression Omnibus; T: patients with osteosarcoma; N: normal con-
trols.

(DEGs) in osteosarcoma and 
normal osteoblasts. The po- 
tential biological activities of 
co-expressed DEGs were in- 
vestigated using Gene Onto- 
logy (GO) function and Kyoto 
Encyclopedia of Genes and 
Genomes (KEGG) pathways 
enrichment analyses. We then 
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KEGG pathway enrichment analyses. GO terms 
indicate biological processes, molecular func-
tions, and cellular components associated with 
genes and are widely used for gene annotation 
and functional genomics research. The KEGG 
database (http://www.genome.jp/) connects 
genetic information with knowledge about bio-
logical processes, chemicals, diseases, and 
medicines. We used the software packages 
“clusterProfiler”, “org.Hs.eg.db”, “ggplot2”, and 
“enrichment plot” for annotation and visualiza-
tion. Results with a false discovery rate less 
than 0.05 were considered statistically 
significant.

Protein-protein interaction (PPI) network con-
struction and module analysis

We created a PPI network of DEGs using the 
Search Tool for the Retrieval of Interacting 
Genes (STRING, version 11.0, http://string-db.
org/) with minimum required interaction score 
>0.4. STRING is an online database that pro-
vides information on known and anticipated 
protein interactions, as well as insights into dis-
ease onset and development processes. We 
visualized the network using Cytoscape (http://
www.cytoscape.org/). We used Molecular 
Complex Detection (MCODE), a plugin for 
Cytoscape, to cluster the genes and find a 
densely connected area according to the fol-
lowing criteria: degree cut-off = 2, score >10, 
node >10, haircut on, node score cut-off = 0.2, 
max depth = 100, and k-score = 2.

Construction and validation of the Cox regres-
sion signature

We downloaded all clinical data from the 
GSE21257 GEO dataset and analyzed survival 
and outcomes among a total of 53 patients 
with osteosarcoma. We conducted univariate 
Cox regression analysis with the “survival” 
package based on the patient characteristics 
in the GSE21257 data (P-value <0.05 was used 
as a screening criterion). We classified genes 
with a hazard ratio (HR) greater than 1 as high-
risk genes and those with an HR less than 1 as 
low-risk genes. Multivariate Cox regression 
analysis was used to further filter prognosis-
related DEGs in order to develop a prognostic 
signature, and the risk score per patient was 
calculated as: risk score = (coefficientgene1 × 
expressiongene1) + (coefficientgene2 × expression-
gene2) + … + (coefficientgenex × expressiongenex), 

where x corresponds to the total number of 
genes present in this signature. We then divid-
ed the patients into a low-risk group and a high-
risk group based on the median risk score 
among the patients. We created a Kaplan-
Meier survival curve using the R “survival” and 
“survminer” packages to determine the OS 
rates of the two groups, and determined the 
specificity and sensitivity of this prognostic sig-
nature by constructing receiver operating char-
acteristic (ROC) curves with the “SurvivalROC” 
package. We considered predictions excellent 
if the area under the curve (AUC) was greater 
than 0.75. The expression heat map of the 
genes in the risk signature, the survival status, 
the survival time, and the risk score distribution 
were used to evaluate prognostic models. In 
addition, we identified copy-number alterations 
and performed mutation analysis of the risk 
genes using the cBioportal database (http://
www.cbioportal.org/).

Correlation analysis between prognostic model 
and immune features

We applied the “gsva” software package to per-
form ssGSEA analysis of the high-risk and low-
risk patient groups in order to compare tumor 
infiltration by immune cells and immune func-
tions. Using analysis of the TIMER database 
(https://cistrome.shinyapps.io/timer), we ex- 
amined the effects of the risk genes on the lev-
els of infiltrating immune cells in sarcomas and 
compared the correlations between copy-num-
ber alteration and immune cell infiltration.

