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Abstract: Background: Hepatocellular carcinoma (HCC) is a type of refractory malignant tumor with high fatality rate. 
Currently, immunotherapy and competitive endogenous RNA (ceRNA) are research hotspots in HCC, but the rela-
tionship between ceRNA and the immune microenvironment in HCC is unclear. Methods: Firstly, a differentially ex-
pressed circRNA-miRNA-mRNA network was constructed from the GEO database, and functional enrichment analy-
sis was performed. Next, combine the TCGA database to construct a ceRNA prognosis-related subnetwork. Establish 
a risk prediction model based on the mRNA in the sub-network, and evaluate the impact of the model on the progno-
sis. Use clinical samples to verify the expression of genes in the model. Finally, we analyzed the distribution of tumor 
infiltrating immune cells (TIC) in HCC, and explored the correlation between mRNAs in the ceRNA sub-network and 
immune infiltration. Results: We used the HCC ceRNA network (including 12 circRNA, 5 miRNA, and 8 mRNA) as a 
starting point for the identification of target genes (PSMD10, ESR1 and PPARGC1A) in the ceRNA prognosis-related 
subnetwork to establish a risk prediction model and elucidated its important role in predicting the poor prognosis 
of HCC. The differences in mRNA expression verified by clinical samples are consistent with the database. In ad-
dition, we found that the mRNAs in the ceRNA prognosis subnetwork are closely related to different types of TICs 
and immune checkpoints. Conclusions: This study is expected to serve as a reference for the study of mechanisms 
underlying liver cancer, the screening of prognostic markers and the evaluation of the immune response.

Keywords: Hepatocellular carcinoma, ceRNA network, prognosis, tumor infiltrating immune cells, immune check-
point

Introduction

According to report fromf the World Health 
Organization in 2020, primary liver cancer is 
the 6th most commonly diagnosed cancer 
worldwide, and it is the 4th leading cause of 
cancer-related death [1]. Hepatocellular carci-
noma (HCC) is the most common pathological 
type of primary liver cancer [2]. Its early diagno-
sis is difficult, its development is rapid, and 
drug efficacy is limited. Therefore, HCC has a 
high mortality rate and a relatively poor progno-

sis [3]. It is therefore, of great significance to 
explore the molecular mechanism underlying 
HCC and the development of its malignant bio-
logical behavior, so as to identify effective tar-
gets for HCC treatment and related molecular 
markers that mediate its poor prognosis.

At present, factors such as immune system dis-
orders and tumor microenvironment (TME) 
have been confirmed to affect tumor occur-
rence, development, invasion and drug resis-
tance [4, 5]. In recent years, immunotherapy 
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has developed rapidly, and the application of 
immune checkpoint inhibitors can indeed result 
in significant survival benefits for HCC patients 
[6]. However, the distribution and mechanism 
of action of the complex TME in HCC have not 
yet been elucidated. Moreover, it is necessary 
to further explore approaches for precisely pre-
dicting HCC immunotherapy efficacy and to 
search for immunotherapy-related markers. 
Circular RNAs (circRNAs) are single-stranded 
covalently closed noncoding RNAs. circRNAs  
do not have a 5’ cap or a 3’ poly(A) tail. This 
covalent ring structure makes circRNAs less 
susceptible to RNase R and exonuclease deg-
radation, which results in higher stability of cir-
cRNAs than linear transcripts [7]. The main 
function of circRNAs is to adsorb miRNAs and 
regulate protein translation, and act as miRNA 
sponges in tumors [8-11]. As circRNAs contain  
a large number of miRNA binding sites, they 
can act as a miRNA molecular sponge and indi-
rectly regulate the expression of downstream 
target genes of miRNA [12]. Hence, circRNAs 
are ceRNAs with important biological signifi-
cance. For instance, studies have shown that 
the key node factors in the ceRNA network can 
affect the proportion of TICs in the TME and  
the efficacy of immunotherapy. Chang et al. 
[13] showed that ceRNAs (FAS and hsa-
miR125b-5p) and TICs (T cell follicular helper 
cells and M0 macrophages) may be related to 
the distant metastasis of colonic glands and 
affect the prognosis of patients. Zhang et al. 
[14] found that the RP11-1094M14.8/miR-
1269a/CXCL9 axis may serve as a potential 
immunotherapy target for gastric cancer 
patients with different levels of immune cell 
infiltration. However, there are few studies on 
the immune infiltration pattern of ceRNA and 
HCC. At present, most of these studies have 
used lncRNAs as the starting point to establish 
ceRNA networks and conduct immune infiltra-
tion analysis. There is still a lack of relevant 
research focusing on circRNAs.

In this study, a circRNA-miRNA-lncRNA-related 
ceRNA network was established based on the 
GEO database. Prognosis-related sub-networks 
and risk prognosis models were constructed 
based on the TCGA database. The impact of a 
risk model composed of key genes in the ceRNA 
network on the survival time of HCC patients 
was analyzed. In addition, correlation analysis 
was carried out according to different propor-
tions of TICs, immunosuppressive factors and 

ceRNA gene types, so as to clarify the new 
mechanism of immune infiltration mode in the 
occurrence of HCC.

