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Abstract: Atopic dermatitis (AD), or atopic eczema, is one of the most common inflammatory skin diseases with up 
to 10% prevalence in adults, and approximately 15-20% in children in industrialized countries. As a result, there is 
an unmet need for faster, safer, and effective treatments for AD. AD pathogenesis represents a complex interplay 
between multiple factors, such as environmental factors or stimuli, genetic factors, immune dysfunctions. However, 
although multi-omics label studies have been very useful in understanding the pathophysiological mechanisms of 
AD and its clinical manifestations, there have been very few studies that integrate different labels of omics data. 
Here, we attempted to integrate gene expression and metabolomics datasets from multiple different publicly avail-
able AD cohort datasets and conduct an integrated systems-level AD analysis. We used four different GEO transcrip-
tome data sets and, by applying an elastic net machine learning algorithm, identified robust hub genes that can be 
used as signatures, for example, H2AFX, MCM7, ESR1 and SF3A2. Moreover, we investigated potential associations 
of those genes by applying a pathway-based approach over metabolomics and miRNA datasets. Our results revealed 
potential novel associations between fatty acids and peroxisomal lipid metabolism pathways, as well as with several 
microRNAs.

Keywords: Multi-omics, machine learning, atopic dermatitis (AD), eczema, pathway analysis, translational research

Introduction

Atopic dermatitis (AD) is one of the most com-
mon inflammatory skin diseases with around 
10% prevalence in adults, and approximately 
20% in children [1]. AD is typically considered 
the result of a complex interplay between mul-
tiple factors, such as environmental factors or 
stimuli, genetic factors [2], immune dysfunc-
tions, and host-microbiome interactions [3]. 
Omics analysis has been widely used in recent 
years to explore potential biomarkers and to 
gain a better understanding of the underlying 
pathobiology and pathophysiology of various 
clinical forms and different disease subtypes 

[3]. Numerous studies have been carried out in 
an effort to cater the molecular AD diagnosis, 
many of which entailing the analyses of high 
throughput omics experiments, namely tran-
scriptomics [4-6], metabolomics [7, 8], proteo- 
mics [9, 10], etc. The primary objective of such 
studies is to identify markers that can be tar-
geted for drug discovery or be used for the iden-
tification of biomarkers that cater disease str- 
atification [11]. Although single-omics studies 
have been very useful for understanding the AD 
mechanisms and manifestation, multi-omics 
approaches offer the tantalising possibility of 
gaining an in-depth understanding of AD’s com-
plex pathogenesis [3]. Currently, very few stud-
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ies integrating different omics labels have been 
conducted [3]. Several studies examined the 
integration of lipidomics and transcriptomics 
[12], or transcriptomic and proteomic data [13], 
as well as of epigenetic and transcriptomic 
datasets [14] to explore the microenvironment 
and immune regulation in AD skin. Moreover, 
one recent study investigated the association 
of the infant gut microbiome with its metabo-
lome in order to understand the impact of the 
microbiome on the risk of AD development [15]. 
While single omics approaches appear to be 
insufficient in identifying biomarkers for AD en- 
dotyping, novel multi-omics integration meth-
ods offer the potential of gaining a better un- 
derstanding of the underlying AD molecular 
patterns, as well as of a potential interpretation 
of AD clinical variability [3].

In the present study, we attempted to integra- 
te gene expression, miRNA and metabolomics 
datasets from multiple cohorts, and obtain an 
integrated systems-level overview of AD. Four 
different GEO transcriptome datasets were us- 
ed and robust gene signatures determining 
core AD pathogenetic elements were identifi- 
ed. Furthermore, by adopting pathway-based 
approaches, it was demonstrated that metabo-
lomics signatures were associated with par- 
ticular gene signatures revealing novel genes, 
metabolites, and miRNAs associations.

Methods

Data collection

Table 1 lists the gene expression datasets 
obtained from the Gene Expression Omnibus 
(GEO) [16], as well as the metabolomics datas-
et retrieved from the MetabolomicsWorkben- 
ch [17]. All datasets were collected on 30th 
November 2020.

Differential expression analysis using GEO2R

We used the GEO2R [18], an online tool employ-
ing the limma package [19], to identify differen-
tial genes (DEGs) between normal vs. AD skin. 
For this analysis, two groups were created (nor-
mal vs. AD) for each individual dataset using 
the GEO ‘define groups’ feature. Genes without 
a corresponding gene symbol and genes with 
more than one probe set were removed. The 
statistical significance values were set as ad- 
justed P-value ≤0.05. Three GEO series datas-
ets were used, namely GSE36842 [20], GSE- 
16161 [21], and GSE6012 [22], to identify dif-
ferential expressed genes, and the GSE32924 
dataset [23] was used for validation. An over-
view of the workflow (process) is presented in 
Figure 1.

Differentially expressed genes networks

A network analysis of the selected differentially 
expressed genes (DEGs) was subsequently per-
formed using the OmicsNet tool [24]. Using th- 
is tool, we mapped protein-protein interactions 
and transcription factor-gene interactions. Pro- 
tein-protein interactions were mapped using a 
manually curated experimentally validated PPI 
database (IntAct). Moreover, the number of 
connections (node interactions) for each of the 
differentially expressed genes was calculated, 
and only genes with more than 100 interac-
tions were considered for further analysis.

