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Abstract: As a type of nanosized membranous vesicles secreted by living cells, extracellular vesicles (EVs) mediate 
intercellular communications with excellent physicochemical stability and biocompatibility. By delivering biologically 
active molecules including proteins, nucleic acids and lipids, EVs participate in many physiological and pathologi-
cal processes. Increasing studies have suggested that EVs may be biomarkers for liquid biopsy of retinal diseases 
due to the ability to transfer through the blood-retinal barrier. EVs also represent a novel cell-free strategy to repair  
tissue damage in regenerative medicine. Evidence has indicated that EVs can be engineered and modified to en-
hance their efficacy. In this review, an overview of the characteristics, isolation, and identification of EVs is pro-
vided. Moreover, recent advances with EVs in the diagnosis and treatment of retinal diseases and the engineering 
approaches to elevate their effects are introduced, and opportunities and challenges for clinical application are 
discussed.
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Introduction

Retinal degeneration is the main cause of 
vision decline and blindness, seriously affect-
ing the life quality of patients [1, 2]. Formed by 
a complex cell network, the retina is responsi-
ble for the photoelectric signal conversion in 
the eye [3]. Currently, fundus imaging and opti-
cal coherence tomography imaging provide 
opportunities to detect a significant retinal 
lesion [4]. However, the discovery of early non-
invasive biomarkers to monitor retinal diseases 
progress still needs further investigation. 
Moreover, although the retinal therapy strate-
gies including anti-angiogenic drugs and laser 
surgery have achieved encouraging progress, 
their therapeutic outcomes remain unsatisfac-
tory, often with complications and side effects 
[5]. Therefore, developing novel and effective 
diagnosis and treatment approaches of retinal 
diseases is necessary.

During EV formation, various bioactive mole-
cules including proteins, nucleic acids and lip-
ids are loaded into the EV. As natural delivery 

vehicles with little toxicity and immunogenicity, 
EVs transmit cargoes to mediate cell-to-cell 
communication, thereby contributing to the 
pathophysiologic regulation of many diseases 
[6]. EVs are important indicators of liquid biopsy 
and exist in biologic fluids such as blood, urine, 
semen and saliva [7]. Moreover, produced by a 
paracrine mechanism, EVs mediate the repara-
tive effects of cell transplantation [8]. Studies 
indicate that EVs are a promising candidate for 
the cell-free therapy of refractory diseases 
[9-11]. The unique feature of EVs to protect car-
goes from degradation makes them a novel 
nanomaterial, that can be engineered to further 
enhance their targeting and functions [12]. 
Collectively, these biologic effects endow EVs 
great promise for diagnosis and treatment 
approaches in nanomedicine.

In this review, we elaborate on recent research 
on EVs in retinal diseases and summarize their 
roles as novel biomarkers and therapeutic 
options. The engineering strategies of EVs and 
their challenges of clinical use are also dis-
cussed, to show future research directions.
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Overview of EVs

Classification, biogenesis, and uptake of EVs

Previous studies suggested that EVs were deliv-
ery vehicles carrying metabolic wastes pro-
duced by cells. Since an important role of EVs 
to regulate immunologic function was revealed, 
researchers began to focus on their biological 
effects [13]. There are mainly three subsets of 
EVs recognized, namely exosomes, microvesi-
cles (MVs), and apoptotic bodies. Generated by 
the fusion of multivesicular bodies (MVBs) and 
plasma membranes, exosomes are a relatively 
smaller component of EVs, with the diameter of 
30-150 nm and a density of 1.13-1.19 g/mL 
[14]. MVs are slightly larger EVs produced when 
the plasma membranes of cells bud outward, 
with the diameter up to 1000 nm [15]. The 
diameter of an apoptotic body is the largest 
among all types of EVs, usually above 1000 nm 
[16]. Many attempts have been made to inves-
tigate the roles of exosomes and MVs in inter-
cellular communication, but with few studies on 
the value of apoptotic bodies in nanomedicine.

The biogenesis of exosomes has several stages 
including endocytosis, MVB formation, and exo-
some release. Formed by the endocytosis of 
plasma membranes, multiple intraluminal vesi-
cles (ILVs) fuse to generate endosomes. The 
loading of bioactive molecules such as microR-
NA (miRNA), lipids, and proteins promotes the 
production of MVBs [17]. After the fusion of 
MVBs and plasma membranes, exosomes are 
released outside. The biologic effects of exo-
somes are closely associated with the cargo 
sorting, which is usually regulated by the endo-
somal sorting complexes required for the trans-
port (ESCRT)-dependent mechanism. Specifi- 
cally, ESCRT-0-induces the retention of the 
ubiquitinated proteins to initiate this progress. 
Then ESCRT-l/ll triggers the restricted mem-
brane to access the cavity, followed by the 
ESCRT-lll-mediated spiral structure formation 
and the neck bud shrinkage. Finally, ATPase 
vacuolar protein sorting-4 drives membrane 
rupture [18]. Alternatively, the MVBs formation 
can also be independent of ESCRT mechanism. 
Recent evidence reveals that syntenin-mediat-
ed ILVs germination is regulated by the small 
GTPase ADP ribosylation factor 6 and its effec-
tor protein phospholipase D2 [19]. 

The formation of MVs is usually caused by the 
increased expression of intracellular calcium. 