Materials and methods

Data and sample acquisition

We obtained circRNA, miRNA and mRNA 
expression profile data from human HCC tis-
sues and matched adjacent tissues from the 
Gene Expression Omnibus (GEO, https://www.
ncbi.nlm.nih.gov/geo/) database. circRNA ex- 
pression data were obtained from GSE97332 
(7 pairs of HCC tissues and adjacent tissues), 
miRNA expression data were obtained from 
GSE108724 (7 pairs of HCC tissues and adja-
cent tissues), and mRNA expression data  
were obtained from GSE76427 (115 pairs of 
HCC tissues and 52 adjacent tissues). 
Subsequently, for prognostic analysis, we 
downloaded the transcriptome gene expres-
sion data of 424 samples from The Cancer 
Genome Atlas (TCGA, https://portal.gdc.can-
cer.gov/) database (including 374 liver cancer 
tissues and 50 cancer tissues). Additionally, 
the corresponding clinical information, includ-
ing age, sex, grade, stage, overall survival time 
and survival status, was obtained.

This study uses 15 clinical samples for each 
molecule for verification. All clinical patient tis-
sues used are from Shanghai Oriental 
Hepatobiliary Surgery Hospital, and the inclu-
sion criteria were: according to the WHO stan-
dard pathology confirmed HCC.

Ethical Statement: All procedures performed  
in this study involving human participants  
were in accordance with the Declaration of 
Helsinki (as revised in 2013). All clinical studies 
were approved by the ethics committee (No. 
EHBHKY2020-K-040). All patients enrolled in 
this study gave written informed consent.

Differentially expressed gene screening

To identify genes with differential expression, 
we used the Bioconductor Limma package to 
analyze the circRNAs, miRNAs, and mRNAs in 
the HCC tissues and adjacent tissues in the 
GEO chip data.

① For the circRNA expression data download-
ed from the GEO database, a gene was consid-
ered to be a differentially expressed gene if it 
satisfied |log2FC| >2 and FDR<0.05. ② eFor 
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the miRNA and mRNA expression data down-
loaded in the GEO database, a molecule was 
considered differentially expressed if it satis-
fied |log2FC| >1 and FDR<0.05.

ceRNA network construction and functional 
enrichment analysis

According to the results of differential expres-
sion analysis, we use the circBase database 
(http://www.circbase.org/) to obtain the differ-
ential circRNA information obtained in the pre-
vious period. Then, the cancer-specific Circ- 
RNA database (CSCD, http://gb.whu.edu.cn/
CSCD/) was used to analyze the structure of 
the differential circRNA, and at the same time, 
the target miRNA was obtained. Next, the tar-
get miRNAs and the differential miRNAs identi-
fied in the aforementioned GEO database  
were crossed. Finally, target miRNAs with dif-
ferential expression in HCC were obtained,  
and a circRNA-miRNA regulatory network was 
constructed. In addition, we also used the  
two databases miRTarBase (http://mirtarba- 
se.mbc.nctu.edu.tw/index.html) and miRDB 
(http://mirdb.org/) to predict the target mRNA 
of the above-mentioned differentially express- 
ed miRNA. Target mRNAs that were confirmed 
in both databases were selected, and the pre-
diction results were intersected with the differ-
entially expressed mRNAs identified in the 
aforementioned GEO database to finally obtain 
differentially expressed target genes, and fur-
ther construct a miRNA-mRNA network. Ac- 
cording to the ceRNA theory, circRNAs regulate 
mRNA expression by acting as miRNA molecu-
lar sponges. That is, the expression of circRNAs 
and their target miRNAs are negatively corre-
lated, and the expression of miRNAs and their 
target mRNAs are also negatively correlated. 
Based on this principle, we used the circRNAs, 
miRNAs, and mRNAs identified above to con-
struct a ceRNA regulatory network. Finally, 
Cytoscape 3.8.2 software was used to visual-
ize the ceRNA network. To elucidate the poten-
tial functions of all mRNAs in the ceRNA net-
work, we used the org.Hs.eg.db, ggplot2, clus-
terProfiler and enrichplot software packages in 
R software to perform Gene Ontology (GO) and 
Kyoto Encyclopedia of Genes and Genomes 
(KEGG) pathway analysis. GO or KEGG path-
ways with P<0.05 were considered statistically 
significant.

Survival analysis and construction of progno-
sis-related subnetwork

To elucidate the relationship between mRNAs 
and the survival of HCC patients, we used the 
gene expression data and clinical data of HCC 
samples downloaded from the TCGA database 
to first verify the differences in the expression 
of mRNAs in the cancer and adjacent tissues  
in the network. Next, all the mRNAs in the 
ceRNA network were analyzed with respect to 
survival. HCC patients were divided into two 
groups with high expression and low expres-
sion according to the median of mRNA expres-
sion, and the survival curve was further drawn. 
A gene with P<0.05 was considered a progno-
sis-related gene. Finally, the target genes relat-
ed to prognosis were identified to construct the 
ceRNA prognostic subnetwork, and the subnet-
work was visualized using Cytoscape 3.8.2 
software.

Construction and evaluation of the mRNA risk 
prediction model in the ceRNA network

To prove the prognostic value of genes in the 
ceRNA network in HCC, we used univariate Cox 
regression analysis (P<0.05) to screen genes 
related to overall survival time, and then estab-
lished a prognostic risk model based on LASSO 
Cox regression. The risk value was calculated 
using the following formula: Risk score = 

Coef * xi 1
n

i iR = . Coefi is the risk factor, and xi is 
the expression level of each gene. HCC patients 
were divided into high-risk or low-risk groups 
according to the median risk value, the relation-
ship between patients in different risk groups 
and overall survival was analyzed, survival 
curves were drawn, and receiver operating 
characteristic (ROC) curves were constructed 
to evaluate prediction efficiency. To explore the 
clinical value of risk value as a prognostic fac-
tor for HCC patients, we integrated all clinical 
indicators and performed univariate and multi-
variate Cox regression analysis. Moreover, a 
gene nomogram and calibration curve was con-
structed to visualize the effects of genes in the 
prognostic model on the survival time of HCC 
patients.