Gene marker selection using machine learning 
methods

We applied two feature selection methods, 
namely the Least Absolute Shrinkage and Se- 
lection Operator (LASSO) [25] and the Elastic 
Net (EN) [26] methods. Both EN and LASSO are 
able to automatically select the best features 

Table 1. GEO datasets employed in this study
GEO ID and reference Data types Platform used Sample size Tissue type
GSE36842 [20] Microarray GPL570, Affymetrix Human 

Genome U133 Plus 2.0 Array
Normal = 15, AD = 8, Total = 23 Skin Biopsies

GSE16161 [21] Microarray GPL570, Affymetrix Human 
Genome U133 Plus 2.0 Array

Normal = 9, AD = 9, Total = 18 Skin Biopsies

GSE6012 [22] Microarray GPL96, Affymetrix Human  
Genome U133A Array

Normal = 10, AD = 10, Total = 20 Skin Biopsies

GSE32924 [23] Microarray GPL570, Affymetrix Human 
Genome U133 Plus 2.0 Array

Normal = 10, AD = 10, Total = 20 Skin Biopsies

ST001431-Metabolomics workbench [66] Metabolomics LC-MS targeted Normal = 24, AD = 25, Total = 49 Blood Serum
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linked with an outcome variable (for example, 
normal vs. AD). Both EN and LASSO are consid-
ered penalty-based methods and hence pro-
vide a sparse solution. The penalty parameter, 
λ (range of λ: 0-1), was optimized using 10-fold 
cross-validation. For the case of LASSO, the 
penalty is applied to the sum of the absolute 
values of the regression coefficients (L1 norm). 
Elastic Net, on the other hand, employs a mixed 
version of both L1 and L2 penalty (Ridge pen-
alty). We combined selected variables identi-
fied by both LASSO and EN and then applied a 
generalized linear model (GLM) to cater for the 
stability analysis of the selected features. The 
process was repeated 100 times and the fea-
tures were ranked according to their respective 
selection frequency associated with each run. 
We then selected the first quartile of the com-
bined LASSO and EN selected features over 
100 runs. These selected features were then 
further modelled using logistic regression. Two 
area under the curve (AUC) distributions result-
ed from this analysis. The one related to ran-
dom label sampling (i.e., the randomization of 
sample labels in each iteration, averaged over 
100 iterations) was termed as ‘random AUC’. 
The second distribution was based on the boot-
strapped samples.

Enrichment analysis and miRNA association 
analysis

The enrichment analysis of identified DEGs was 
then performed to assess the potential mo- 
lecular pathways, gene functions or biological 
processes associations. Pathway analysis was 
subsequently performed over the differentially 
expressed genes using the OmicsNet tool [24] 
and the KEGG gene database. Pathways of in- 

terest were subsequently inspected to identify 
DEGs. The metabolomic enrichment analysis 
was performed using the IMPaLA (Integrated 
Molecular Pathway-Level Analysis) [27] web 
tool. We merged miRNA information with the 
genes selected from the previous step using 
the NetworkAnalyst v3.0 webtool [28].

Statistical analysis

R version 4.0.3 [29] was used for statistical 
analyses. For differential expressed genes bet- 
ween normal vs AD skin samples, Benjamini-
Hochberg (BH) adjusted P-value ≤0.05 was 
considered. Metabolites were analysed using a 
Wilcoxon rank test and P-values of <0.05 were 
considered statistically significant.

Results

Hub genes identification

Publicly available GEO datasets were used to 
identify genes that are differentially expressed 
between AD vs. control samples. We mapped 
protein-protein interactions (PPI) using a vali-
dated PPI database (IntAct) [30] that allowed 
us to identify highly connected genes (called 
degree). Within the GSE36842 dataset, we 
identified the GABARAPL1 gene to have the 
highest degree with 519 connections. In total, 
10 genes were selected with a degree of more 
than 100 from the GSE36842 dataset. For the 
GSE6012 dataset, we found 24 genes with a 
degree more than 100 that were considered 
hub genes. The MYC gene was found to have 
the highest degree with 769 connections. 
Similarly, for the GSE16161 dataset, GRB2 was 
identified to have the highest number of the 

Figure 1. Overview of the study workflow and methods.
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degree, and in total nine genes were identified. 
No common genes shared across three datas-
ets were found. One common gene, namely 
CALM3, was identified between the GSE36842 
and GSE6012 datasets and one common gene, 
YWHAZ, was found between GSE6012 and 
GSE16161 datasets. The list of the genes and 
their corresponding degrees is presented in 
Supplementary Table 1.