Independent prognostic analysis and clinical 
correlation analysis

We implemented the “survival” package to con-
duct both univariate and multivariate Cox 
regression analysis to assess the indepen-
dence of the prognosis model from other clini-
cal variables. The R “RMS” package was then 
used to generate nomograms to predict surviv-
al in patients with osteosarcoma over the 
course of 1, 3, and 5 years. In addition, patients 
with osteosarcoma were separated into two 
cohorts based on their age (≤20 or >20 years 
old), Huvos grade (Huvos grade I or II versus 
Huvos grade III or IV), gender (male or female), 
and metastasis status (metastatic, non-meta-
static) [17, 18]. The R “Beeswarm” package 
was used to assess the relationship between 
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the signature-based risk genes and clinical 
variables mentioned above.

Survival analysis and expression level verifica-
tion of risk genes

A survival analysis of the four risk genes in the 
prognostic signature was performed using the 
osteosarcoma microarray dataset from the  
R2 (https://hgserver1.amc.nl/cgi-bin/r2/main.
cgi?option=kaplan_main) database. In addi-
tion, the expression of the four risk genes in 
osteosarcoma tissues was determined using 
the Human Cancer Metastasis Databa- 
se (HCMDB; http://hcmdb.i-sanger.com/index) 
[19].

Cell culture and qRT-PCR assays

We purchased the human osteosarcoma cell 
lines U-20S, 143B, and MNNG/HOS and the 
osteoblast cell line hFOB 1.19 from the Cell 
Bank of the Chinese Academy of Sciences 
(Shanghai, China). We cultured the cells in 
Dulbecco’s modified Eagle’s medium (DM- 
EM, Gibco, USA) containing 10% fetal bovine 
serum (FBS, Gibco, USA) and 1% antibiotics 
(penicillin/streptomycin) at 37°C with 5% CO2 
and replacement of the culture medium approx-
imately every 2 to 3 days.

For qRT-PCR, we inoculated the osteosarcoma 
cell lines on six-well plates and subjected them 
to the indicated treatments for 24 h. We then 
isolated total RNA with Trizol (Cwbio, Jiangsu, 
China) and reverse-transcribed it into cDNA. 
We performed gene amplification and detec-
tion using a Step One Plus Real-Time PCR sys-
tem (Life Technologies, Foster, CA, USA). We 
analyzed the resulting data by the comparative 
2-ΔΔCt method to quantify the mRNA levels of 
risk genes relative to that of GAPDH as the 

internal reference. Table 2 lists the primer 
sequences for each gene.

Statistical analysis

Measurement data were expressed as the 
mean ± standard deviation (SD). GraphPad 
Prism 5.0 (GraphPad Software, Inc., USA) was 
used to for data analysis. Comparison between 
two groups was performed using Student’s 
t-tests. Statistical significance was determined 
as *P<0.05 or **P<0.01.

Results

DEGs in human osteosarcoma and osteoblasts

By using two threshold criteria (adj. P and log-
2FC), 368 up-regulated genes and 417 down-
regulated genes were identified in the human 
osteosarcoma samples compared with the nor-
mal osteoblast samples in the GSE12885 
dataset. In the GSE14359 dataset, 457 up-
regulated genes and 256 down-regulated 
genes were identified in the osteosarcoma 
samples (Figure 1A and 1B). Subsequent Venn 
analysis identified 120 and 82 overlapping 
DEGs that were up-regulated and down-regulat-
ed, respectively, in the osteosarcoma samples 
in both datasets (Figure 1C and 1D).