Clinical samples verify the expression of mRNA 
in the ceRNA prognosis-related subnetwork

ABI Prism 7500 sequence detector (Applied 
Biosystems, Foster City, CA, USA) was used to 
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perform real-time fluorescent quantitative PCR 
reaction and detect the expression level of 
each mRNA in the ceRNA prognosis-related 
subnetwork.

The sequence of each primer is shown in Table 
3.

Comprehensive analysis of tumor immunity

To explore the proportion of TICs in HCC tissu- 
es and adjacent tissues, we used the CIB- 
ERSORT algorithm to calculate the scores of 22 
types of TICs in each HCC sample based on 
TCGA RNA-seq data. The correlation of 22 TICs 
and their different proportions in in tissues 
were evaluated. To further analyze the influ-
ence of target genes in the HCC ceRNA prog-
nostic subnetwork on the distribution of TICs 
and response to immunotherapy, we evaluated 
the correlation between the number of TICs 
and the expression of PSMD10, ESR1 and 
PPARGC1A through correlation analysis. We 
used scatter plots to visualize the results. 
Finally, seven common immune checkpoints 
that exert immunosuppressive effects (IL10- 
RB, PD-L1, CTLA4, PD-1, TGFBR1, ADORA2A, 
and LGALS9) were retrieved. A box plot was 
drawn to elucidate the correlation between the 
target genes in the subnetwork and the expres-
sion of immunosuppressive factors.

was used to test the accuracy of the prediction 
model. The chi-square test was used to com-
pare the differences in clinicopathological  
characteristics and risk gene expression of dif-
ferent risk groups. Univariate and multivariate 
Univariate and multivariate Cox risk models 
were used to evaluate the prognostic value of 
risk value as an independent prognostic factor 
for HCC patients. The Wilcoxon rank sum test 
was used to analyze the differences between 
the two groups of immune checkpoints in the 
expression of different genes in the ceRNA net-
work. All the above statistical analyses were 
performed in R (version 4.0.4). The comparison 
of clinical samples of HCC and adjacent tissues 
was performed by a paired sample t test, and 
the GraphPad Prism 9.0.0 software was used 
for statistical analysis. P<0.05 was considered 
significantly different.

Results

Identification of differentially expressed cir-
cRNAs, miRNAs, and mRNAs

Based on the GSE97332, GSE108724 and 
GSE76427 chip data in the GEO database, we 
identified 149 differential circRNAs (91 upregu-
lated and 58 downregulated) (Figure 1A), 26 
differential miRNAs (17 upregulated and 9 
downregulated) (Figure 1B), and 436 differen-
tial mRNAs (69 upregulated and 367 downregu-
lated) (Figure 1C). These differential genes will 
be further used in the construction of ceRNA 
networks.

Construction of a ceRNA network

After obtaining the location and transcript infor-
mation of 149 different circRNAs through the 
circBase database, we used the CSCD data-
base to find 2196 target miRNAs correspond-

Table 1. Single factor COX analysis of CeRNA network
Gene HR HR.95L HR.95H P value
ESR1 0.740083 0.559013 0.979805 0.035512
PSMD10 1.038975 1.013881 1.064690 0.002176
PPARGC1A 0.947053 0.911749 0.983724 0.005007

Table 2. Multifactor COX analysis of CeRNA network
Gene coef HR HR.95L HR.95H P value
ESR1 -0.223552 0.799674 0.612873 1.043411 0.099578
PSMD10 0.034546 1.035150 1.009892 1.061039 0.006125
PPARGC1A -0.050602 0.950657 0.916154 0.986458 0.007300

Table 3. Primer sequence
Primer Sequence (5’ to 3’)
PSMD10 forward primer AGCAGCCAAGGGTAACTTGA
PSMD10 reverse primer ACACTGGGGACAACAACACA
ESR1 forward primer ACTCTACTGAACCCTGGTGC
ESR1 reverse primer CCCCACTCTGAGGCAAGTTA
PPARGC1A forward primer GGTCTCCAGGCAGTAGATCC
PPARGC1A reverse primer ACATAAATCACACGGCGCTC

Statistical analysis

The expression difference be- 
tween tumor tissue and normal 
tissue of HCC patients was ana-
lyzed by Wilcoxon rank sum test. 
The LASSO Cox regression algo-
rithm was used to establish  
a prognostic risk model, the 
Kaplan-Meier survival curve was 
used to analyze the overall sur-
vival rate between the high and 
low gene expression groups and 
the high- and low-risk groups of 
the model, and the ROC curve 
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Figure 1. Differences in RNA expression based on the GEO database. 
Differential expression heat map of circRNA (A), miRNAs (B) and 
mRNAs (C) between HCC samples and adjacent samples. C, adjacent 
non-tumor tissues; T, tumor tissues.
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ing to the circRNAs. We matched the 26 differ-
ential miRNAs identified by the GEO database 
and finally obtained 17 intersecting miRNAs 
(Figure 2A). Next, we used two databases, 
miRDB and miRTarBase, to predict the target 
genes of the 17 intersecting miRNAs and  
simultaneously obtained 1241 target genes 
supported by the two software programs. 
Matching the 436 differential mRNAs identified 
in the GEO database yielded 16 overlapping 

mRNAs (Figure 2B). According to the ceRNA 
theory, we finally identified 12 circRNAs (5 
upregulated and 7 downregulated), 5 overlap-
ping miRNAs (4 upregulated and 1 downregu-
lated), and 8 overlapping mRNAs (1 upregulat-
ed and 7 downregulated) to construct a ceRNA 
network (Figure 2C). The network contains a 
total of 25 nodes and 23 links. In addition, we 
conducted a difference analysis of the nodes in 
the network and drew a heat map based on the 