Elastic net-based selection of predictive genes

We applied the EN method using the identified 
hub genes from each of the datasets separate-
ly to select the important discriminating genes 
between AD and control samples. From GSE- 
36842, EN selected 10 genes out of 10 in- 
put hub genes. From GSE16161, EN selected 
seven genes out of nine input hub genes and 
finally from GSE6012, EN selected six genes 
out of 24 hub input genes (Table 2). To investi-
gate the predictive performance of the identi-
fied genes, we used an external validation data-
set, GSE3292. Nine genes were identified with-
in the validation dataset and a logistic regres-
sion model was applied to obtain their indivi- 
dual as well as combined predictive power 
between control vs. AD samples. The individual 
AUCs for each of the genes with confidence 
interval (CI) were found: H2AFX (AUC: 1.000, CI: 
1-1), MCM7 (1.000, CI: 1-1), ESR1 (0.971, CI: 
0.88-1), SF3A2 (0.846, CI: 0.64-0.98), UBA1 
(0.601, CI: 0.21-0.63), TP53 (0.577, CI: 0.37-
0.81), EF1A1 (0.572, CI: 0.36-0.76), GIGYF2 
(0.567, CI: 0.38-0.78), PPP2CA (0.510, CI: 
0.23-0.75). Out of these genes, four, namely, 
H2AFX, MCM7, ESR1, SF3A2, were associated 
with regression models with AUC values higher 
than 0.80. Figure 2A depicts box plots of  
the predicted genes with associated P-values, 
while Figure 2B presents the AUC values of the 
combined regression model.

Gene set enrichment analysis

A pathway and gene enrichment analysis was 
performed to identify potential pathway asso-

ciations. The top five pathways identified were 
the Class I PI3K signaling events, the integrin 
family cell surface interactions, the Arf6 traf-
ficking events, endothelins, the EGF receptor 
(ErbB1) signalling, as well as IL-3-, IL-5- IL-8- 
and IFN-gamma-related immune signalling pa- 
thways. Multiple genes were found to be asso-
ciated with those pathways (Figure 3). A list of 
these genes and their associated pathways is 
provided in Supplementary Table 2. We further 
investigated genes involved in biological pro-
cesses such as cell cycle regulation, apoptosis, 
signal transduction, DNA replication, immune 
response, etc (Figure 3).

miRNAs associations

NetworkAnalyst was then used to explore po- 
tential miRNA associations with the previously 
identified genes. The TP53 gene was identified 
as having the highest numbers of interactions 
(also called as degree) amongst them, inter- 
acting with 130 miRNAs. The degrees of the 
PPP2CA, ESR1, EEF1A1, and MCM7 genes we- 
re 68, 90, 61 and 90, respectively. Figure 4A 
provides a visualisation of the predictive ge- 
nes and their associations with miRNAs. The 
miRNA-gene interacting pairs are reported in 
Supplementary Table 3.

Metabolite identification

A Wilcoxon rank test obtaining P-values (P< 
0.05) was performed over the serum metabo- 
lomics dataset (ID number ST001431). Cetyl- 
carnitine, phosphatidylcholine diacyl, phosph- 
atidylcholine diacyl, acylcarnitines, carnitine, 
acetylcarnitine, dicarboxylacylcarnitines were 
found to be significant. For these metabolites, 
a metabolic enrichment analysis was also con-
ducted using IMPaLA. The top three metabolic 
pathways identified were the beta-oxidation of 
pristanoyl-CoA, peroxisomal lipid metabolism, 
and fatty acid metabolism pathways, while ace-
tylcarnitine, phosphatidylcholine diacyl, carni-
tine and acylcarnitines were associated with 
those pathways significantly. A bar graph of the 
pathways identified and their associated 
(-log10) P-values are presented in Figure 4B.

Discussion

In this study, we aimed to identify candidate 
genes relevant to AD and to associate them 
with particular metabolites and miRNAs. We 
identified H2AFX, MCM7, ESR1, SF3A2, UBA1, 

Table 2. Hub genes and predictive genes

GEO-ID Hub genes (>100 
P-P connectivity)

Elastic Net  
predictive genes

GSE36842 10 10
GSE16161 9 7
GSE6012 24 6
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Figure 2. A. Box plots of the predictive genes across AD vs. control samples. Significant (P<0.05) gene up-regulation is represented in solid red for the healthy 
patients and gene down-regulation is highlighted in solid blue for the AD patients. B. An AUROC with 0.81 value and a CI (0.44-1) related to the performance of the 
model using 4 genes on the GSE32924 dataset.
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Figure 3. (A) Common pathways identified across multiple GEO data sets and (B) common biological processes identified across multiple GEO data sets.
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Figure 4. A. Selected predictive genes with miRNA targets associations. B. Metabolite enrichment analysis using IMPaLA. The figure depicts the pathways found to 
be associated with AD (X-axis) and their associated-log10 (p) values (Y-axis).
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TP53, EEF1A1, GIGYF2, PPP2CA as the hub  
and predictive genes. H2AFX is an H2A histone 
family member contributing to the chroma- 
tin-remodeling and the nucleosome-formation 
DNA repair preserving genetic integrity. H2AFX 
mutations have been shown to lead to breast 
cancer [31]. H2AFX has also been implicated in 
the hypoxia-driven neovascularization process 
[32]. The minichromosome maintenance com-
plex (MCM) is known to be involved in pre-repli-
cation complex formation that helps in DNA 
denaturation and unwinds the replication fork 
[33]. The MCM complex is composed of six 
highly conserved MCM proteins [34, 35]. Most 
of the MCM proteins are involved in carcinogen-
esis. Among them, MCM7 is considered to be 
an important unit of heteromeric MCM helicas-
es which play a key role in controlling DNA re- 
plication and cell proliferation. A high level of 
MCM7 gene expression is also associated with 
tumour progression and metastasis and is con-
sidered an important cancer biomarker [36]. 
MCM7 has also been reported to be associat- 
ed with hepatic carcinogenesis, esophageal 
squamous cell carcinoma, and prostate carci-
noma [33, 37, 38]. Furthermore, MCM3 and 
MCM7 were demonstrated to be differentially 
expressed in primary T-cell cutaneous lympho-
ma skin samples [39]. MCM7 was also demon-
strated to have higher levels of expression in 
skin proliferative disorders, such as keratoac-
anthoma, verruca vulgaris, and psoriasis vul-
garis in comparison with normal skin [40]. ESR 
encodes estrogen receptor-alpha (ER-α), which 
is one of the potential targets in breast cancer 
treatment. It acts as a transcriptional regulator 
by interacting with estrogen and other proteins 
and has a role in breast cancer progression. 
ESR1 genetic variants are known contributors 
to breast carcinogenesis by inducing cell prolif-
eration, genetic mutation, and necrosis [41]. 
The ESR-1 gene, encoding ESR-α, has been 
used as a target in therapy for breast cancer. 
Several miRNAs (miR-22, miR 301a-3p, miR 
206) were reported to suppress the expression 
of ER-α via direct binding with the 3’UTR 
(untranslated region) of ESR1 mRNA, which 
provided resistance to estrogen/ERα-targeted 
therapies [42, 43]. Gao et al. have shown that 
expression of the ESR1 gene was regulated 
through a miRNA-mRNA regulatory pathway in 
ERα positive breast cancer [43]. They validated 
their results through a series of in silico studi- 
es and experimental analysis. Based on these 