Due to the asymmetric membrane lipids of  
resting cells, phosphatidylcholine and sphingo-
myelin are located externally, while amine-con-
taining lipids such as phosphatidylserine and 
phosphatidylethanolamine are in the inner leaf-
let [20]. Calcium ions mediate the movement  
of lipids to promote membrane budding [17]. In 
addition, MVs are modified by reorganizing the 
cytoskeleton during the release process. EVs 
transport their cargoes to recipient cells mainly 
through endocytosis, direct fusion with the 
plasma membrane, and receptor-ligand inter-
action [21] (Figure 1).

The isolation of EVs

According to the unique properties of EVs, sev-
eral separation techniques have been estab-
lished, including differential centrifugation, 
density gradient centrifugation, size exclusion 
chromatography, ultrafiltration, immune-affinity 
capture, and polymer precipitation (Figure 2). 
Among them, some methods can distinguish 
subtypes of EVs to extract exosomes. For dif-
ferential centrifugation, numerous impurities 
such as intact cells, dead cells, and cell debris 
existing in the sample are initially removed by  
a series of low-speed centrifugations (300-
10,000 × g), followed by ultracentrifugation 
(100,000 × g) to enrich smaller EVs including 
exosomes. However, due to the fact that the 
size of exosomes is heterogeneous and may 
overlap with MVs, the purity of exosomes iso-
lated by this method is low. According to the 
density of exosomes, density gradient centrifu-
gation adopts proper media to further isolate 
exosomes on the basis of differential centrifu-
gation [22]. Although exosomes are purified, 
this method remains cumbersome and re- 
quires special equipment. Comparatively, size 
exclusion chromatography involves the usage 
of the sepharose-packed columns that adsorb 
small vesicles temporarily, while large particl- 
es are eluted because they cannot enter the 
pore, thus achieving the separation of exo-
somes [23]. Ultrafiltration depends on the size 
of the nanopore membrane to extract exo-
somes from the biofluids [24]. These two meth-
ods are simple and convenient, whereas the 
obtained exosomes still lack specificity. Based 
on the protein markers of different EVs sub-
types, immune-affinity capture isolates exo-
somes by binding the corresponding antibodies 
to magnetic beads, exhibiting the advantage of 
specific extraction with high purity [25]. 
However, owing to the disadvantages including 
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high cost and low yield, this method is not suit-
able for clinical application. Recently, many 
commercial kits have become available to iso-
late exosomes conveniently. After removing 
impurities by low-speed centrifugations, poly-
ethylene glycol (PEG) is used to separate insol-
uble components including exosomes from the 
sample [22]. Nevertheless, the presence of 
proteins and other EVs subtypes in the pre- 
cipitates reduces the purity of exosomes. 
Therefore, it is difficult to meet completely the 
requirements of high purity, convenience, good 
integrity and high yield at present. With the 
development of nanotechnology, multiple inno-
vative methods for efficient and specific isola-
tion of exosomes from complex body fluids 
have emerged. Studies suggest that a microflu-
idic filtering method represents one promising 
strategy for exosomes separation with the 
advantage of efficiency and automation. For 
instance, Lee et al. combine acoustic and 
microfluidic technologies to isolate exosomes 
from red blood cells with high purity [26]. Based 
on microfluidic technology, Liu et al. adopt bio-
compatible polymers to control viscous elastic-
ity and achieve continuous and label-free sepa-
ration of exosomes [27]. Moreover, combina-
tion of the immune-affinity capture method and 
microfluidic technology displays the ability to 
isolate EVs efficiently and specifically [28]. The 

application of several nanomaterials provides 
another useful method for EV extraction. For 
example, nanowires decorated with the anti-
bodies of exosomal markers can be employed 
to capture exosomes in the sample, with high 
specificity and sensitivity [29]. Taken together, 
the appropriate isolation method selected is 
related to the concentration requirements of 
EVs [30].

Components and identification of EVs

The ingredients of EVs reflect the state of donor 
cells (Figure 3). As the major component of car-
goes, proteins in EVs can be divided into non-
specific proteins and specific proteins. Non-
specific proteins provide important targets for 
EV identification, mainly including cytoskeletal 
proteins (tubulin, actin, and filament binding 
proteins), membrane fusion proteins (Annexin, 
Alix, and tumor susceptibility gene 101), signal 
transduction proteins (protein kinase, G pro-
tein), tetraspanins (CD9, CD63 and CD81), 
chaperone proteins (heat shock protein 70 and 
heat shock protein 90), phospholipase and lip-
id-related proteins [31]. On the other hand, dif-
ferent donor cell-derived EVs contain various 
specific proteins, which can serve as biomark-
ers of several diseases. Moreover, EVs trans-
port multiple nucleic acids, such as mRNA, 

Figure 1. The biogenesis, release, and uptake of exosomes and microvesicles. Lipid-raft-mediated endocytosis 
of the plasma membrane results in formation of early endosomes, followed by production of MVBs through the 
ESCRT-dependent or ESCRT-independent pathways. MVBs fuse with the plasma membrane to release exosomes. 
Microvesicles are derived from outward budding of the plasma membrane. EVs transfer cargoes to recipient cells 
through endocytosis, direct fusion, and receptor ligand interaction. MVBs: multivesicular bodies, ESCRT: endosomal 
sorting complexes required for transport.
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Figure 2. Traditional isolation methods of exosomes. According to the differing properties of exosomes, several 
extraction methods have been established, including differential centrifugation (A), density gradient centrifugation 
(B), size exclusion chromatography (C), ultrafiltration (D), immune-affinity capture (E), and polymer precipitation 
(F). The main processes of each method are shown. PBS: phosphate buffer saline, PEG: polyethylene glycol, EVs: 
extracellular vesicles.
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miRNA, long noncoding RNA (lncRNA), circular 
RNA (circRNA), genomic DNA, and mitochondri-
al DNA, to regulate gene expression of recipient 
cells [6]. The lipids in EVs are involved in the 
regulation of endocytosis, metabolic balance, 
inflammation, and tumor microenvironment 
[32].