Figure 2. ceRNA network construction and node differential expression. A. The Venn diagram of the overlap of the 
target miRNAs predicted by the differential circRNA and the differential miRNA in the GEO database; B. The Venn 
diagram of the overlap of the target gene predicted by the intersection miRNA and the differential mRNA in the GEO 
database; C. ceRNA network, Dark red represents the highly expressed of circRNAs, light red represents the low 
expression of circRNAs, dark green represents the highly expressed of miRNAs, light green represents the low ex-
pression of miRNAs, dark blue represents the highly expressed of mRNAs, light blue represents the low expression 
of mRNAs, and the line represents a regulatory relationship between the two genes; D-F. The differential expression 
of mRNAs, miRNAs and circRNAs in the ceRNA network in liver cancer tissues and adjacent tissues in the GEO da-
tabase. C, adjacent non-tumor tissues; T, tumor tissues.
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expression data of the above three chips in the 
GEO database. The results show that there are 
significant differences between each node mol-
ecule in HCC cancer tissue and adjacent tis-
sues. The up-regulation and down-regulation of 
circRNA, miRNA and mRNA in the ceRNA net-
work are confirmed here (Figure 2D-F).

GO and KEGG function enrichment analysis

We performed GO and KEGG functional enrich-
ment analysis on 8 mRNAs in the ceRNA net-
work. We found that these mRNAs participate 
in 471 biological processes (BPs) in the human 
body, constitute 13 cell components (CCs), per-
form 35 molecular functions (MFs), and partici-
pate in the regulation of 21 signaling pathways. 
We arranged the above functions in order of P 
value from small to large and took the top 30 
functions and pathways with the smallest P 
value to draw the bubble chart (Figure 3A-D). 
The GO enrichment analysis revealed that most 
molecules play a role by regulating the activity 
of DNA-binding transcription factors. The KEGG 
signaling pathway mainly involved the following: 
a. endocrine regulation; b. signal transduction 
and collaterals of Th1 and Th2 cell differentia-
tion, PD-L1 and PD-1 checkpoints in tumors, B 
cell receptor signaling pathways and other 
immune-related pathways; c. choline metabo-
lism in cancer.

Survival analysis and construction of the prog-
nostic subnetwork

First, we use the TCGA database to verify the 
consistency of the expression of the above 8 
mRNAs with the GEO database. The scatter  
plot and paired analysis revealed that PSMD10 
expression was upregulated in HCC tissues, 
RND3, ESR1, and ESR1. CXCL12, WDR72, 
PPARGC1A, FAM46C and FOS expression was 
downregulated in HCC tissues (Figure 4A-P), 
and the results were consistent with the data in 
the GEO database. Then, the patients were 
divided into two groups with high expression 
and low expression, with the median of target 
gene expression in the TCGA database as the 
cut-off value, and survival curves were drawn 
according to survival time and survival status. 
The expression of PSMD10, ESR1 and PPA- 
RGC1A was significantly correlated with the 
overall survival time of HCC patients (P<0.05) 
(Figure 4Q-S). Based on the above three prog-
nosis-related genes, a ceRNA prognostic sub-

network with 16 nodes and 14 links was drawn 
(Figure 4T). Therefore, we speculate that hsa_
circ_0000357, hsa_circ_0003763, hsa_circ_ 
0004315, hsa_circ_0001955 and hsa_circ_ 
0008301 may act as a molecular sponge of 
hsa-miR-214-3p to regulate the expression of 
PSMD10. Hsa_circ_0008801, hsa_circ_00- 
09594 and hsa_circ_0030130 may act as a 
molecular sponge of hsa-miR-362-3p to regu-
late the expression of PPARGC1A. Hsa_
circ_0006168 may act as a molecular sponge 
of hsa-miR-221-3p and hsa-miR-222-3p to reg-
ulate the expression of ESR1. Finally, we visual-
ized the structure of 9 circRNAs in the ceRNA 
prognostic subnet according to the CSCD data-
base, and the results showed that all 9 cir-
cRNAs had miRNA response elements (MREs) 
(Figure 5A-I). Therefore, we believe that the 16 
node molecules in the ceRNA prognostic sub-
network may mediate the occurrence of HCC 
and the poor prognosis of patients.