findings, it was concluded that the miRNA tar-
geted therapy emerged as a promising strategy 
for breast carcinoma. Moreover, the ERS1 gene 
has been shown to be differentially expressed 
in psoriasis, a chronic cutaneous inflammatory 
condition driven by IL-17 and IL-12/23 immune 
dysregulation [44]. As for SF3A2, a genome-
wide screening in Drosophila and human cells 
showed the RNAi-mediated depletion of many 
different splicing factors (SF) to be associated 
with mitotic defects, ranging from abnormal 
chromosomal segregation to cytokinesis fail-
ure. SF are also involved in the mitotic division 
by disrupting the nuclear envelope. Pellacani et 
al. explored the role of SF3A2 in mitosis in 
Drosophila and humans reporting that the SF 
depletion influences the spindle formation and 
disrupts chromosomal segregation [45]. PPP2- 
CA, protein phosphatase 2 catalytic subunit 
alpha gene, negatively controls cell growth and 
division. Also, in the study of Fang et al., it was 
proposed that PPP2CA played an important 
role in epidermis and hair follicles development 
in mice [46].

The gene enrichment analysis showed that 
ESR1, TP53, and PPP2CA were linked with inte-
grin family cell surface interaction, endothelins, 
and immune pathways of IL-3- IL-5-, and IL-8 
mediated signaling. IL-3 is a multi-lineage colo-
ny-stimulating factor produced by lymphoid ce- 
lls and eosinophils [47]. IL-5 is an eosino- 
phil colony-stimulating factor activating eosino-
phils, while IL-8 is one of the proinflammatory 
chemokines [48]. Moreover, Ghosh et al. also 
proposed that integrin-linked kinase (ILK) sig-
naling and endothelin signaling were involved in 
the pathogenesis of AD [3]. While ILK activation 
may be connected with S. aureus colonization 
of AD skin, endothelin-1 plays a role in mediat-
ing itch, one of the most prominent symptoms 
of AD [3].

Our gene enrichment analysis also depicted an 
association of MCM7 and PPP2CA with the TNF 
alpha/NF-κB signaling pathway. NF-κB is a cru-
cial effector molecule of inflammation and was 
proven to be involved in AD immune pathologic 
signaling [49].

Genome-wide association studies (GWAS) have 
revealed the association of FLG and KIF3A with 
atopic dermatitis, resulting in a disrupted skin 
barrier and reduced clearance of allergens, 
respectively [3]. Moreover, the meta-analysis  
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of AD-derived transcriptome datasets highlight-
ed the importance of inflammatory markers 
(MMP12) as well as the genes involved in T- 
cell immunity activation (Th2/CCL18, Th1/IFN/
CXCL10, Th17/PI3/elafin, Th17/Th22 S100A7/
A8/A9), epidermal proliferation (KRT16, Mki67, 
CLDN8), markers of atherosclerosis signalling 
(IL-37, selectin E), and downregulation of epi-
dermal lipids (FA2H, FAR2, ELOVL3) [50]. Ghosh 
et al. analysed five publicly available AD tran-
scriptome datasets and used clustering analy-
sis to identify the genes that were differentially 
expressed in AD skin [51]. They performed vali-
dation experiments over the findings and dem-
onstrated that genes involved in the epidermal 
barrier function, inflammation-related genes, 
proteases and protease inhibitor genes, as well 
as genes of antimicrobial responses, were dif-
ferentially expressed in AD [51]. Our predictive 
genes are different from the ones previously 
identified. This might be due to the different 
datasets and samples used, and potentially 
due to our study focus on the identification of 
the genes involved in multiple interactions with 
proteins and miRNAs.