The identification of EVs is a necessary process 
after extraction due to the significant heteroge-
neity among EVs. Many detection technologies 
have been established based on the morphol-
ogy, particle size, particle number, and molecu-
lar composition of EVs. After fixation and dehy-
dration, EVs may shrink and present as cup-like 
vesicles under transmission electron micros-
copy or scanning electron microscopy [33]. 
Spherical EVs with phospholipid bilayers can be 
observed by cryo-electron microscopy [34]. 

Nanoparticle tracking analysis (NTA) is widely 
used for the particle size and concentration 
detection of EVs according to the Brownian 
motion of vesicles [35]. In addition, tunable 
resistive pulse sensing detection technology 
recognizes the instantaneous change of the  
ion current generated by EVs, thus analyzing 
their concentration and size distribution [36]. 
Compared with NTA, this method is usually 
applied to detect relatively larger vesicles with 
diameter greater than 150 nm. Traditional flow 
cytometry does not work well for accurate anal-
ysis for the particle size of smaller EVs due to 
the limited detection range [37]. Stoner et al. 
have developed a novel strategy to measure 
the size of individual exosomes by using fluo-
rescent dye di-8-ANEPPS [38]. For protein 
detection, mass spectrometry analysis, en- 
zyme-linked immunosorbent assay, and west-

Figure 3. Main components of EVs. The phospholipid bilayer of EVs protects cargoes from degradation. Multiple 
membrane proteins exert different functions such as signal transduction, immune response, and metabolic regula-
tion. EVs contain various bioactive molecules including proteins, nucleic acids and lipids. MHC: major histocompat-
ibility complex, HSP: heat shock protein, MVB: multivesicular body, TSG101: tumor susceptibility gene 101, PI3K: 
phosphatidylinositol 3-kinase, ARF1: ADP ribosylation factor 1, GAPDH: glyceraldehyde-3-phosphate dehydrogenase.
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ern blot are commonly adopted. Recently, 
researchers have reported novel protein analy-
sis methods including microfluidic micronuclear 
magnetic resonance [39] and protein sensor 
technology platform [40]. Moreover, poly-
merase chain reaction (PCR) amplification and 
its derivatization methods are usually used to 
detect the expression of nucleic acids in EVs 
[41]. Mass spectrometry is a major approach 
for lipidomic analysis [42]. 

EVs in retinal disease diagnosis

The inherent potential of EVs to transport bio-
active molecules between cells has resulted in 
the extensive exploration of their biologic 
effects in pathologic and physiologic process-
es. In 1992, Caldwell et al. demonstrated that 
abnormal vesicles combined with extracellular 
collagen fibers, thus affecting the communica-
tion between peripheral cells and endothelial 
cells in the diabetic retina [43]. Since then, 
studies have suggested that EVs derived from 
injured cells can promote retinal disease pro-
gression. Importantly, the protection of cargoes 
caused by the plasma membrane and the abil-
ity to transport through the blood-retinal barrier 
make EVs promising biomarkers of retinal dis-
eases (Table 1).

Diabetic retinopathy (DR)

As a severe microvascular complication of dia-
betes, DR has been the main cause of vision 

decline and blindness in adults [44]. 
Hyperglycemia induces an increased retinal 
oxidative stress and inflammatory infiltrate 
resulting in the apoptosis of retinal cells [45]. 
Distinguished by the formation of new blood 
vessels, DR is divided into non-proliferative DR 
and proliferative DR [46]. The duration and the 
severity of diabetes are the major risk factors 
of DR, so strict control of the blood glucose 
level can apply an effective strategy for retinal 
protection [47]. However, the progression of  
DR can also be independent of the glucose 
metabolism disorder, implying that the applica-
tion of diabetes-relevant biomarkers is not 
exhaustive to predict DR [48]. Due to the irre-
versibility and rapid development of DR, there 
is an urgent need to find novel diagnosis and 
treatment approaches.