Construction and evaluation of mRNA-related 
risk prediction models

We confirmed by univariate Cox regression  
that PSMD10, ESR1, and PPARGC1A all signifi-
cantly affected the overall survival rate of 
patients (P<0.05), indicating that the mRNA in 
the prognostic subnet of ceRNA may affect the 
survival and prognosis of HCC patients. The 
hazard ratio of the PSMD10 factor was >1,  
indicating that is a gene associated with high 
risk, while the hazard ratio of ESR1 and 
PPARGC1A was <1, indicating that these gen- 
es are associated with low risk (Table 1). Next, 
the LASSO Cox regression analyses were used 
to construct a risk model for the above three 
genes. The LASSO regression analysis results 
retained the above three genes (Figure 6A,  
6B), and then established a multi-factor Cox 
proportional hazard model, to draw a forest 
map (Figure 6C). In addition, the weight coeffi-
cient of each hub gene in the ceRNA network 
was determined (Table 2), and the risk value 
was calculated according to the following  
method: risk value = 0.034546 was calculated 
according 050602 × PPARGC1A. We divide 
HCC patients into high-risk groups and low-risk 
groups based on the median risk value. 
Compared with the low-risk group, the five-year 
survival rate of patients in the high-risk group 
was significantly lower (P<0.05) (Figure 6D). 
ROC curve analysis showed that the AUC valu- 
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Figure 3. Enrichment analysis of function. Bubble plot of target gene GO enrichment analysis: BP (A), CC (B) and MF (C) in the ceRNA network; (D) the bubble chart 
of the signal pathway focused by the KEGG enrichment analysis of genes in the ceRNA network.
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Figure 4. Construction of prognosis-related subnetwork. Based on TCGA data PSMD10 (A, B), RND3 (C, D), ESR1 (E, F), CXCL12 (G, H), WDR72 (I, J), PPARGC1A (K, 
L), FAM46C (M, N), FOS (O, P) in HCC tumor samples and normal samples Differences in expression; (Q-S) the relationship between PSMD10, ESR1, PPARGC1A and 
the overall survival of HCC patients; (T) ceRNA subnetwork drawn based on the three prognostic-related genes.
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es predicted by the model for the 1, 3, and 
5-year overall survival of HCC patients were 
0.676, 0.679, and 0.633, respectively (Figure 
6E). Next, a Nomogram nomogram was con-
structed to quantitatively predict the OS rate of 

HCC patients at 1, 3, and 5 years., and the cali-
bration curve confirms that the risk model has 
a good predictive effect for the 3-year survival 
rate (Figure 6F, 6G). Therefore, the mRNAs 
involved in the construction of the ceRNA net-

Figure 5. Structural diagrams of nine circRNAs obtained from the CSCD database. A. The structure model diagram 
of hsa_circ_0001955; B. The structure model diagram of hsa_circ_0008301; C. The structure model diagram 
of hsa_circ_0000357; D. The structure model diagram of hsa_circ_0003763; E. The structure model diagram 
of hsa_circ_0004315; F. The structure model diagram of hsa_circ_0008801; G. The structure model diagram of 
hsa_circ_0009594; H. The structure model diagram of hsa_circ_0030130; I. The structure model diagram of hsa_
circ_0006168.
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Figure 6. Construction of mRNA risk prediction 
model in ceRNA network. A, B. Three prognos-
tic genes were identified by LASSO Cox regres-
sion analysis, and prognostic models were es-
tablished; C. Forest plot shows that 3 mRNAs 
are included in a multivariate Cox proportional 
hazard model to predict the prognosis of HCC 
patients; D. Overall survival rate of HCC pa-
tients in the high and low risk groups; E. The 
ROC curve of the ceRNA model shows that 
the AUCs of 1-year, 3-year, and 5-year OS are 
0.676, 0.679, 0.633, respectively; F, G. Nomo-
grams and calibration curves are established 
based on these 3 mRNAs.
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work can be used as potential therapeutic tar-
gets and prognostic biomarkers for HCC.

Clinical and prognostic analysis of risk value

To elucidate the differences between different 
risk groups and clinicopathological characteris-
tics, we removed incomplete clinical data from 
the TCGA database. The results showed that 
the expression of PSMD10 was positively cor-
related with the risk score, and the expression 
of ESR1 and PPARGC1A was negatively corre-
lated with the risk score. Additionally, there 
were significant differences in grading between 
the different risk groups (P<0.05) (Figure 7A). 
Univariate Cox regression analysis showed that 

age, gender, grade and N staging were not 
related to the overall survival rate (P>0.05), but 
stage, T staging, TNM staging and riskscore 
were all related to the overall survival rate 
(P<0.05) (Figure 7B). Incorporating all the 
above single factors into the multivariate Cox 
regression analysis showed that only the risks-
core can be used as an independent prognostic 
factor for the overall survival rate in HCC 
patients (P<0.05) (Figure 7C).

Clinical sample verification of genes in the 
ceRNA prognostic subnetwork

Using 15 cases each of clinical HCC and adja-
cent samples, the 3 mRNAs in the above-men-

Figure 7. Analysis of the different risk values and different clinicopathological characteristics in TCGA database and 
the single-factor and multifactor Cox regression analysis. A. Clinical correlation analysis of different risk groups; B. 
Univariate Cox regression analysis was performed for different clinicopathological features and risk values; C. Mul-
tivariate Cox regression analysis was performed for different clinicopathological features and risk values (*P<0.05).
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tioned ceRNA prognostic subnetwork were veri-
fied by Realtime-PCR. See Table 3 for primer 
sequences. We found that relative to the adja-
cent tissues, the expression of PSMD10 in HCC 
tissue was significantly increased, while the 
expression of ESR1 and PPARGC1A in HCC tis-
sue was significantly decreased (Figure 8A-C). 
This result suggests that the differences in the 
expression of the molecules PSMD10, ESR1 
and PPARGC1A that we screened in the previ-
ous phase have been confirmed in clinical sam-
ples. Therefore, we believe that the genes in 
the ceRNA sub-network of this study may be 
involved in the occurrence of HCC, and this risk 
model is expected to lay a theoretical founda-
tion for the screening of HCC prognostic and 
early warning markers.