KEGG and GO enrichment analyses of the 
overlapping DEGs

GO analysis revealed that the most common 
biological processes associated with the up-
regulated overlapping DEGs were cell chemo-
taxis, positive regulation of leukocyte prolifera-
tion, and regulation of chemotaxis. The cellular 
compartments most commonly associated 
with the up-regulated overlapping DEGs were 
the secretory granule membrane, tertiary gran-
ule membrane, and lipoprotein particle. The 
molecular functions most commonly associat-
ed with the up-regulated overlapping DEGs 
were GTPase activator activity, GTPase regula-
tor activity, and cargo receptor activity (Figure 
2A). The up-regulated DEGs included in the top 
five significantly enriched biological process 
terms are presented in Figure 2B. According to 
the KEGG pathway analysis, the up-regulated 
overlapping DEGs were frequently involved in 
pathways related to Rap1 (Ras-associated pro-
tein 1) signaling pathway, staphylococcus aure-

Table 2. Primers for qRT-PCR
Primer Direction Sequence (5’-3’)
MCAM Forward GATGGCATTCAAGGAGAGGA

Reverse GAGTCTGGTGTGAGGGTGGT
ENPEP Forward AGAGGGCTCTAAGAGATACTGC

Reverse CCACGGCAAGTCCCACTATT
LRRC1 Forward AGTGGCCTGACTTCATTAACG

Reverse GATCCACCTTCAAGATTGACAGT
CPE Forward GTGAACTCAAGGACTGGTTTGT

Reverse TCACGTACACTATCCTATCCAGG
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us infection, Ras signaling pathway, and phago-
somes (Figure 2C).

The most common biological processes as- 
sociated with the down-regulated overlapping 
DEGs were cell-substrate adhesion, response 
to oxygen levels, and regulation of chemotaxis. 
The cellular compartments commonly associ-
ated with the down-regulated overlapping  
DEGs were the collagen-containing extracellu-
lar matrix, cytoplasmic vesicle lumen and base-
ment membrane. The most common molecular 
functions associated with the down-regulated 
overlapping DEGs were integrin binding, proteo-
glycan binding, and glycosaminoglycan binding 
(Figure 2D). The down-regulated overlapping 

DEGs significantly enriched in the top five bio-
logical process categories are shown in Figure 
2E. Moreover, the co-expressed DEGs that 
were downregulated primarily had associations 
with the p53 signaling pathway, according to 
KEGG pathway enrichment analysis (Figure 2F).

PPI network and modules analysis

As shown in Figure 3A, the whole PPI network 
consisted of 178 nodes and 934 edges. We 
screened out the two most important modules 
of the network using MCODE. Module 1 had the 
highest clustering score and consisted of 27 
core proteins and 171 edges. Module 2 had the 
second highest clustering score and consisted 

Figure 1. Identification of DEGs between osteosarcoma and osteoblasts. (A, B) Volcano plots of DEGs in dataset 
GSE12885 (A) and GES14359 (B). DEGs with red, blue and gray dots indicate up-regulated, down-regulated and 
no significant differences. (C) Venn diagram of upregulated DEGs common to GSE12885 and GES14359. (D) Venn 
diagram of downregulated DEGs common to GSE12885 and GES14359. DEGs, differentially expressed genes.
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Figure 2. GO function and KEGG pathway enrichment analyses of DEGs. A. GO enrichment analysis of upregulated DEGs, including BP, CC, and MF. B. The cnetplot 
of upregulated DEGs in the top five significantly enriched BP terms. C. KEGG pathway enrichment analysis of upregulated DEGs. D. GO enrichment analysis of 
downregulated DEGs, including BP, CC, and MF. E. The cnetplot of downregulated DEGs in the top five significantly enriched BP terms. F. KEGG pathway enrichment 
analysis of downregulated DEGs. DEGs, differentially expressed genes. GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; BP, biological pro-
cesses; CC, cell component; MF, molecular function.
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of a total of 16 nodes and 93 edges that formed 
a network (Figure 3B). Genes in the above two 
modules were analyzed by GO enrichment anal-
yses respectively. The results are shown in 
Figure 3C.