Under hyperglycemic conditions, EVs-mediated 
communications between retinal cells contrib-
ute to DR progression. The investigation of spe-
cific molecules in EVs to reflect DR develop-
ment has advanced much. For instance, Liu et 
al. demonstrate that high-glucose stimulation 
promotes the secretion of exosomes carrying 
cPWWP2A, which participates in the regulation 
of retinal vessels by acting as a sponge of miR-
579 [49]. Moreover, exosomes derived from 
pancreatic β cells transfer miR-15a to induce 
elevated retinal oxidative stress and apoptosis 
by targeting AKT3 [50]. However, the isolation 
of specific donor cell-released EVs in vivo is still 

Table 1. Diagnostic use of EVs in retinal disease

Cargo Retinal 
disease Source Functions Ref.

cPWWP2A DR Pericytes Improve pericyte-endothelial cell crosstalk and alleviate vascular dysfunc-
tion by binding with miR-579

[49]

miR-15a DR Pancreatic 
β cells

Aggravate oxidative stress and apoptosis to accelerate DR progression [50]

CCR5 DR Plasma Distinguish the severity of DR [53]

IgG DR Plasma Activate the classical complement pathway to promote retinal vascular 
damage

[54]

TNFAIP8 DR Plasma Promote retinal endothelial cells proliferation, migration and angiogenesis [55]

miR-21-3p, miR-30b-5p, miR-150-5p DR Serum Induce retinal damage by promoting abnormal angiogenesis [57]

MiR-26b-5p DR Serum Promote endothelial dysfunction [58]

MiR-302a, miR-122 AMD RPE cells Ameliorate retinal angiogenesis [67]

HDAC6 AMD RPE cells Impair retinal barrier function [68]

VEGFR2 AMD RPE cells Accelerate retinal neovascularization [69]

Cathepsin D, Cytokeratin AMD Aqueous 
humor

Enhance autophagy level and promote epithelial- mesenchymal transition 
to aggravate AMD

[70]

MiR-301-3p, miR-361-5p, miR-424-5p AMD Serum Inhibit tube formation [71]

miR-486-5p, miR-626, miR-885-5p AMD Serum Regulate the apoptosis and neovascularization pathways to participate in 
AMD progress

[72]

EVs: extracellular vesicles; Ref.: references; DR: diabetic retinopathy; CCR5: C-C chemokine receptor type 5; TNFAIP8: tumor necrosis factor-α-induced protein 8; AMD: 
age-related macular degeneration; RPE: retinal pigment epithelium; HDAC6: histone deacetylase 6; VEGFR2: vascular endothelial growth factor receptor 2.
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complicated. Recent evidence shows that plas-
ma-derived EVs of DR patients can cause 
peripheral cell detachment, endothelial cell 
migration, retinal leakage, and neovasculariza-
tion [51]. Circulating EV analysis reveals that 
the levels of cytokines and angiogenic factors 
are significantly upregulated compared to 
healthy subjects [52]. C-C chemokine receptor 
5 (CCR5) is enriched in EVs and accelerates 
retinal injury in DR [53]. Increased plasma exo-
somes containing IgG mediate the activation of 
the classical complement pathway, leading to 
the deterioration of retinal vessels [54]. In addi-
tion, the expression of tumor necrosis factor- 
α-induced protein 8 (TNFAIP8), which promotes 
retinal vascular endothelial cell proliferation, 
migration, and tube formation, is elevated in 
plasma EVs of DR patients [55]. Noncoding 
RNAs, especially miRNAs, have emerged as 
important regulators of ocular neovasculariza-
tion [56]. The diagnostic potential of miR-21-
3p, miR-30b-5p, miR-150-5p, and miR-26b-5p 
was revealed by microarray analysis [57, 58]. 
These findings indicate that EVs regulate DR 
progression by delivering multiple cargoes, rep-
resenting a novel diagnostic strategy for the 
disease.

Age-related macular degeneration (AMD)

AMD is a leading cause of severe visual impair-
ment and blindness among people aged over 
60 [59]. The accumulation of extracellular 
deposition, known as drusen, results in the 
gradual death of retinal pigment epithelium 
(RPE) cells and photoreceptor cells [60]. The 
feature of the late stage is geographic atrophy 
and neovascularization [61]. Although the 
genetic risk model score displays accuracy in 
the identification of high-risk groups, a large 
proportion of AMD patients are still ignored, 
implying that genetics is not the only factor to 
determine the progression of AMD [62]. Studi- 
es have shown that age, environment, and 
behavioral factors are also involved in the 
development of the disease [63]. Establishing 
effective diagnostic strategies provides prom-
ise for early therapy of AMD.

Several studies have revealed that EVs play 
important roles in the formation of drusen.  
For example, exosomes-mediated intercellular 
communications in oxidative stress microenvi-
ronment downregulate CD46 and CD59 expres-

sions to induce complement dysfunction, 
resulting in the aggravated damage of RPE 
cells [64]. Microparticles (MPs) from injured 
RPE cells promote the degeneration of healthy 
RPE cells [65]. Importantly, aged RPE cells 
increase the autophagy level to cause the pro-
duction of drusen by exosome-transferred 
intracellular proteins [66]. The ability of EVs to 
promote AMD progression leads to the exten-
sive exploration of their cargoes. Reportedly, 
bioactive molecules such as proteins and 
nucleic acids in EVs can be novel biomarkers  
of AMD. Retinal oxidative stress induces the 
downregulation of miR-302a and miR-122 in 
EVs secreted by RPE cells [67]. Injured RPE 
cells transmit EVs containing histone deacety-
lase 6 (HDAC6) to impair retinal barrier function 
[68]. Enhanced expression of vascular endo-
thelial growth factor receptor 2 (VEGFR2) in 
RPE cells-derived exosomes is responsible for 
the retinal neovascularization [69]. In addition, 
the ability of cathepsin D and cytokeratin in 
exosomes from the aqueous humor of AMD 
patients to reflect therapeutic effects after 
treatment makes them promising candidat- 
es for AMD diagnosis and prognosis [70]. 
Furthermore, researchers have evaluated the 
possibility of molecules in circulating EVs to 
serve as ideal biomarkers of AMD. Grassmann 
et al. demonstrate that miR-301-3p, miR-361-
5p, and miR-424-5p carried by circulating exo-
somes are highly associated with neovas- 
cular AMD [71]. Another study of Elbay et al. 
suggests that the changed expressions of miR-
486-5p, miR-626, and miR-885-5p in serum-
derived exosomes of AMD patients yield a 
potential strategy to monitor disease progres-
sion [72]. In addition to miRNAs, there are few 
studies on other types of biomarkers in circulat-
ing EVs. The use of EVs for early diagnosis of 
AMD still needs further investigation.