Distribution and correlation of TICs in HCC

Based on KEGG enrichment analysis, it was 
found that genes in the ceRNA network played 
a regulatory role in multiple immune-related 
pathways such as PD-L1, PD-1 immune-related 

gene expression, and B cell receptor signal 
transduction. Therefore, we focused on im- 
mune cell infiltration and analyzed the influ-
ence of mRNA in the prognostic subnet of 
ceRNA on the immune microenvironment.  
First, we used the CIBERSORT deconvolution 
algorithm to evaluate TICs, constructed a pro-
file of 22 immune cells in HCC, and analyzed 
the proportion of TICs in each sample (Figure 
9A). Further analysis of the infiltration of TICs 
with a heat map shows showed the proportion 
of 22 TICs in the HCC sample and the normal 
sample (Figure 9B), and the violin chart show- 
ed that there were 8 kinds of TICs that were 
present in significantly different numbers in 
these tissues (P<0.05) (Figure 9C). In addition, 
a significant negative correlation was found 
between M0 macrophages and CD8 T cells (r = 
-0.57), while a significant positive correlation 
was found between CD8 T cells and activated 
memory CD4 T cells (r = 0.59) by analyzing the 
correlation between immune cells in all sam-
ples (Figure 9D).

Figure 8. Clinical sample verification of mRNA 
expression in the ceRNA prognosis-related 
subnetwork. Differences in the expression of 
PSMD10 (A), ESR1 (B) and PPARGC1A (C) be-
tween HCC tissue and corresponding adjacent 
tissues (*P<0.05).
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Correlation analysis of mRNAs in the ceRNA 
subnet with TICs and immune checkpoints

The CIBERSORT database analysis proved that 
the expression of mRNAs in the ceRNA subnet-
work was correlated with the proportion of 22 
different types of TICs. PSMD10 is correlated 
with 4 types of TICs. The infiltration degree of 
resting dendritic cells and neutrophils increas-
es with the increase of PSMD10 expression, 
and the infiltration degree of CD8+ T cells and 
monocytes decreases with the increase of 
PSMD10 expression (Figure 10A). ESR1 is cor-
related with 10 types of TICs. The infiltration 
degree of M1 macrophages, M2 macrophages, 
activated mast cells, monocytes and resting 
NK cells with the increase of ESR1 expression, 
and the infiltration degree of B cell plasma, M0 
macrophages, resting dendritic cells, follicular 
helper T cells and Tregs decreases with the 
increase of ESR1 expression (Figure 10B). 
PPARGC1A is correlated with 11 types of TICs. 
The infiltration degree of M2 macrophages, 
activated mast cells, monocytes, activated 
dendritic cells, neutrophils, resting NK cells 
and resting CD4+ memory T cells, and the infil-
tration degree of M0 macrophages, CD8+ T 
cells, follicular helper T cells and Tregs decreas-
es with the increase of PPARGC1A expression 
(Figure 10C). The above results further con-
firmed that the expression of the abovemen-
tioned mRNAs significantly affects the propor-
tions of immune cells in the immune microenvi-
ronment of HCC. Finally, to evaluate the feasi-

bility of predicting the response to immunother-
apy through the expression of target genes in 
the ceRNA subnetwork, we conducted a corre-
lation study between the PSMD10, ESR1 and 
PPARGC1A levels and those of 7 inhibitory 
immune checkpoints. We found that the ex- 
pression of most immunosuppressive factors 
increased in samples with high expression of 
PSMD10, and decreased in samples with high 
expression of ESR1 and PPARGC1A (Figure 
11A-C). In summary, we believe that the high 
expression of PSMD10 and the low expression 
of ESR1 and PPARGC1A indicate a better im- 
munotherapy response, and HCC patients with 
such molecular expression characteristics are 
more likely to benefit from immune checkpoint 
inhibitors. Therefore, the key genes in the 
ceRNA prognostic subnetwork are likely to 
affect the efficacy of immunotherapy by regu-
lating the types of TICs and the expression of 
immune checkpoints in the tumor microen- 
vironment.

Discussion

HCC is one of the malignant tumors with poor 
prognosis, and its morbidity and mortality rate 
are high among all tumors [15]. Because of its 
asymptomatic onset and high degree of malig-
nancy, approximately 60% of HCC patients 
have missed their opportunity for surgery at the 
time of diagnosis, and there is still a lack of 
effective prognostic molecular markers [16]. 
Therefore, improving the clinical efficacy of 
unresectable patients who are in the middle 

Figure 9. Immune cell infiltra-
tion in HCC and its correlation 
analysis. A. Histogram of the 
proportions of 22 TICs in HCC 
samples and normal samples; 
B. Heat map of TIC content 
distribution in HCC samples 
and normal samples; C. Violin 
chart of the analysis of differ-
ent TIC proportions; D. For the 
correlation between TICs, red is 
positive correlation, and blue is 
negative correlation.
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Figure 10. Correlation analysis between target genes in the ceRNA prognostic subnet and TIC levels. A. Scatter plot of PSMD10 correlation with 4 TICs (P<0.05); B. 
Scatter plot of ESR1 correlation with 10 TICs (P<0.05); C. Scatter plot of PPARGC1A correlation with 11 TICs (P<0.05); the blue line in each figure is the fitted line 
that simulates the proportional relationship between the level of gene expression and immune cells.
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and late stages of disease and identification of 
additional molecular markers for improving 
prognosis have become key to the treatment of 
HCC. Immune checkpoint inhibitors that target 
the programmed death-1 (PD-1) axis have 
shown good prospects in the treatment of 
advanced tumors, but there are still many HCC 
patients who still cannot benefit from this  
treatment. Because the liver itself is an impor-
tant immune organ of the human body [17], the 
occurrence of HCC is closely related to chronic 
liver inflammation caused by viral and nonviral 
injuries, and this process can lead to effector T 
cell failure [18]. Liver fibrosis and hypoxia fur-
ther strengthen the inhibitory effect on the liver 
cancer immune response [19, 20]. In addition, 
immune cells in the normal liver tend to have 
stronger immune tolerance, and the interaction 