Construction and validation of the Cox regres-
sion signature

To further screen candidate prognostic DEGs 
from the PPI network, univariate Cox regression 
analysis of the 178 DEGs in the PPI network 
was completed using clinical data from the 
GSE21257 dataset. The results revealed 9 can-
didate prognostic DEGs (Figure 4A). Subse- 
quent multivariate stepwise Cox regression 
analysis indicated that four of the candidate 
DEGs were independent predictors of patient 
outcomes (Figure 4B). Of the four prognostic 
DEGs, MCAM, ENPEP, and LRRC1 were regard-
ed as high-risk genes based on their HRs, 
whereas CPE was regarded as a low-risk gene.

We constructed a composite risk score based 
on the four prognostic DEGs (risk Score = 
(2.2175×ExpMCAM) + (0.6038×ExpENPEP) + 
(1.7786×ExpLRRC1) + (-0.3291×Exp CPE)) and 
divided the patients in the GSE21257 dataset 
into high-risk and low-risk groups on the basis 
of the median risk score. Kaplan-Meier curves 
revealed that the patients in the high-risk gro- 
up had worse OS than the patients in the low-
risk group (P<0.05; Figure 4C). A time-depen-
dent ROC curve was then constructed to deter-
mine the reliability of this four-gene prognostic 
signature. The AUC was 0.903 for 1-year OS, 
0.871 for 3-year OS, and 0.829 for 5-year OS, 
providing evidence that the four-gene prognos-
tic model performed well as a predictor of OS 
(Figure 4D-F). The risk scores, survival status, 
survival time, and expression heatmap of the 
four risk genes in the two groups of patients  
are shown in Figure 4G. As a result, we found 
that patients with higher risk scores had short-
er OS and worse prognoses than patients with 
lower risk scores, and that there were signifi-
cant differences in gene expression levels 
between the two groups of patients. Analyses 
of copy-number alterations and mutations of 
the four risk genes revealed several missense 

mutations, amplifications, deep deletions, and 
high levels of mRNA expression (Figure 4H).

The risk score is related to immune character-
istics in osteosarcoma

The results of the analysis using the ssGSEA 
algorithm indicated that compared with the 
patients in the low-risk group, the patients in 
the high-risk group had lower levels of tumor 
infiltration by immune cells, including CD8+ T 
cells, dendritic cells, plasmacytoid dendritic 
cells, macrophages, tumor-infiltrating lympho-
cytes, neutrophils, and T helper 2 cells (Figure 
5A). Moreover, in contrast to the Type I inter-
feron (IFN) response, major histocompatibility 
complex class I response, para-inflammation, 
and Type II IFN response, the other nine im- 
mune mechanisms were all down-regulated in 
the patients in the high-risk group in compari-
son with the patients in the low-risk group 
(Figure 5B). These results indicated that the 
signature-based risk score was directly related 
to immune characteristics, and that immune 
activity in the patients in the low-risk group may 
exert some antitumor effect.

To investigate the implications of the expres-
sion levels of this four risk genes on immune 
infiltration levels, we performed a comprehen-
sive analysis using the TIMER database. As 
shown in Figure 5C, MCAM expression was 
positively correlated with CD8+ T cell levels but 
negatively correlated with dendritic cell, CD4+ T 
cell, and macrophage levels. The expression of 
ENPEP was positively correlated with neutro-
phil levels but negatively correlated with B cell 
and dendritic cell levels (Figure 5D). Figure 5E 
shows that LRRC1 expression was negatively 
correlated with CD4+ T cell and dendritic cell 
levels. The expression of CPE was positively 
correlated with CD8+ T cell levels but negative-
ly correlated with neutrophil levels (Figure 5F). 
On the other hand, except for ENPEP, the 
expression of the other three genes was signifi-
cantly correlated with tumor purity (Figure 
5C-F). The impact of copy-number alterations 
of the signature genes on immune cell infiltra-
tion is shown in Figure 5G-J.