Retinitis pigmentosa (RP)

RP is a common dystrophic retinopathy charac-
terized by photoreceptor cell degeneration-
inducing decreased night vision and visual field 
[73]. RP is recognized as an inherited disease, 
whereas the clinical symptoms, onset time, and 
progression rate are heterogeneous [74]. RP 
involves various inheritance patterns including 
X-linked RP and autosomal dominant or reces-
sive RP [75]. Although research on the patho-
genesis of RP is constantly advancing, there 
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are still few specific biomarkers and efficient 
treatments to predict and repair this retinal 
injury.

Multiple vesicles formed by membrane ever-
sion and extrusion assemble outside the 
injured photoreceptor cells [76]. Further stud-
ies have shown that accumulated EVs mediate 
the transport of rhodopsin which regulates  
the function of photoreceptor cells [77, 78]. 
Moreover, the internalization of degenerated 
rod photoreceptor-derived MVs by RPE cells 
leads to the abnormal distribution of rhodopsin 
[79]. Ingredient analysis reveals that EVs from 
denatured photoreceptor cells contain more 
miRNAs and angiogenic substances [80]. The 
inhibition of EVs effectively protects photore-
ceptor cell survival [81]. The intercellular com-
munication mediated by EVs promotes RP pro-
gression, whereas specific molecules in EVs to 
monitor this disease have not yet been 
reported.

Retinopathy of prematurity (ROP)

ROP is the main cause of blindness in children 
due to incomplete development of vision-relat-
ed tissues and organs [82]. Gestational age 
and birth weight exhibit a significant correlation 
with the severity of ROP [83]. Characterized by 
functional and structural disorders of retinal 
vessels, ROP has stages of hyperoxia-induced 
vascular growth stagnation and subsequent 
neovascularization [84]. Current treatment 
strategies including laser surgery and intravit-
real injection of antiangiogenic drugs may 
result in serious infections and side effects 
[85]. The discovery of novel approaches for 
monitoring and improving this retinal injury 
should ensure lifelong visual quality for prema-
ture infants. As a novel cell-free therapy for 
ROP, the protective value of EVs will be dis-
cussed in the next section, but more studies 
are needed to support the diagnostic use of 
EVs in ROP.

Glaucoma

Characterized by retinal ganglion cells (RGC) 
loss, optic nerve degeneration, and visual field 
defects, glaucoma is an important cause of 
irreversible blindness [86]. Open-angle glauco-
ma and closed-angle glaucoma are two com-
mon subtypes of glaucoma [87]. Due to the 
increased production and decreased outflow of 

aqueous humor, elevated intraocular pressure 
(IOP) causes gradual damage to RGCs, leading 
to interrupted transmission of retinal input 
[88]. Homeostatic IOP contributes to maintain 
the structure and function of the eye. Currently, 
reducing IOP and protecting RGC survival are 
the main strategies for the treatment of glau-
coma. However, effective control of this risk 
factor cannot always alleviate disease develop-
ment. Many patients with primary glaucoma 
may have no changes in IOP, indicating that 
several other factors are also involved in RGC 
loss [89]. It is necessary to develop novel 
approaches to predict and prevent glaucoma 
progression.

Owing to its value in draining aqueous humor, 
the trabecular meshwork (TM) is considered  
an important target to reduce IOP. Studies  
indicate that in a pathologic environment, 
TM-derived EVs contain a series of bioactive 
molecules that can act as early diagnostic bio-
markers of glaucoma. For instance, miRNA 
microarray analysis reveals that 23 miRNAs  
are upregulated and 3 miRNAs are downregu-
lated in EVs secreted by human TM cells after 
TGF-β stimulation [90]. TM-derived exosomes 
show enrichment in myocilin, resulting in the 
occurrence of glaucoma [91]. Moreover, EV- 
mediated intercellular communication pro-
motes pathologic extracellular matrix accumu-
lation in the TM [92]. Lerner et al. found that 
miR-29b in exosomes derived from non-pig-
mented ciliary epithelial cells participates in 
extracellular matrix remodeling by inhibiting 
Wnt signaling and reducing COL3A1 expres- 
sion in TM cells [93]. In addition, Aires et al. 
suggest that exosomes from retinal microglial 
cells increase the release of pro-inflammatory 
cytokines, promote retinal cell apoptosis, and 
mediate RGC loss in glaucoma [94]. In- 
terestingly, recent evidence shows that as the 
main component of aqueous humor, exosomes 
play important roles in controlling the dynamic 
balance of aqueous humor [95]. The aggrava-
tion of glaucoma may be closely associated 
with changed cargoes in aqueous humor-
derived exosomes, which can be further ana-
lyzed to provide a new strategy for early 
diagnosis.