Several studies have been conducted explor- 
ing the miRNAs involved in AD pathogenesis. 
MicroRNAs are non-coding RNA molecules in- 
volved in post-transcriptional changes, which 
can negatively modify gene expression by de- 
grading mRNAs or lowering their quantity [52]. 
Dysregulation of miR-143, miR-146a, miR-
151a, miR-155 and miR-223 has been report-
ed in AD patients [53]. These miRNAs play a 
role in the regulation of proliferation and apop-
tosis of keratinocytes, immune signalling (e.g. 
cytokine and nuclear factor-κB-dependent in- 
flammatory responses), as well as the activity 
of Th-17 and Treg cells [53]. Moreover, the anal-
ysis of child AD datasets revealed miR-451 to 
be a potential predictive biomarker for early 
diagnostics [54]. Nousbeck et al. reported that 
miRNA-451a targets the interleukin 6 receptor 
(IL6R) and the proteasome subunit beta type-8 
(PSMB8), while IL6R and PSMB8 showed a neg-
ative correlation with miR-451a levels in peri- 
pheral blood mononuclear cells (PBMCs) [54]. 
Furthermore, miRNA-155 expression was found 
to correlate positively with the severity of AD, 
Th-17 cell percentage, IL-17 mRNA expression 
and its plasma concentration [55]. In our study, 
we identified mir-155-3p, mir-151a-5p and mir-
223-3p to be associated with p53 gene expres-

sion; these miRNAs were reported to play a role 
in the regulation of immune pathways in AD 
[53].

Tonacci et al. reviewed the role of different 
microRNAs in AD and ASD (Autism Spectrum 
Disorder) patients [56]. They reported that the 
main dysregulated miRNAs in AD are miR-186, 
miR-361-3p, miR-605, mir-150, mir-455-3p, 
and mir-302c-3p. Out of these miRNAs, our 
analysis identified miR-361-3p and mir-455-3p 
to be interacting with FFF1A1, mir-605 to be 
interacting with TP53, and mir-302c-3p to be 
interacting with MCM7.

From the metabolomic analysis conducted, we 
identified phosphatidylcholine diacyl, carnitine, 
acetylcarnitine and acylcarnitines to have ei- 
ther higher or lower abundance in AD patients. 
Those metabolites are associated with beta-
oxidation of pristanoyl-CoA, peroxisomal lipid 
metabolism, and fatty acid metabolism path-
ways, which are essential for energy metabo-
lism [57, 58]. It is known that epidermis exhibits 
extensive levels of lipid metabolism to ma- 
intain the barrier function [59]. Furthermore, 
peroxisomes play a role in the proliferation, dif-
ferentiation of cells as well as in the modulation 
of inflammatory responses [60]. Few metabolo-
mic studies have been conducted in the con-
text of AD. In the study by Huang et al. [61], 
which was focused on the metabolome of chil-
dren with AD, it was reported that tryptophan 
and indolelactic acid (tryptophan metabolism 
pathway members), taurochenodeoxycholate/
taurochenodeoxycholic acid, taurocholate/tau-
rocholic acid (bile acid metabolism pathway 
members), free fatty acids and carnitines were 
increased in the AD cohort with higher reported 
IgE levels, revealing potential energy metabo-
lism disruptions [61], which is in line with our 
findings. Furthermore, hydroxyl octadecadieno-
ic acids, most of the hydroxy eicosatetraenoic 
acids (belonging to polyunsaturated fatty acids 
pathway), as well as glycocholate/glycocholic 
acid (belonging to bile acid metabolism path-
ways), were shown to be increased in AD ver- 
sus healthy controls, independently of patient 
serum IgE levels (e.g. in cohorts of AD patients 
with both high or normal levels of serum IgE) 
[61]. Other studies proposed that the suppres-
sion of fatty acids beta-oxidation occurred in 
mice with AD [62], and mitochondrial dysfunc-
tion tended to decrease fatty acid oxidation 
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and to be associated with higher serum levels 
of IgE [63].

The complex AD etiopathogenesis is charac- 
terized by specific microbiome patterns. The 
decreased diversity of microbial species with 
enhanced colonization of staphylococcal spe-
cies, Staphylococcus aureus (S. aureus) and 
Staphylococcus epidermidis (S. epidermidis) in 
particular, is present in AD skin due to inflam-
mation, disrupted skin barrier and reduced lev-
els of antimicrobial peptides [64]. Recent find-
ings demonstrated that overabundant S. epi-
dermidis colonisation, which was previously be- 
lieved to be beneficial, may have a damaging 
effect on the skin barrier [65]. Few studies also 
proposed that gut microbiome disturbances 
could be related to altered host immune func-
tion in AD [3].

Some of the limitations of this study include the 
lack of experimental validation (for example, 
quantitative polymerase chain reaction (qPCR) 
experiments for the identified hub genes) of our 
findings and the inclusion of a relatively low 
quantity of AD patient samples. Furthermore, 
the GEO datasets analysed were classified as 
AD skin versus healthy skin, with no differentia-
tion between lesional AD and non-lesional AD 
skin samples, as well as high and normal IgE 
patient serum levels.