Figure 3. Construction of PPI network and modules analysis. A. PPI network of DEGs. The red nodes indicate up-
regulated DEGs and the green nodes indicate downregulated DEGs. B. The two most important modules of the PPI 
network. C. GO-MF enrichment analysis of the two most important modules. DEGs, differentially expressed genes. 
GO, Gene Ontology; MF, molecular function.
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Figure 4. Construction and validation of the four-gene prognostic signature for osteosarcoma. A, B. Cox regression analysis of DEGs from PPI network. A. Univari-
ate Cox regression analysis. B. Multivariate Cox regression analysis. C. Survival analyses for low-risk and high-risk groups using Kaplan-Meier curves. D-F. Time-
dependent ROC analysis for evaluating the prognostic performance of the signature. D. 1-year (AUC = 0.903). E. 3-year (AUC = 0.871). F. 5-year (AUC = 0.829). 
G. The distributions of risk scores, survival status, survival time, and expression heatmap of the four risk genes. H. Genomic alterations of four risk genes. DEGs, 
differentially expressed genes. ROC, receiver operating characteristic; AUC, area under the ROC curve.
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Figure 5. Immune characteristics analysis of the prognostic signature. (A) Comparisons of immune cell infiltration levels between different risk groups. (B) Compari-
sons of immune functions between different risk groups. (C-F) Correlation analysis of MCAM (C), ENPEP (D), LRRC1 (E), and CPE (F) expression with immune cell 
infiltration levels. (G-J) Correlation analysis of copy-number alteration of MCAM (G), ENPEP (H), LRRC1 (I), and CPE (J) with immune cell infiltration levels. (*P<0.05, 
**P<0.01, ***P<0.001).
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Independent prognostic value of the signature

The risk score was independently associated 
with patient outcomes when it was assessed 
along with other clinical data, including gender, 
Huvos classification, and age (Table 3). The 
Huvos grade (P<0.05) and risk score (P< 
0.001) had statistical significance in a single-
factor independent prognosis analysis (Figure 
6A). Furthermore, in a multivariate indepen-
dent prognostic analysis, Huvos grade (P< 
0.05, HR = 0.519, 95% confidence interval (CI) 
= 0.293-0.916) and risk score (P<0.001, HR = 
1.323, 95% CI = 1.125-1.555) remained inde-
pendent prognostic factors in patients with 
osteosarcoma (Figure 6B). We also predicted 
survival rates over 1 year, 3 years, and 5 years 
to help guide clinical decision-making (Figure 
6C).

Clinical utility of the signature

To better evaluate the predictive value of the 
model for patients with osteosarcoma, we 
investigated the relationship between the four-
gene signature and clinical variables (Table 4). 
The results indicated that males had a higher 
prevalence of LRRC1 expression than females, 
and as MCAM, ENPEP, LRRC1, and CPE expres-
sion increased, the M stage in patients with 
osteosarcoma also increased (Figure 7A-E). 
Additionally, patients with higher risk scores 
were younger (Figure 7F, P<0.05) and had an 
increased risk of metastasis (Figure 7G, 
P<0.01) than patients with lower risk scores. 
These findings indicated that both the compos-
ite risk score and the expression levels of the 
four risk genes were significantly associated 
with metastasis of osteosarcoma, supporting 
the accuracy of the model.

The prognostic value and expression level veri-
fication of risk genes

We analyzed the osteosarcoma dataset from 
an independent database, the R2 dataset, to 

further evaluate the prognostic value of the 
four risk genes. The results indicated that high-
er expression levels of MCAM (P<0.001), 
ENPEP (P<0.001), LRRC1 (P<0.001), and CPE 
(P<0.05) were correlated with shorter OS 
among patients with osteosarcoma (Figure 
8A-D). Higher levels of MCAM, ENPEP, LRRC1, 
and CPE expression were also associated with 
shorter metastasis-free survival (MFS; Figure 
8E-H). In addition, we analyzed the expression 
levels of the four risk genes in osteosarcoma 
tissues in the HCMDB database. Consistent 
with our other results, the expression levels of 
all four risk genes were higher in osteosarcoma 
tissues than in the control samples (Figure 
8I-L).