EVs in retinal disease therapy

Therapy of retinal diseases mainly relies on sur-
gical treatment and drug intervention. Due to 
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the risk of serious sideeffects, the exploration 
of a novel therapeutic approach has emerged 
as a research priority. Studies have indicated 
that stem cell-based transplantation exerts 
reparative functions in several retinal diseases 
[96, 97]. Although the use of stem cells 
obtained from the patient can avoid transplant 
rejection, possible tumorigenicity and safety 
issues still limit the clinical use of this method. 
As a paracrine mechanism of cell therapy, EVs 
are promising candidates for the treatment of 
retinal diseases [87]. Efforts have been made 
to analyze the therapeutic efficacy of EVs 
derived from multiple cells (Figure 4).

Mesenchymal stem cell (MSC)-derived EVs

MSCs, multipotent adult stem cells with the 
abilities of self-renewal and multidirectional dif-
ferentiation, function in tissue regeneration 
Their advantages including low immunogenici-
ty, convenient extraction, and great differentia-
tion potential have given MSCs widespread 
attention [11]. Emerging evidence shows that 

EVs derived from MSCs (MSC-EVs) mediate the 
therapeutic effects of MSCs and avoid the cell 
therapy-induced tumorigenicity [98, 99]. For 
example, MSC-EVs ameliorate retinal inflam-
mation by miR-126-induced inhibition of high 
mobility group box 1 (HMGB1) signaling path-
way [100]. In addition, miR-192 in MSC-EVs 
shows the capacity to alleviate DR progression 
by targeting integrin subunit α1 (ITGA1) [101]. 
In clinical trials of macular hole patients, the 
intravitreal injection of exosomes derived from 
MSCs (MSC-Ex) recovers retinal structure and 
function effectively and safely [102]. As an 
important projection neuron, degenerated 
RGCs promote the progression of several reti-
nal diseases. Recent studies indicate that 
MSC-Ex can protect RGC survival, maintain 
their function, and stimulate axon regenera- 
tion [103, 104]. Moreover, MSC-EVs alleviate 
retinal ischemia by protecting retinal function 
and ameliorating inflammation and apoptosis 
[105]. However, MSC-EVs have also been 
described to promote retinal injury in DR. MSCs 
cultured in high-glucose conditions release 

Figure 4. Therapeutic value of EVs in retinal diseases. A. MSC-EVs alleviate retinal inflammation, apoptosis, and 
angiogenesis mainly through the delivery of miRNAs. B. LMPs can ameliorate retinal neovascularization and induce 
Rb cell apoptosis. C. EVs derived from retinal cells, including astrocytes, endothelial colony-forming cells, and RPE 
cells, maintain retinal function to relieve retinal disease progression. MSCs: mesenchymal stem cells, MSC-EVs: 
extracellular vesicles derived from mesenchymal stem cells, HMGB1: high mobility group box 1, ITGA1: integrin 
subunit α1, Pdcd4: programmed cell death 4, LMPs: lymphocyte-derived microparticles, VEGF: vascular endothelial 
growth factor, SYK: spleen tyrosine kinase, Rb: retinoblastoma, Astrocytes-Ex: exosomes derived from astrocytes, 
ECFCs: endothelial colony-forming cells, ECFC-EVs: extracellular vesicles derived from endothelial colony-forming 
cells, RPE: retinal pigment epithelium, RPE-Ex: exosomes derived from retinal pigment epithelium cells, TGF: trans-
forming growth factor, EMT: endothelial-to-mesenchymal transition.
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exosomes to accelerate retinal vascular disor-
ders, indicating that the biologic function of EVs 
is determined by the state of MSCs [106]. 
Therefore, the application of MSC-EVs in the 
therapy of retinal diseases requires further 
study.

Lymphocyte-derived MPs

Previous studies have indicated that lympho-
cyte-derived MPs (LMPs) display significant 
alleviation of hyperproliferative cells. The re- 
port that LMPs alleviate Müller cell proliferation 
and tube formation provides evidence that 
LMPs are effective agents of retinal diseases 
[107]. Moreover, miR-181a, selectively enriched 
in LMPs, blocks VEGF signaling pathway in 
human retinal endothelial cells, thus relieving 
retinal neovascularization [108]. Retinoblas- 
toma (Rb) is a malignant tumor derived from 
photoreceptor precursor cells and usually 
occurs in children under 3 years. Qiu et al. dem-
onstrate that LMPs inhibit spleen tyrosine 
kinase expression and promote Rb cell apopto-
sis by activating p53 and p21 genes [109]. 
These findings indicate that LMPs exert thera-
peutic effects on retinal diseases mainly char-
acterized by angiogenesis. 

Retinal cell-derived EVs

Under a pathologic microenvironment, EVs 
derived from retinal cells have been considered 
a double-edged sword. The promotional role of 
EVs in retinal diseases has been mentioned, 
whereas many retinal cells-derived EVs also 
show the ability to maintain retinal homeosta-
sis. In the laser-induced choroidal neovascular-
ization model, retinal astrocyte-released exo-
somes transport antiangiogenic cargoes to 
alleviate neovascularization [110]. Moreover, 
EVs from endothelial colony-forming cells con-
tain diverse miRNAs to target angiogenesis-
related genes, leading to a decrease in isch-
emic area and amelioration of retinal vessels in 
an oxygen-induced retinopathy (OIR) model 
[111]. Complement regulatory proteins in exo-
somes derived from RPE cells mediate the pro-
tection of adjacent cells and the inhibition of 
retinal inflammation [112]. In addition, miR-
202-5p in exosomes from RPE cells suppress-
es retinal fibrosis and endothelial-to-mesenchy-
mal transition by blocking the transforming 
growth factor/Smad signaling pathway in DR 
[113]. These results indicate that retinal cell-

derived EVs may be novel therapy for retinal 
diseases.