Conclusions

Using the multi-omics approach over AD patient 
samples datasets, we have identified several 
novel associations between genes regulating 
the cell cycle and cell proliferation. Further qRT-
PCR validation studies are required to gain 
additional insights into the role of the identified 
hub genes in AD pathogenesis.
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Supplementary Table 1. Genes with >100 corresponding degrees
GSE36842 GSE6012 GSE16161

Gene Degree Gene Degree Gene Degree
ABARAPL1 519 MYC 769 GRB2 282
MCM7 163 YWHAZ 520 YWHAZ 205
CALM3 148 ARRB2 290 CDC5L 191
PLK1 145 KRT31 280 EGFR 167
HGS 135 TCF4 200 ESR2 141
ZRANB1 124 LIMA1 190 FN1 135
RIF1 123 PIK3R1 181 ESR1 134
UBA1 116 H2AFX 180 TP53 125
MAP3K14 116 UBE2N 176 LNX1 103
GIGYF1 108 MAPK6 173

HSPA5 167
EEF1A1 156

SFN 156
CALM3 148
EWSR1 147
YWHAQ 139
TUBB3 126
KRT15 119

PPP2CA 117
SF3A2 116

SYNCRIP 113
ANXA7 104

JUN 103
UBE2D3 101



Atopic dermatitis multi-omics integrative analytics

2	

Supplementary Table 2. List of the 25 most common pathways found within the GSE36842, 
GSE6012 and GSE16161 datasets
Number List of the pathways found
1 Class I PI3K signaling events
2 Integrin family cell surface interactions
3 Arf6 trafficking events
4 Endothelins
5 EGF receptor (ErbB1) signaling pathway
6 Beta1 integrin cell surface interactions
7 Plasma membrane estrogen receptor signaling
8 LKB1 signaling events
9 Destabilization of mRNA by AUF1 (hnRNP D0)
10 Ubiquitin-dependent degradation of Cyclin D1
11 CD40/CD40L signaling
12 TNF signaling
13 IRAK2 mediated activation of TAK1 complex
14 Calmodulin induced events
15 TRAF6 mediated induction of NFkB and MAP kinases upon TLR7/8 or 9 activation
16 Nongenotropic Androgen signaling
17 Post-chaperonin tubulin folding pathway
18 PKA activation
19 Ubiquitin-dependent degradation of Cyclin D
20 Endosomal Sorting Complex Required For Transport (ESCRT)
21 PKA-mediated phosphorylation of CREB
22 SCF(Skp2)-mediated degradation of p27/p21
23 Golgi Cisternae Pericentriolar Stack Reorganization
24 Cross-presentation of soluble exogenous antigens (endosomes)
25 SCF-beta-TrCP mediated degradation of Emi1

Supplementary Table 3. miRNA- hub gene interacting pairs
Hub genes and miRNAs Module
MCM7 1
ESR1 1
hsa-mir-19a-3p 1
hsa-mir-19b-3p 1
hsa-mir-22-3p 1
hsa-mir-26a-5p 1
hsa-mir-100-5p 1
hsa-mir-29b-3p 1
hsa-mir-192-5p 1
hsa-mir-129-5p 1
hsa-mir-1-3p 1
hsa-mir-124-3p 1
hsa-mir-130a-3p 1
hsa-mir-142-3p 1
hsa-mir-145-5p 1
hsa-mir-9-5p 1
hsa-mir-206 1
hsa-mir-302a-3p 1
hsa-mir-301a-3p 1



