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Review Article
Illustrative and historic cases of phenoconversion
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Abstract: Intersubject variability in drug response, whether related to efficacy or toxicity, is well recognized clinically. 
Over the years, drug selection from our pharmacologic armamentarium has moved from providers’ preferred choic-
es to more personalized treatments as clinicians’ decisions are guided by data from clinical trials. Since the advent 
of more accessible and affordable pharmacogenomic (PGx) testing, the promise of precise pharmacotherapy has 
been made. Results have accumulated in the literature with numerous examples demonstrating the value of PGx 
to improve drug response or prevent drug toxicity. Unfortunately, limited availability of reimbursement policies has 
dampened the enthusiasm of providers and organizations. The clinical application of PGx knowledge remains diffi-
cult for most clinicians under real-world conditions in patients with numerous chronic conditions and polypharmacy. 
This may be due to phenoconversion, a condition where there is a discrepancy between the genotype-predicted 
phenotype and the observed phenotype. This condition complicates the interpretation of PGx results and may lead 
to inappropriate recommendations and clinical decision making. For this reason, regulatory agencies have limited 
the transfer of information from PGx laboratories directly to consumers, especially recommendations about the use 
of certain drugs. This mini-review presents cases (mexiletine, propafenone, clopidogrel, warfarin, codeine, procain-
amide) from historical observations where drug response was modified by phenoconversion. The cases illustrate, 
from decades ago, that we are still in great need of advanced clinical decision systems that cope with conditions 
associated with phenoconversion, especially in patients with polypharmacy.
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Introduction

Phenoconversion is a phenomenon by which 
there is a mismatch between an individual’s 
genotype-based predicted phenotype and the 
observed phenotype [1]. Phenoconversion can 
be caused by extrinsic factors such as environ-
ment, food, drugs, or patient- or disease-relat-
ed factors [1-3]. A simple example is the geno-
type associated with an individual predicting 
hair color and the actual hair color observed on 
that person. Like phenoconversion, this mis-
match between the observed phenotype and 
the genotype-predicted phenotype can be due 
to extrinsic factors, such as the use of hair col-
oring agents, or due to patient-specific condi-
tions, such as aging.

There are numerous conditions associated  
with phenoconversion when predicting drug 
response (efficacy and toxicity), especially in 
patients with polypharmacy. This phenomenon 

is not new and we purposely use older exam-
ples - several initiated from our research activi-
ties - to demonstrate how our knowledge has 
evolved and to show how difficult it has been to 
translate pharmacogenetic results into applied 
clinical interventions. This topic has recently 
gained interest with more laboratories interest-
ed in promoting pharmacogenomic (PGx) test-
ing, as molecular biology technologies are now 
more readily accessible and affordable. This 
review presents examples of increased or 
decreased drug efficacy or toxicity due to phe-
noconversion (see Table 1 for a summary of 
examples discussed).

Increased efficacy

In 1991, Duff et al. reviewed data supporting 
the use of selected drug combinations to 
enhance antiarrhythmic activity, specifically the 
mexiletine-quinidine combination [4]. They had 
previously found that the co-administration of 
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Table 1. Examples of conditions and drugs susceptible to phenoconversion

Condition
Victim drug 
subjected to  

phenoconversion

Enzyme 
involved

Perpetrator drug  
causing  
phenoconversion

Mechanism Refs

Increased efficacy Mexiletine CYP2D6 Quinidine or other potent 
CYP2D6 inhibitors such 
as paroxetine

Quinidine is a potent CYP2D6 inhibitor leading 
to increased plasma concentrations of mexi-
letine when the two drugs are co-adminis-
tered. Improved efficacy at smaller doses of 
mexiletine and decreased side-effects (gastric 
irritation).

[4-11]

Increased efficacy Propafenone CYP2D6 Quinidine or other potent 
CYP2D6 inhibitors such 
as paroxetine

Quinidine is a potent CYP2D6 inhibitor lead-
ing to increased plasma concentrations of 
propafenone but decreased concentrations of 
its active 5-hydroxymetabolite. Due to differ-
ent electrophysiological effects, this condition 
improves overall propafenone efficacy for the 
maintenance of sinus rhythm in patients with 
atrial fibrillation.

[12-15]

Decreased efficacy Codeine CYP2D6 Quinidine or other potent 
CYP2D6 inhibitors such 
as paroxetine

Codeine is a prodrug that needs to be 
activated into morphine to produce analgesic 
effects. Inhibition of CYP2D6 decreases 
morphine formation and codeine analgesic 
effects. 