Engineering strategies of EVs

Appropriate modification of EVs is a promising 
approach to increase their diagnostic potential 
and therapeutic efficiency [12]. Strategies of 
EV engineering mainly include cargo loading 
and membrane modification (Figure 5). 
According to previous studies, detailed meth-
ods of these strategies are summarized (Table 
2). 

Cargo loading approaches

With their ability to maintain the stability of car-
goes in vivo, EVs can exert enhanced curative 
effects after loading therapeutic bioactive mol-
ecules [114]. The approaches of cargo loading 
can be categorized into active loading and pas-
sive loading [115]. Active loading refers to the 
introduction of cargoes into the donor cell, fol-
lowed by the release of EVs containing specific 
ingredients. Passive loading means to use 
membrane penetration methods or chemical 
methods to directly load cargoes into EVs.

Gene transfection is widely used for loading 
exogenous nucleic acids including DNA vectors, 
siRNAs, and miRNAs into donor cells [116]. The 
intracellular composition is changed through a 
series of biologic processes. EVs with specific 
cargoes are eventually isolated from the cul-
ture medium of donor cells by proper methods. 
This method is uncomplicated and feasible, 
whereas defects including low specificity and 
efficacy limit its application. Moreover, co-incu-
bation is mainly applied to obtain drug-loaded 
EVs for disease therapy [117]. Through inter-
acting with the lipid bilayer, drugs are absorbed 
by the donor cells and subsequently introduced 
into EVs. As an effective antiangiogenic drug, 
intravitreal injection of bevacizumab is a clini-
cal therapy strategy for several retinal diseas-
es. However, poor stability and diffusion result 
in the need for repeated intervention, thus 
increasing the treatment risk [118]. Naga et al. 
report that exosomes derived from RPE cells 
are responsible for the uptake and release of 
bevacizumab in the retina [119]. Therefore, 
exosome-mediated delivery of bevacizumab by 
co-incubation may improve outcome. This 
method is simple and maintains the integrity of 
EVs, but the loading efficiency is low.
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Electroporation is a common approach to load 
exogenous cargoes into EVs. Briefly, EVs are 
mixed with small molecule substances, fol-
lowed by high intensity electrical field stimula-
tion to form transient transit pores on the  
membrane [120]. Recent studies indicate that 
electroporation provides a feasible scheme  
for the entry of mRNAs, siRNAs, miRNAs, and 
drugs into EVs with high efficiency [121]. 
However, the aggregation of EVs after electro-
poration hinders its application. Sonication 
allows the diffusion of cargos into EVs based  
on the increased plasma membrane permea-
bility [122]. This method is usually used for 
drug loading, whereas the decreased integrity 
of EVs may affect their therapeutic potential. In 
addition, mixtures of EVs and cargoes can be 
fused by mechanical extrusion [123]. This vio-
lent mixing exhibits the advantage of efficient 
packaging, but it easily destroys the membrane 
structure of EVs. Saponin-mediated surface 
penetration is an effective strategy for protein 

and drug loading [124]. Pores are generated in 
the membrane of EVs by removing cholesterol. 
Nevertheless, the solution of the toxicity in- 
duced by this method requires more explora-
tion. In a freeze/thaw method, low temperature 
changes the plasma membrane structure to 
promote cargo loading, but this method has the 
defect of EV aggregation [125].

Membrane modification approaches

Membrane modification of EVs has emerged as 
an important strategy to improve their thera-
peutic targeting and imaging tracing. Bio- 
conjugation and “click chemistry” provide 
opportunities to form covalent binding in the 
membrane [126]. “Click chemistry” couples 
small molecules to the surface of EVs effec- 
tively and simply [127]. Wang et al. show that 
MSC-EVs conjugated with alendronate exert 
targeted treatment for osteoporosis [128]. 
However, such a modification approach may 

Figure 5. Approaches to EVs engineering. Co-incubation and transfection are applied to load cargoes into donor 
cells, followed by the secretion of EVs containing the corresponding substances. Electroporation, sonication, extru-
sion, saponin-mediated surface penetration, and freeze/thaw cycles methods are used to load cargoes into EVs. 
Moreover, membrane modification strategies including metabolic labeling, click chemistry, receptor ligand binding, 
hydrophobic insertion, and multivalent electrostatic interactions are used to increase the targeting of EVs.
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impair the activity of membrane proteins in 
EVs. Moreover, non-covalent binding strategies 
mainly include receptor ligand binding, hydro-
phobic insertion, and multivalent electrostatic 
interaction [121]. Based on the membrane 
receptors of EVs, a receptor ligand binding 
method exhibits the properties of specific tar-
geting and efficient packaging. Qi et al. have 
developed superparamagnetic nanoparticle 
clusters for isolating exosomes from blood by 
conjugating with transferrin receptors [129]. 
The use of unnatural ligands for the membrane 
modification of EVs is challenged by difficult 
synthesis and high cost. For hydrophobic inser-
tion method, hydrophobic materials integrate 
into EVs membrane spontaneously under  
ambient conditions [130]. On the basis of this 
method, DSPE-PEG-2000 combined with func-
tional ligands is widely used to improve the tar-
geting of EVs [131]. Due to the presence of 
negatively charged groups on the membrane, 
the multivalent electrostatic interaction meth-
od usually adopts cationic nanomaterials to 
couple with EVs [132]. Further studies need to 
focus on the improvement of the cationic nano-
material-induced cytotoxic effects.