Atopic dermatitis multi-omics integrative analytics

3	

hsa-mir-130b-3p 1
hsa-mir-302b-3p 1
hsa-mir-302c-3p 1
hsa-mir-302d-3p 1
hsa-mir-372-3p 1
hsa-mir-373-3p 1
hsa-mir-18b-5p 1
hsa-mir-20b-5p 1
hsa-mir-193b-3p 1
hsa-mir-520e 1
hsa-mir-519c-3p 1
hsa-mir-520a-3p 1
hsa-mir-519b-3p 1
hsa-mir-520b 1
hsa-mir-520c-3p 1
hsa-mir-520d-3p 1
hsa-mir-519a-3p 1
hsa-mir-503-5p 1
hsa-mir-583 1
hsa-mir-548d-3p 1
hsa-mir-454-3p 1
hsa-mir-26b-3p 1
hsa-mir-30c-2-3p 1
hsa-mir-30c-1-3p 1
hsa-mir-335-3p 1
hsa-mir-423-5p 1
hsa-mir-874-3p 1
hsa-mir-301b-3p 1
hsa-mir-302e 1
hsa-mir-548p 1
hsa-mir-1910-5p 1
hsa-mir-1914-5p 1
hsa-mir-3184-5p 1
hsa-mir-548x-3p 1
hsa-mir-4295 1
hsa-mir-4268 1
hsa-mir-4264 1
hsa-mir-4290 1
hsa-mir-3666 1
hsa-mir-3668 1
hsa-mir-548z 1
hsa-mir-4422 1
hsa-mir-548ac 1
hsa-mir-548ae-3p 1
hsa-mir-548aj-3p 1
hsa-mir-548am-3p 1
hsa-mir-3121-5p 1
hsa-mir-3157-3p 1
hsa-mir-3944-5p 1
hsa-mir-4671-3p 1
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hsa-mir-4709-3p 1
hsa-mir-4797-3p 1
hsa-mir-548ah-3p 1
hsa-mir-548aq-3p 1
hsa-mir-5582-3p 1
hsa-mir-5589-3p 1
hsa-mir-548g-5p 1
hsa-mir-548h-3p 1
hsa-mir-548x-5p 1
hsa-mir-548aj-5p 1
hsa-mir-6073 1
hsa-mir-6085 1
hsa-mir-548e-5p 1
hsa-mir-548j-3p 1
hsa-mir-548f-5p 1
hsa-mir-6757-3p 1
hsa-mir-6788-5p 1
hsa-mir-6813-5p 1
hsa-mir-6871-5p 1
hsa-mir-6878-5p 1
hsa-mir-7852-3p 1
hsa-mir-7855-5p 1
hsa-mir-548bb-3p 1
EEF1A1 2
hsa-mir-16-5p 2
hsa-mir-17-5p 2
hsa-mir-18a-5p 2
hsa-mir-24-3p 2
hsa-mir-25-3p 2
hsa-mir-26b-5p 2
hsa-mir-30a-5p 2
hsa-mir-92a-3p 2
hsa-mir-93-5p 2
hsa-mir-96-5p 2
hsa-mir-30c-5p 2
hsa-mir-221-3p 2
hsa-let-7g-5p 2
hsa-mir-15b-5p 2
hsa-mir-23b-3p 2
hsa-mir-125b-5p 2
hsa-mir-125a-5p 2
hsa-mir-185-5p 2
hsa-mir-186-5p 2
hsa-mir-106b-5p 2
hsa-mir-30e-5p 2
hsa-mir-324-3p 2
hsa-mir-339-5p 2
hsa-mir-423-3p 2
hsa-mir-484 2
hsa-mir-497-5p 2
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hsa-mir-501-5p 2
hsa-mir-505-3p 2
hsa-mir-652-3p 2
hsa-mir-421 2
hsa-mir-765 2
hsa-mir-93-3p 2
hsa-mir-296-3p 2
hsa-mir-361-3p 2
hsa-mir-455-3p 2
hsa-mir-877-5p 2
hsa-mir-665 2
hsa-mir-1226-3p 2
hsa-mir-1207-5p 2
hsa-mir-1260b 2
hsa-mir-4328 2
hsa-mir-3150b-3p 2
hsa-mir-4441 2
hsa-mir-4457 2
hsa-mir-4459 2
hsa-mir-4659a-5p 2
hsa-mir-4659b-5p 2
hsa-mir-4731-3p 2
hsa-mir-4736 2
hsa-mir-4763-3p 2
hsa-mir-4776-3p 2
hsa-mir-4784 2
hsa-mir-4801 2
hsa-mir-4482-3p 2
hsa-mir-5590-5p 2
hsa-mir-6499-3p 2
hsa-mir-6840-3p 2
hsa-mir-6888-5p 2
hsa-mir-7150 2
hsa-mir-7159-3p 2
hsa-mir-6516-5p 2
UBA1 3
hsa-let-7b-5p 3
hsa-mir-17-3p 3
hsa-mir-182-5p 3
hsa-mir-210-3p 3
hsa-mir-27b-3p 3
hsa-mir-331-3p 3
hsa-mir-324-5p 3
hsa-mir-615-3p 3
hsa-mir-21-3p 3
hsa-mir-744-5p 3
hsa-mir-1301-3p 3
hsa-mir-1254 3
hsa-mir-1272 3
hsa-mir-3126-5p 3
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hsa-mir-4278 3
hsa-mir-4419a 3
hsa-mir-4510 3
hsa-mir-4525 3
hsa-mir-4716-3p 3
hsa-mir-3591-3p 3
hsa-mir-5010-5p 3
hsa-mir-5187-5p 3
hsa-mir-6127 3
hsa-mir-6129 3
hsa-mir-6130 3
hsa-mir-6133 3
hsa-mir-6732-5p 3
hsa-mir-6750-5p 3
hsa-mir-6794-5p 3
hsa-mir-6805-5p 3
hsa-mir-6822-5p 3
hsa-mir-6834-5p 3
hsa-mir-6875-5p 3
PPP2CA 4
hsa-mir-103a-3p 4
hsa-mir-107 4
hsa-mir-197-3p 4
hsa-mir-216a-5p 4