[16-22]

Decreased efficacy Clopidogrel CYP2C19 Omeprazole Clopidogrel is a prodrug that needs to be ac-
tivated mostly by CYP2C19 to inhibit platelet 
aggregation. Inhibition of CYP2C19 decreases 
clopidogrel efficacy.

[23-31]

Increased toxicity Warfarin CYP2C9/CYP3As CYP2C9 and/or CYP3A4 
inhibitors such as  
amiodarone, macrolide 
antibiotics, antifungals

Decreases CYP2C9 and/or CYP3A4 activities 
increases plasma levels of S-warfarin and/
or R-warfarin, respectively. These inhibitions 
lead to greater inhibition of the Vitamin K 
epoxide reductase complex and increased 
risk of bleeding.

[38-52]

Decreased toxicity Procainamide NAT2/CYP2D6 Quinidine Inhibition of CYP2D6 by potent inhibitors 
such as quinidine prevents the formation 
of N-oxidized, reactive toxic metabolites of 
procainamide. 

[53-56]

CYP2D6, cytochrome P450 2D6; CYP2C19, cytochrome P450 2C19; CYP2C9, cytochrome P450 2C9; CYP3A, cytochrome P450 3A; NAT2, polymorphic N-acetyltransfer-
ase 2.

these two class I antiarrhythmic agents was 
more effective at suppressing spontaneous 
ventricular tachycardia with fewer side effects 
than high-dose monotherapy [5]. Duff et al. 
also conducted several electrophysiologic stud-
ies suggesting the potentiation of drug effects 
by various parameters, such as the prolonga-
tion of the refractory periods of extra stimuli 
and the prolongation of conduction into the 
dyskinetic zone of the ventricle [6].

In the 1980s, Turgeon and collaborators con-
ducted several studies on the metabolism, dis-
position, and electrophysiologic effects of mex-
iletine [7-10]. Later, in 1991, they reported on 
the involvement of debrisoquine hydroxylase 
(CYP2D6) on the disposition of mexiletine and 
demonstrated different pharmacokinetic pro-
files between poor metabolizers (PMs) and 
extensive (EMs) metabolizers [11]. They also 
used quinidine to inhibit CYP2D6 and convert 

EMs into PMs, demonstrating that inhibition of 
CYP2D6 could be associated with a 4-fold 
increase in mexiletine plasma levels under 
steady state conditions, as this CYP450 iso-
form contributes to 75% of the partial metabol-
ic clearance of the drug. Hence, phenoconver-
sion of EMs into PMs by the co-administration 
of quinidine could explain, at least in part, the 
potentiation of drug effects observed with the 
mexiletine-quinidine combination as reported 
by Duff et al. in the same year [4].

The involvement of debrisoquine 4-hydroxylase 
(CYP2D6) in the metabolism and disposition of 
propafenone was also well characterized in the 
1980s [12]. Funck-Brentano et al. demonstrat-
ed how low-dose quinidine was able to convert 
CYP2D6 EMs into PMs when interacting with 
propafenone [13]. Propafenone is metabolized 
into an active 5-hydroxymetabolite; the electro-
physiologic effects of propafenone include the 
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blocking of sodium, calcium, and potassium 
channels, while the 5-hydroxymetabolite most-
ly exhibits electrophysiological effects throu- 
gh potent inhibition of sodium channels [12, 
14]. Taking advantage of the more comprehen-
sive and favorable electrophysiological effects 
of propafenone over its 5-hydroxymetabolite, 
O’Hara et al. demonstrated the superior effica-
cy of propafenone when combined with quini-
dine in patients with atrial fibrillation (CAQ-PAF 
study) [15]. Recurrence of atrial fibrillation was 
observed in 22 patients (n=23) with low pro- 
pafenone levels (<1,000 ng/mL; mostly due to 
extensive and unblocked CYP2D6 metabolism), 
while 80% of patients with propafenone levels 
>1,500 ng/mL (associated with a genetically-
determined or quinidine-induced PM pheno-
type) were in sinus rhythm at one year. In fact, 
phenoconversion induced by quinidine persist-
ed for the entire study period (one year).