Verification of expression levels in osteosar-
coma cell lines

We performed quantitative RT-PCR to deter-
mine the expression levels of the four risk 
genes in 143B, MNNG/HOS, and U2OS osteo-
sarcoma cells and hFOB 1.19 osteoblasts. The 
results showed that MCAM, ENPEP, LRRC1, 
and CPE were all up-regulated in each osteo-
sarcoma cell line relative to their expression 
levels in hFOB 1.19 cells (Figure 9A-D, P<0.05).

Discussion

Osteosarcomas are among the most aggres-
sive malignancies of the skeleton, with 15-20% 
of patients having pulmonary metastases  
when first diagnosed [20, 21]. Despite recent 
developments that have improved the progno-
sis of osteosarcoma, overall survival in patients 
with metastatic or recurrent osteosarcoma 
remains poor [8]. Therefore, novel diagnostic 
and prognostic biomarkers for osteosarcoma 
should be identified to provide new molecular 
targets to improve patient’s outcomes. In- 
creasing evidence indicates that abnormal 
copy-number alterations and mutations of 
genes, such as TP53, epidermal growth factor 
receptor (EGFR), c-myc, and RB, play a crucial 

Table 3. Independent prognostic analysis of the signature

Clinical factors
Univariate Cox Multivariate Cox

HR 95% CI P value HR 95% CI P value
age 0.999 0.993-1.005 0.806 1.000 0.993-1.007 0.954
gender 1.499 0.564-3.981 0.417 1.361 0.505-3.664 0.542
Huvos grade 0.496 0.284-0.867 0.014 0.519 0.293-0.916 0.024
Risk Score 1.349 1.157-1.573 <0.001 1.323 1.125-1.555 0.001
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Figure 6. Independent prognosis analysis and the nomogram for predicting probabilities of osteosarcoma patient’s overall survival. A. Single-factor prognosis analy-
sis. B. Multi-factor prognosis analysis. C. The nomograms for predicting 1-year, 3-year, and 5-year overall survival of patients with osteosarcoma.
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role in the occurrence and progression of 
osteosarcoma [22-24]. However, the exact 
mechanisms are still not fully understood.

In recent years, high-throughput sequencing 
technologies and bioinformatics analysis have 
enabled exploration of genetic alterations in 
osteosarcoma and provided an effective meth-
od to identify potentially beneficial markers for 

other cancer types. In this study, we estab-
lished and validated a four-gene prognostic 
model which could be regarded as an indepen-
dent predictor variable and provide more accu-
rate prediction of OS in patients with osteosar-
coma than age, gender, and Huvos grade. In 
addition, risk scores based on the signature, 
and also the expression levels of the four genes 
in the signature, were significantly associated 

Table 4. Correlation analysis between prognostic signature and clinical parameters for osteosarcoma

id age (≤20, >20) 
t(p)

gender (Female, Male) 
t(p)

Huvos grade (I/II, III/IV) 
t(p)

M Stage (M0, M1) 
t(p)

MCAM 1.515 (0.147) -0.585 (0.562) 0.197 (0.845) -3.468 (0.001)
ENPEP 0.804 (0.432) -0.356 (0.724) -0.283 (0.779) -3.302 (0.002)
LRRC1 0.356 (0.726) -2.184 (0.038) 1.16 (0.252) -2.367 (0.023)
CPE 0.594 (0.562) -1.456 (0.154) -0.223 (0.825) -2.979 (0.005)
Risk Score 2.241 (0.030) -1.56 (0.126) 1.317 (0.194) -3.617 (0.001)
t: t value from Student’s t test; p: P-value from Student’s t test.