Challenges in clinical application of EVs

As a result of their value in intercellular com-
munication, EVs are considered novel delivery 
vehicles to transport bioactive molecules with 
stability. Studies on EVs as promising diagnos-
tic or therapeutic approaches of retinal diseas-
es are growing, but still early in development. 
Due to the lack of a recognized standardiz- 
ed procedure, researchers adopted different 
methods to purify EVs according to their own 
actual situations. Efficient separation of high-
quality EVs is still a complex problem whether 
using common or emerging extraction meth-
ods. Moreover, standard quality control of EVs 
has not been established, further limiting their 
application. Bioactive molecules in EVs are 
closely associated with the status of the donor 
cells, resulting in significant heterogeneity of 
EVs even derived from the same cell source 
[133]. In addition, although EVs are relatively 
stable at low temperature, long-term preserva-
tion is still a challenge [134].

Significant progress has been made to explore 
biomarkers in EVs for predicting the develop-

Table 2. Evaluation of strategies for EV engineering
Strategy Method Principle Advantages Limitations Ref.
Active loading Transfection Liposomes-mediated 

delivery
Simple, maintain the 
integrity of EVs

Low specificity and efficacy, 
toxicity

[116]

Co-incubation The interaction between 
cargos and the lipid 
bilayer

Simple, maintain the 
integrity of EVs

Inefficient loading, low 
specificity

[117]

Passive loading Electroporation Permeation pores in the 
membrane created by 
transient voltage

Rapid, high ef-
ficiency

EVs aggregation, impair 
EVs integrity

[120, 121]

Sonication Membrane deformation High efficiency EVs aggregation, impair 
EVs integrity

[122]

Mechanical extru-
sion

Mechanical force Efficient loading Change the membrane 
structure

[123]

Saponin-mediated 
surface penetra-
tion

Remove cholesterol 
to form pores in the 
membrane

Efficient loading Toxicity [124]

Freeze/thaw cycles Destroy the membrane 
temporarily

Efficient loading EVs aggregation, change 
the membrane structure 
and function

[125]

Modification of EVs Membrane Click chemistry Aziridine cycloaddition 
reaction

Simple, maintain 
the integrity of the 
membrane

May affect the function of 
membrane proteins

[126-128]

Receptor ligand 
binding

Receptor ligand coupling High specificity and 
efficiency

Synthetic difficulty, high 
cost 

[129]

Hydrophobic 
insertion

Spontaneous integration 
of lipophilic material into 
the membranes

Simple, specific tar-
geting, no damage to 
membrane proteins

Efficiency is related to 
the hydrophobicity of the 
material

[130, 131]

Multivalent electro-
static interactions

Multiple charge interac-
tions

High efficiency Cytotoxicity [132]

EVs: extracellular vesicles; Ref.: references.
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ment of retinal diseases, whereas the content 
of EVs derived from specific retinal cells is 
inconspicuous in body fluids. The approach to 
accurately capture and quickly isolate specific 
EVs from the complex sample warrants further 
study. Interestingly, circulating EVs have shown 
an ability to package proteins and miRNAs 
involved in retinal disease progression. The dis-
covery of promising biomarkers in circulating 
EVs is a direction of future studies.

Although studies have suggested that EVs  
exert therapeutic effects on several retinal dis-
eases, the safety of this cell-free strategy 
needs further investigation. Traditional cell 
therapy has risks including low cell survival and 
mutation tumorigenesis [10]. Reportedly, EVs 
are well tolerated in several animal models 
such as rabbits, guinea pigs, and rats [135]. 
However, the biologic behavior of EVs in hu- 
mans remains unclear. Immunogenicity and 
toxicity evaluations contribute to the clinical 
transformation of EV-mediated therapy. In addi-
tion, the insufficient targeting of EVs should 
also be considered. For the specific retinal dis-
eases, targeting injured cells can enhance the 
therapeutic efficiency. Therefore, proper mo- 
dification of EVs is a promising approach to 
strengthen their efficacy, specificity, and safety 
for retinal therapy. 

Conclusions

EVs have exhibited potent ability in regulating 
biologic functions of cells due to the delivery of 
bioactive molecules. As discussed in this 
review, the emerging role of EVs as diagnostic 
and therapeutic approaches in retinal diseases 
has been revealed. However, most studies are 
still in the preclinical stage. The value of EVs in 
the field of retinal diseases remains to be  
comprehensively investigated. Moreover, rapid 
development of engineering technology pro-
vides new insight into EV modification to 
improve their effect. Overall, the application of 
EVs in early diagnosis and treatment of retinal 
diseases is promising. We believe that the reso-
lution of the existing limitations will make EVs a 
viable strategy.
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