Decreased efficacy

In 1988, Dayer et al. demonstrated that co- 
deine was bioactivated into morphine by the 
debrisoquine 4-hydroxylase (CYP2D6) [16]. In  
a double-blind randomized cross-over study, 
Dayer et al. also demonstrated that virtually no 
morphine was observed in PMs or after admin-
istration of quinidine to EMs [17]. In EMs, 
codeine significantly increased subjective (VAS) 
and objective (R-III reflex) pain thresholds in 
response to selective transcutaneous nerve 
stimulation, whereas no significant analgesia 
was detected after quinidine pretreatment in 
PMs. The Clinical Pharmacogenetics Imple- 
mentation Consortium guidelines for selected 
opioid therapy clearly recommend choosing al- 
ternative treatments to codeine for analgesia in 
patients with a CYP2D6 PM genotype or pheno-
type (due to phenoconversion and inhibition of 
CYP2D6) [18]. We have reviewed and reported 
clinical cases of poor response in phenotypic 
PMs due to phenoconversion while being treat-
ed with codeine [19-21]. Further, in a study  
performed with data from more than 50,000 
adults, we demonstrated the economic burden 
associated with opioid treatment in patients 
with polypharmacy causing inhibition of CYP- 
2D6 [22].

Clopidogrel is another example of decreased 
efficacy due to phenoconversion. Clopidogrel  
is a prodrug that undergoes sequential oxida-

tions - mediated mostly by CYP2C19 and CYP- 
3As - leading to the formation of 2-oxo-clopido-
grel and its active metabolite (5-thiol clopido-
grel) to produce antiplatelet effects [23]. In  
the IGNITE study, carrying a variant allele of 
CYP2C19 was associated with worse clinical 
outcomes in patients [24]. A meta-analysis con-
ducted by Mega et al. demonstrated that the 
concomitant administration of clopidogrel and 
a proton pump inhibitor - especially the 
CYP2C19 mechanism-based inhibitor omepra-
zole - was associated with poor clinical out-
comes [25]. We have shown that a chronic 
inflammatory status associated with type 2 dia-
betes causes a significant (two-fold) decrease 
in CYP2C19 activity, triggering a phenoconver-
sion like phenomenon [3, 26]. Decreased plas-
ma levels of the 5-thiolactive metabolite, as 
well as poor clinical response to clopidogrel, 
has been observed in patients with type 2 dia-
betes. However, these patients appear to 
respond well to other antiplatelet agents, such 
as prasugrel or ticagrelor, that do not require 
bioactivation by CYP2C19 [27-31].

Increased toxicity

Warfarin has a narrow therapeutic index and 
therefore the dose required to achieve thera-
peutic anticoagulation is marginally different to 
the dose that leads to over-anticoagulation. 
Additionally, the maintenance dose varies bet- 
ween different individuals and ranges from 0.5 
mg/day to more than 10 mg/day [32]. War- 
farin is a racemic mixture of two enantiomers: 
S-warfarin and R-warfarin. Most pharmacologi-
cal activity resides at the level of S-warfarin, 
which is two- to five- times more potent than 
the R-isomer [33, 34]. Under steady-state con-
ditions, R-warfarin predominates in the plasma 
of patients at concentrations approximately 
double those of S-warfarin [34, 35]. However, 
the pharmacokinetics and pharmacodynamics 
of warfarin are modulated by numerous fac-
tors, including age, sex, genetic variants, ill-
nesses, and drug interactions [36, 37].

CYP2C9 is principally responsible for the 
metabolism of S-warfarin, while CYP3A4/5, 
CYP1A2, and CYP2C19 are responsible for the 
metabolism of R-warfarin. Two of the variant 
alleles identified for CYP2C9 (*3 and *6) are 
associated with a loss of activity, whereas *2, 
*4, *5, and *11 are associated with weaker 
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enzyme activities [38-42]. Scordo et al. have 
demonstrated that the free clearance of S-war- 
farin showed large variability in subjects with 
CYP2C9*1/*1, *1/*2 or *1/*3 genotypes, 
such that it becomes impossible to predict the 
dose requirement in these subjects [43]. Only 
in a fraction of their subjects (8.6%), i.e. those 
with a *2/*2, *2/*3 or *3/*3, could a precise 
warfarin dose requirement be derived. 