Figure 7. Correlation between the prognostic signature and clini-
cal factors in osteosarcoma. (A-D) Relationship between MCAM 
(A), ENPEP (B), LRRC1 (C), CPE (D), and metastasis status. (E) 
Relationship between LRRC1 and gender category. (F) Relation-
ship between risk score and age category. (G) Relationship be-
tween risk score and metastasis status.
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Figure 8. The survival analysis and expression level verification of risk genes. (A-D) Analysis of the association between MCAM (A), ENPEP (B), LRRC1 (C), and CPE 
(D) expression and OS in patients with osteosarcoma. (E-H) Analysis of the association between MCAM (E), ENPEP (F), LRRC1 (G), and CPE (H) expression and MFS 
in patients with osteosarcoma. (I-L) The expression level verification of MCAM (I), ENPEP (J), LRRC1 (K), and CPE (L) in osteosarcoma tissues. OS, overall survival; 
MFS, metastasis-free survival.
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with metastasis of osteosarcoma. We investi-
gated the expression of the four signature 
genes in osteosarcoma cell lines to provide a 
reference for further basic research on 
osteosarcoma.

We analyzed two mRNA microarray datasets to 
detect co-expressed DEGs in osteosarcoma 
and human primary osteoblasts. Overall, there 
were 202 overlapping DEGs, in which 120 were 
upregulated and 82 were downregulated. GO 
and KEGG enrichment analyses of the identi-
fied DEGs revealed that Rap1 and the Ras sig-
naling pathway were consistently up-regulated 
in osteosarcoma. Rap1 and Ras signaling path-
ways appear to be crucial in the course and 
maintenance of many tumor types. Studies 
have shown that Ras genes are mutated and 
abnormally activated in a large proportion of 
leukemias and solid tumors and are involved in 
cancer cell growth, invasion, migration, pro-
grammed cell death, and neovascularization 
[25, 26]. Previous studies using osteosarcoma 
cell lines confirmed that 143B cells were more 
tumorigenic and metastatic than MNNG/HOS 
cells because of K-Ras transformation [27], 
and that MNNG/HOS cells transgenic for the 
K-Ras gene had increased metastatic poten- 
tial compared with wild-type MNNG/HOS cells 
[28]. Wang et al. also reported that osteosarco-
mas proliferate and migrate primarily as a 
result of the Ras/MAPK kinase cascade initiat-
ed by macrophage migration inhibitory factor 
[29]. In another study, Lakshmikanthan et al. 
[30] showed that Rap1 was involved in various 
integrin-mediated biological processes, includ-
ing angiogenesis and activation of vascular 
endothelial growth factor receptor 2. Rap1 was 
also shown to play a role in cell matrix adhesion 

and cell migration in head and neck cancer via 
the Rap1/Rac1 signaling axis rather than indi-
vidual functions of α5 or β1 integrin [31]. In 
addition, Rap1 and Ras share similar binding 
partners and play a synergistic role in initiating 
and maintaining ERK signals [32]. Another 
pathway that significantly enriched is the p53 
signaling pathway, which has always been a 
hotspot in cancer research. The p53 signaling 
pathway is essential for many cellular process-
es including apoptosis, senescence, DNA 
repair, and metabolism. Mutation of p53 is 
associated with lung metastasis in osteosar-
coma mediated through the ONZIN-CXCL5-
MAPK signaling pathway [33]. In addition, p53 
plays a pivotal role in regulating bone remodel-
ing associated with osteosarcoma, and loss of 
p53 function is associated with abnormal 
osteogenic differentiation of mesenchymal 
stem cells (MSCs) [34]. These established 
mechanistic links between osteosarcoma and 
Rap1/Ras signaling and p53 may explain how 
the DEGs identified in the expression an- 
alysis could affect the development of 
osteosarcoma.

Through univariate and multivariate Cox regres-
sion analyses, we identified four key DEGs: 
MCAM, ENPEP, LRRC1, and CPE, that are asso-
ciated with prognosis in osteosarcoma. We 
then used those DEGs to construct a prognos-
tic signature. Past studies revealed the involve-
ment of the signature genes in cancer develop-
ment. MCAM was shown to be the target gene 
of KDM3A in Ewing Sarcoma and an important 
effector of KDM3A in promoting metastasis 
[35]. Consistent with the findings of our study, 
Wang et al. observed that the MCAM protein 
was up-regulated in osteosarcoma compared 

Figure 9. Expression of four risk genes in osteosarcoma cell lines (143B, U2OS, and MNNG/HOS) and osteoblast 
cell line (hFOB 1.19). (A-D) Differential expression of MCAM (A), ENPEP (B), LRRC1 (C), and CPE (D) in the human 
osteosarcoma cell lines and osteoblastic cell line (*P<0.05).