between complex genetics, the microenviron-
ment and various factors of the body deter-
mines the response of immunotherapy to HCC 
treatment [21]. At present, a large number of 
studies indicate that the ceRNA network is of 
great significance in the development and  
progression of tumors [22]. Importantly, the 
mRNA, miRNA and circRNA in the ceRNA net-
work can be used as potential targets for HCC 
treatment and molecular targets for evaluating 
prognosis. However, the joint analysis of the 
circRNA-based ceRNA network and immune 
microenvironment is less well understood in 
the HCC field. Therefore, we specifically con-
structed a circRNA-miRNA-mRNA network and 
analyzed the target genes and prognosis, TICs 
and immune checkpoints to identify new molec-
ular mechanisms underlying the occurrence of 

Figure 11. Correlation between target genes 
in the ceRNA prognostic subnet and immuno-
suppressive factors. The relationship between 
PSMD10 (A), ESR1 (B), and PPARGC1A (C) 
and PD-L1, PD-1, CTLA4 and other immuno-
suppressive checkpoints (*P<0.05, **P<0.01, 
***P<0.001).
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HCC and prognostic molecular markers. We 
also aim to explore new targets that can medi-
ate precise tumor immunotherapy.

In this study, we found significant differences in 
the RNA expression and TIC distribution in HCC 
and adjacent tissues. A ceRNA network com-
posed of 12 circRNAs, 5 miRNAs and 8 mRNAs 
was constructed. Enrichment analysis found 
that multiple signaling pathways such as tu- 
mor immune regulation and endocrine regula-
tion were clustered on mRNAs in the ceRNA 
network. To verify the relationship between  
the ceRNA network and clinical results, we 
obtained 3 survival-related genes through the 
K-M survival curve, including PSMD10, ESR1 
and PPARGC1. A prognosis-related ceRNA sub-
network composed of 9 circRNAs (hsa_circ_ 
0001955, hsa_circ_0008301, hsa_circ_00- 
00357, hsa_circ_0003763, hsa_circ_0004- 
315, hsa_circ_0008801, hsa_circ_0009594, 
hsa_circ_0030130, hsa_circ_0006168), 4 
miRNAs (hsa-miR-214-3p, hsa-miR-362-3p, 
hsa-miR-221-3p, and hsa-miR-222-3p) and 3 
mRNAs (PSMD10, ESR1, and PPARGC1) was 
further constructed. Using LASSO Cox regres-
sion analysis, the three target genes in the 
ceRNA subnetwork were used to build a risk 
prediction model. In addition, a nomogram and 
calibration curve was drawn. The AUC value 
suggested that this model may be helpful for 
the prognostic evaluation of clinical HCC 
patients. The riskscore is an independent prog-
nostic factor of HCC is determined by univa- 
riate and multivariate Cox regression analysis. 
Realtime-PCR was used to confirm the differ-
ences in expression of PSMD10, ESR1 and 
PPARGC1 in clinical samples. Using CIBER- 
SORT software to evaluate 22 kinds of TICs in 
HCC, it was found that the key target genes 
PSMD10, ESR1, and PPARGC1 in the ceRNA 
prognostic subnetwork were related to the  
distribution of TICs to varying degrees. These 
genes were also related to the expression of 
multiple inhibitory immune checkpoint mole-
cules, including PD-1 and CTLA4. Based on  
the above analysis, we believe that PSMD10, 
ESR1, and PPARGC1 in the ceRNA network may 
mediate the survival and prognosis of HCC 
patients. Moreover, these mRNAs may affect 
the infiltration pattern of immune cells in the 
complex tumor microenvironment of HCC and 
patients’ responsiveness to various immuno-
therapy drugs. In addition, other circRNAs and 

miRNAs in the ceRNA network are likely to play 
an important role in the occurrence and devel-
opment of HCC, clinical prognosis, and remod-
eling of the tumor microenvironment through 
the regulation of the above three target genes. 
These factors were worthy of our in-depth 
study.

PSMD10, also known as gankyrin, is an impor-
tant oncoprotein whose expression is upregu-
lated in a variety of tumors [23, 24]. Our analy-
sis indicated that PSMD10 and hsa-miR-214-
3p may have a regulatory relationship in the 
occurrence of HCC. In fact, the miR-214 and 
PSMD10 axis have been studied in multiple 
tumor types, and it has been reported that this 
pathway is involved in the malignant regulation 
of tumors. In papillary thyroid carcinoma, miR-
214 can directly target the 3’ noncoding re- 
gion of PSMD10 and negatively regulate the 
expression of PSMD10. Downregulation of 
PSMD10 expression reduces the proliferation, 
metastasis and invasion of papillary thyroid 
cancer cells [25-27]. However, the mechanism 
by which miR-214 regulates PSMD10 as a tar-
get has not been reported in HCC. The ESR1 
gene located on the long arm of chromosome 6 
(6q25.1) is an important part of the estrogen 
receptor. The estrogen receptor can act as a 
ligand to activate transcription factors to regu-
late the expression of a variety of genes [28, 
29]. In ER(+) breast cancer, miR-142-3p acts  
as a tumor suppressor by targeting ESR1 
encoded by the estrogen receptor [30]. In blad-
der cancer cells, ESR1 increases the expres-
sion of miR-4324 by combining with its pro- 
moter, thereby reducing the expression of 
RACGAP1, and significantly inhibiting cell prolif-
eration and metastasis [31]. However, our 
results for the first time clarify that the miR-
221/miR-222/ESR1 axis has an important 
impact on the survival and prognosis of HCC 
patients. PPARGC1, also known as PGC-1ults 
clanuclear transcription factor that mainly  
regulates the transcription of a variety of gen- 
es and posttranscriptional splicing modifica-
tions by interacting with a variety of transcrip-
tion factors [32, 34]. At present, many studies 
have confirmed that PPARGC1 plays an impor-
tant regulatory role in tumorigenesis [35-38]. 
Therefore, based on the current bioinformatics 
analysis results, we speculate that PPARGC1 
may interact with miR-362-3p to regulate the 
malignant biological behavior of HCC, but the 
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specific molecular mechanism still needs fur-
ther experimental verification.