The contribution of other genetic polymorph- 
isms in the Vitamin K epoxide reductase com-
plex (VKORC1) or in CYP4F2 (rs2108622) in- 
volved in the metabolism of Vitamin K1 are 
associated with warfarin maintenance dose 
requirements [44, 45]. However, several extrin-
sic factors including food, such as green vege-
tables with high Vitamin K content, or concomi-
tant administration of drugs metabolized by or 
inhibiting CYP2C9, have been associated with 
phenoconversion and modulation of warfarin 
dose requirements. We conducted a study to 
determine the value of genotype-derived (CYP- 
2C9, VKORC1) or phenotype-derived (using 
losartan as a CYP2C9 probe drug) determina-
tion of warfarin dose requirement in patients 
with polypharmacy (receiving 11±4 drugs daily). 
In multivariate analyses, the dose-adjusted 
international normalized ratio (INR) at day four 
explained 31% of variability observed in war- 
farin doses at day 14, whereas genotypic  
measures (CYP2C9-VKORC1) contributed only 
6.5%. Some, but not all, studies have shown an 
association between bleeding and genetic fac-
tors, such as CYP2C9 polymorphisms. They 
clearly identify the role of extrinsic factors and 
phenoconversion on the risk of warfarin toxicity 
[46-52].

Decreased toxicity

Most pharmacogenomics textbooks have de- 
monstrated the value of pharmacogenomics 
using a positive association with the produc-
tion of antinuclear antibodies as indicators of 
procainamide-induced systemic lupus erythe-
matosus. In a study conducted by Woosley et 
al., it was demonstrated that the rate at which 
procainamide induces antinuclear antibodies - 
and therefore lupus erythematosus - was de- 
pendent on the acetylator (NAT2) genotype; 
slow acetylators required on average 12±5 
months to develop lupus vs. 48±22 months in 
rapid acetylators [53]. Uetrecht et al. demon-

strated that a rapid acetylator phenotype and 
extensive formation of N-acetyl-procainamide 
was associated with a lower incidence of pro-
cainamide-induced lupus while the N-oxidation 
of procainamide lead to the formation of a reac-
tive metabolite, causing revertants in the Ames 
test [54]. However, the N-acetylation status 
was not protective of procainamide-induced 
toxicity, but was predictive of the exposure time 
associated with toxicity. Hence, the real ques-
tion remains unanswered: which enzymatic sys-
tem is responsible for the formation of the toxic 
N-oxidized reactive metabolites and can their 
formation be prevented?

We then undertook drug metabolism studies  
to characterize enzymes involved in the N-oxi- 
dation of procainamide. We demonstrated th- 
at this metabolic pathway was mediated by 
CYP2D6 and conducted pharmacokinetic stud-
ies in subjects receiving procainamide either 
alone or following the concomitant administra-
tion of quinidine [55, 56]. No N-oxidized me- 
tabolites could be measured in the urine of 
CYP2D6 PM subjects; however, they were pres-
ent in the urine of EMs. Coadministration of 
quinidine with procainamide caused a pheno-
conversion of EMs to PMs, modulated procain-
amide pharmacokinetics, and prevented the 
formation of the N-oxidized metabolites. There- 
fore, we postulated that patients who did not 
present with lupus upon exposure to procain-
amide in the studies conducted by Woosley et 
al. were PMs of CYP2D6 - as those were ob- 
served in both rapid and slow acetylator groups 
- and that the concomitant administration of 
low-dose quinidine with procainamide could 
prevent the formation of the toxic metabolite 
due to the phenoconversion of patients into a 
PM phenotype.

Conclusion

Pharmacogenomic testing has evolved signifi-
cantly in the last 20 years, with most laborato-
ries using next-generation sequencing tech-
niques. Pharmacogenomic results are now hi- 
ghly reliable and deemed appropriate to predict 
an expected phenotype. Additionally, testing 
costs have been reduced significantly, making 
pharmacogenomics more affordable and attra- 
ctive for precise pharmacotherapy. In the past 
decade, polypharmacy has reached epidemic 
proportions with >40% of older adults taking 
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five or more prescription drugs a day and nearly 
20% take more than 10 drugs a day [57]. Under 
these conditions, clinicians must have access 
to advanced clinical decision support systems 
that allow consideration of phenoconversion to 
make appropriate medication choices within a 
drug regimen. Recent studies have demonst- 
rated the value of endogenous markers, such 
as 4β-hydroxycholesterol (CYP3As) or meta- 
bolomic products (CYP2D6), to determine a 
patient’s actual phenotype [58, 59]. This strat-
egy may represent a way forward to clinically 
understand patients overall drug metabolism 
capacities, response, and phenoconversion.
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