Prognostic gene signature for osteosarcoma

12282 Am J Transl Res 2021;13(11):12264-12284

with normal osteoblasts, and that the expres-
sion of MCAM on the surface of osteosarcoma 
cells was generally at cell-to-cell contact sites 
[36]. ENPEP is a coronavirus receptor when it is 
overexpressed and is also a risk factor for 
colorectal cancer progression [37]. In another 
study, Feliciano et al. also reported that ENPEP 
protein was upregulated in 56% of breast can-
cer patients, and miR-125b directly targeted 
ENPEP to induce cell cycle arrest and inhibit 
tumor growth [38]. Furthermore, LRRC1 was 
shown to exert its effects via the Wnt/β-Ca- 
tenin pathway in genetically modified breast 
carcinoma stem cells, and the expression of 
LRRC1 was also correlated with stem cell char-
acteristics in normal and neoplastic breast  
epithelium [39]. In addition, MSC-derived exo-
somes with up-regulated miR-193a and down-
regulated LRRC1 reduced cisplatin resistance 
in non-small cell lung cancer cells [40]. Silenc- 
ing of CPE led to G0/G1 cell cycle stagnation in 
an osteosarcoma cell line and inhibited osteo-
sarcoma cell growth, migration, and invasion in 
vivo by reducing expression of cyclin D1 [41].

To evaluate the independent predictive ability 
and clinical utility of the model, we analyzed the 
signature-based risk score along with several 
clinical variables. We found that the risk score 
and Huvos grade were independent prognostic 
factors. Previous studies found that Huvos 
grade is a reliable predictor of patient survival 
in osteosarcoma, and that the percentage of 
necrotic tissue after chemotherapy classified 
using the Huvos system reflects the effective-
ness of the treatment [42, 43]. Further com-
parisons indicated that the prognostic signa-
ture was superior to the Huvos grade in predict-
ing osteosarcoma outcomes, which suggests 
that the four-gene signature may be reliable. In 
addition, patients with metastatic osteosarco-
ma had higher expression levels of the four  
signature genes and higher risk scores than 
patients with non-metastatic osteosarcoma. 
An independent analysis of the R2 osteosarco-
ma dataset likewise showed that higher  
MCAM, ENPEP, LRRC1, and CPE expression 
was associated with shorter OS and MFS. 
These results suggest that the four risk genes 
in the prognostic model are reliable as a tool to 
predict metastasis and patient survival.

Infiltrating immune cells are a critical factor in 
cancer initiation and progression and have 

been studied extensively in recent years [44]. 
We found immune-related clues based on the 
four genes in the prognostic signature. Patients 
with low risk scores based on the four-gene sig-
nature had higher levels of tumor-infiltrating 
immune cells than patients with high risk 
scores, and immunity was impaired overall in 
the latter group. We speculate that reduced lev-
els of antitumor immunity in patients with high 
risk scores may be associated with poor sur-
vival outcomes. Moreover, the expression lev-
els of the four risk genes showed a significant 
correlation with tumor purity and immune cell 
infiltration.

Conclusion

We designed and validated a four-gene prog-
nostic signature as an independent predictive 
marker for osteosarcoma, which may contrib-
ute to early diagnosis and treatment deci- 
sion-making. The roles of the four risk genes; 
MCAM, ENPEP, LRRC1, and CPE; in osteosar-
coma are still not fully elucidated. Further stud-
ies in clinical cohorts and other databases are 
needed to validate our findings.
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