As a key mediator of tumor progression and 
treatment results, the tumor microenvironment 
is closely related to tumor occurrence, growth 
and metastasis [39]. Normally, in addition to 
cancer cells, stromal cells, such as interstitial 
cells, endothelial cells and infiltrating immune 
cells, are also important components of the 
TME. Among these cells, infiltrating immune 
cells are considered to be effective in predict-
ing the prognosis of patients and may become 
effective targets of drugs [40, 41]. This study 
found that the target genes in the HCC ceRNA 
prognostic subnetwork are related to the distri-
bution of different TICs. This indicates that the 
genes from the ceRNA subnetwork may affect 
the composition of the HCC immune microenvi-
ronment and regulate the immune status of 
HCC. The tumor microenvironment contains 
innate and adaptive immune cells, which per-
form pro- or antitumor functions [42]. Existing 
studies have shown that effector T cells (CD8+ 
T cells and CD4+ T cells), NK cells, dendritic 
cells, M1 polarized macrophages and N1 polar-
ized neutrophils are involved in the antitumor 
immune response. In addition to antitumor 
immune cells, there are also a large number of 
tumor-promoting immune cells, including Tregs 
and myeloid-derived suppressor cells [43]. At 
present, research on tumor immunotherapy is 
mainly focused on T cells. In the past, CD8+ 
cytotoxic T cells were considered to be the main 
lymphocyte subset that killed cancer cells with 
major histocompatibility class I molecules [44]. 
However, in addition to stimulating signals 
derived from dendritic cells, CD4+ helper T cell 
signals have also been found to be necessary 
for the activation of cytotoxic T lymphocytes 
[45]. Studies have shown that cancer cells in 
some tumors inhibit the activation of cytotoxic 
lymphocytes by producing ligands that bind to 
inhibitory checkpoints (such as PD 1), which is 
an important mechanism for cancer cell 
immune escape [46]. Based on this principle, a 
variety of immunotherapy drugs widely used in 
clinical applications has been introduced. As a 
member of the T cell family, the main function 
of Tregs is to maintain peripheral immune toler-
ance and immune homeostasis. Based on the 
inhibitory effect in the tumor microenviron-
ment, Tregs can prevent the effective response 
of cytotoxic lymphocytes to cancer cells [47, 
48]. NK cells are tumor antagonistic immune 

cells that act as mediators to induce tumor 
immune supervision. Their mechanism of 
action is to release perforin and granzyme 
secretion to cause the apoptosis of target cells 
through which they exert a tumor-killing effect, 
but the role of tumor-infiltrating NK cells is 
always limited [49]. It has been shown that the 
CD11b-CD27 liver infiltrating NK cell subset is 
significantly related to the progression of hepa-
tocellular carcinoma [50]. As currently recog-
nized as the most effective antigen presenting 
cell, Dendritic cells plays a key role in mediating 
innate immune response and inducing adap-
tive immune response. However, factors in the 
tumor microenvironment can weaken the anti-
gen-presenting function of dendritic cells, 
thereby limiting T cell viability and promoting 
tumor growth [51]. Macrophages are the main 
participants in tumor immunity, and M0 ma- 
crophages can differentiate into M1 and M2 
macrophages [52]. Generally, M1 macrophages 
are potent antitumor cells, while M2 macro-
phages show tumor-promoting functions [53]. 
Neutrophils are another type of immune cells 
and have also been found to infiltrate many 
types of tumors. In theory, neutrophils may be 
an effective antitumor effector cell because 
neutrophil granules contain various antibacte-
rial and cytotoxic compounds that can destroy 
malignant cells [54]. However, many studies 
have shown that tumor-associated neutrophils 
may promote tumor progression. N2-polarized 
neutrophils are morphologically similar to gran-
ulocytes or polymorphonuclear myeloid-derived 
suppressor cells, so they may exert a tumor 
suppressor effect [55]. WE found that the 
expression of PSMD10, ESR1 and PPARGC1A 
was related to the level of monocyte infiltration, 
and the expression was consistent. Monocytes 
are innate immune cells of the mononuclear 
phagocyte system [56, 57]. Although mono-
cytes have many important functions in the 
development of cancer, the mechanisms that 
determine their antitumor immune or tumor-
promoting immune cell phenotypes are still not 
fully understood, especially in the field of HCC. 
How to tilt the balance towards immune cells 
that contribute to anti-tumor immunity will be 
crucial to the discovery of more effective immu-
notherapy in the future.

Conclusions

The ceRNA network and prediction model pro-
posed in this study play an important role in the 
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exploration of the mechanism underlying HCC 
and the identification of prognostic markers. In 
addition, the target genes in the network can 
regulate the immune status of tumors, which is 
expected to provide new insight and ideas for 
cancer immunotherapy.
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