hsa-mir-188-5p 4
hsa-mir-340-3p 4
hsa-mir-519c-5p 4
hsa-mir-518f-5p 4
hsa-mir-526a 4
hsa-mir-522-3p 4
hsa-mir-545-3p 4
hsa-mir-553 4
hsa-mir-584-5p 4
hsa-mir-548c-3p 4
hsa-mir-630 4
hsa-mir-671-5p 4
hsa-mir-33a-3p 4
hsa-mir-92a-1-5p 4
hsa-mir-96-3p 4
hsa-mir-218-2-3p 4
hsa-mir-185-3p 4
hsa-mir-186-3p 4
hsa-mir-889-3p 4
hsa-mir-523-5p 4
hsa-mir-518e-5p 4
hsa-mir-522-5p 4
hsa-mir-519a-5p 4
hsa-mir-519b-5p 4
hsa-mir-520c-5p 4
hsa-mir-518d-5p 4
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hsa-mir-513c-5p 4
hsa-mir-548g-3p 4
hsa-mir-224-3p 4
hsa-mir-670-5p 4
hsa-mir-3133 4
hsa-mir-548u 4
hsa-mir-3152-3p 4
hsa-mir-514b-5p 4
hsa-mir-4305 4
hsa-mir-4319 4
hsa-mir-4283 4
hsa-mir-3646 4
hsa-mir-3675-5p 4
hsa-mir-4489 4
hsa-mir-4517 4
hsa-mir-4656 4
hsa-mir-4670-3p 4
hsa-mir-4694-3p 4
hsa-mir-4732-3p 4
hsa-mir-4766-3p 4
hsa-mir-4777-5p 4
hsa-mir-5186 4
hsa-mir-548as-3p 4
hsa-mir-5583-3p 4
hsa-mir-5584-5p 4
hsa-mir-548av-3p 4
hsa-mir-345-3p 4
hsa-mir-758-5p 4
hsa-mir-6079 4
hsa-mir-153-5p 4
hsa-mir-6828-5p 4
hsa-mir-6866-3p 4
hsa-mir-6869-5p 4
hsa-mir-7161-5p 4
hsa-mir-7705 4
hsa-mir-8081 4
hsa-mir-8087 4
hsa-mir-9500 4
TP53 5
hsa-mir-15a-5p 5
hsa-mir-20a-5p 5
hsa-mir-27a-3p 5
hsa-mir-28-5p 5
hsa-mir-106a-5p 5
hsa-mir-30d-5p 5
hsa-mir-10b-5p 5
hsa-mir-34a-5p 5
hsa-mir-214-3p 5
hsa-mir-222-3p 5
hsa-mir-223-3p 5
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hsa-mir-30b-5p 5
hsa-mir-150-5p 5
hsa-mir-200a-3p 5
hsa-mir-375 5
hsa-mir-377-3p 5
hsa-mir-330-3p 5
hsa-mir-485-5p 5
hsa-mir-491-5p 5
hsa-mir-518c-3p 5
hsa-mir-504-5p 5
hsa-mir-605-5p 5
hsa-mir-608 5
hsa-mir-612 5
hsa-mir-622 5
hsa-mir-638 5
hsa-mir-663a 5
hsa-mir-26a-1-3p 5
hsa-mir-28-3p 5
hsa-mir-92a-2-5p 5
hsa-mir-214-5p 5
hsa-mir-125b-1-3p 5
hsa-mir-149-3p 5
hsa-mir-150-3p 5
hsa-mir-155-3p 5
hsa-mir-194-3p 5
hsa-mir-151a-5p 5
hsa-mir-505-5p 5
hsa-mir-300 5
hsa-mir-1225-3p 5
hsa-mir-1228-3p 5
hsa-mir-1264 5
hsa-mir-1285-3p 5
hsa-mir-1909-3p 5
hsa-mir-1972 5
hsa-mir-2110 5
hsa-mir-3165 5
hsa-mir-3065-5p 5
hsa-mir-4306 5
hsa-mir-4271 5
hsa-mir-4276 5
hsa-mir-4286 5
hsa-mir-4434 5
hsa-mir-4516 5
hsa-mir-4531 5
hsa-mir-4644 5
hsa-mir-4650-5p 5
hsa-mir-4651 5
hsa-mir-4682 5
hsa-mir-4697-3p 5
hsa-mir-4725-3p 5
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hsa-mir-4728-5p 5
hsa-mir-4795-5p 5
hsa-mir-1273f 5
hsa-mir-5003-5p 5
hsa-mir-5193 5
hsa-mir-5196-3p 5
hsa-mir-5197-5p 5
hsa-mir-5587-3p 5
hsa-mir-5693 5
hsa-mir-5702 5
hsa-mir-5703 5
hsa-mir-660-3p 5
hsa-mir-1247-3p 5
hsa-mir-3529-3p 5
hsa-mir-937-5p 5
hsa-mir-1233-5p 5
hsa-mir-6722-3p 5
hsa-mir-1296-3p 5
hsa-mir-513b-3p 5
hsa-mir-6731-5p 5
hsa-mir-6749-3p 5
hsa-mir-6751-5p 5
hsa-mir-6752-5p 5
hsa-mir-6756-5p 5
hsa-mir-6760-5p 5
hsa-mir-6766-5p 5
hsa-mir-6778-5p 5
hsa-mir-6785-5p 5
hsa-mir-6797-5p 5
hsa-mir-6803-5p 5
hsa-mir-6825-5p 5
hsa-mir-6835-5p 5
hsa-mir-6780b-5p 5
hsa-mir-6842-5p 5
hsa-mir-6880-5p 5
hsa-mir-6882-5p 5
hsa-mir-6883-5p 5
hsa-mir-7110-5p 5
hsa-mir-8071 5
hsa-mir-8085 5
hsa-mir-1249-5p 5
GIGYF2 6
hsa-mir-515-5p 6
hsa-mir-519e-5p 6
hsa-mir-454-5p 6
hsa-mir-125b-2-3p 6
hsa-mir-513b-5p 6
hsa-mir-3667-5p 6
hsa-mir-5695 6
hsa-mir-519d-5p 6
hsa-mir-5189-3p 6


