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Abstract: Osteosarcoma (OS) is a rare soft-tissue malignant tumor with high lung metastasis and mortality rates. 
Preoperative chemotherapy, surgical resection of the lesion and postoperative chemotherapy are still the main 
treatments for osteosarcoma. The prognosis, however, is poor for patients with nonresectable, primary metastatic or 
relapsed disease. Recent studies have shown that targeted therapy for OS based on the characteristics of exosomes 
is very attractive. Exosomes are nanosized extracellular vesicles (EVs) that participate in cell-to-cell communication 
by transporting biologically active cargo molecules, causing changes in OS cell function and playing important roles 
in OS disease progression. With the characteristics of secretory cells, exosomes transport cargo (e.g., microRNAs) 
that can be used to detect the progress of a disease and can serve as markers and/or therapeutic targets for clini-
cal diagnosis of OS. In this review, the roles of exosomes in OS pathogenesis, invasion, metastasis, drug resistance, 
diagnosis and treatment are summarized. In addition, this article elaborates a series of challenges to overcome 
before exosomes are applied in clinical practice and provides suggestions based on current evidence for the direc-
tion of future research.
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Introduction to exosomes

Exosomes are EVs with a size of 30 to 150 nm. 
The exosome production and release process 
in the cell is shown in Figure 1. Exosomes were 
originally discovered by Johnstone et al. [1] dur-
ing in vitro culture of sheep reticulocytes and 
were considered “cell dust”, thus not attracting 
the attention of researchers. Later, in 2007, 
Valadi et al. [2] confirmed for the first time that 
exosomes contain both functional mRNA and 
microRNA (miRNA), called “exosome shuttle 
RNA”, which can be transferred to other cells 
and function in a new location. Since then, exo-
some research has attracted widespread 
attention.

Exosomes are marked by aggregated small 
RNAs, including messenger RNA (mRNA), 
miRNA, transfer RNA (tRNA) and long noncod-

ing RNA (lncRNA) [3, 4]. These RNA molecules, 
together with proteins, act as genetic materials 
and play a vital roles in cell-cell communication 
through exosome transfer [5]. Exosomes act on 
the recipient cell in three different ways [6, 7] 
(Figure 2). It carries lipids and proteins similar 
to those in the cell of origin, which interact with 
recipient cells to trigger cargo release or  
signal transduction cascade induction, ulti-
mately leading to changes in cell activity or 
function [8]. 

Compared with stem cells, exosomes have the 
advantage of being stable, easy to store and 
access, and transformable, and they are  
nonimmunogenic. Thus, as carriers of specific 
genes or drugs to treat disease, exosomes are 
appropriate choices for use in cell-free targeted 
therapy [9]. Exosomes are present in various 
body fluids, such as serum, saliva and urine. 
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Blood samples can be easily collected from 
patients for separation and then used to iden-
tify specific RNA molecules or proteins in exo-
somes, which is an ideal noninvasive diagno-

in OS pathogenesis are the Wnt, Notch, NF-κB, 
p53, PI3K/Akt and MAPK pathways [24-26]. 
The balance between cell survival and apopto-
sis depends on the Wnt and NF-κB pathways 

Figure 1. Exosome biogenesis begins with invagination of the endosomal 
membrane to form intracellular vesicles. In late endosomes, inward protru-
sion of the endosomal membrane leads to accumulation of small vesicles, 
thereby transforming the endosome into multiple multivesicular bodies 
(MVBs). MVBs can enter the degradation pathway upon maturation into ly-
sosomes or can be released as exosomes into the extracellular system upon 
fusion with the plasma membrane.

Figure 2. Exosomes interact with receptor cells through three mechanisms: 
1) release of their cargo after entry into the cell via endocytosis; 2) direct 
fusion with the plasma membrane to nonselectively release the protein and 
small RNA molecules contained within; and 3) interaction with exosome li-
gands and receptor proteins on the cell membrane surface.

sis/prognosis technique [10, 
11]. Currently, exosomes have 
many potential uses in medi-
cine, and research on exo-
somes is widely concentrated 
in the fields of cancer, drug 
delivery and regenerative me- 
dicine [12]. With advances in 
biomedicine, exosomes are 
rapidly being developed for 
use in new tumor treatment 
methods and can be used  
for clinical diagnosis (markers 
and liquid biopsy tests) [13], 
as drug carriers [14, 15], dis-
ease targets [16] and in prog-
nosis monitoring [17].

Osteosarcoma

Pathogenesis

Osteosarcoma (OS) is the 
most common primary bone 
cancer, with 4 or 5 cases per 
million people per year. OS 
mainly affects children and 
adolescents from 5 to 20 
years old and adults in their 
70s [18, 19]. The most com-
mon site of OS is the me- 
taphysis of long bones [20]. 
High-grade OS usually sp- 
reads to the lungs, followed  
by distant bones [21]. Se- 
condary lung cancer is the 
main cause of death in OS 
patients [22]. To date, the fac-
tors and pathways that regu-
late the OS metastasis pro-
cess are unclear.

In recent years, the pathogen-
esis of OS has been exten- 
sively studied, and the main 
focus has been on the origin 
and signaling pathways of OS 
cells. According to reports, OS 
may be derived from imma-
ture stromal spindle cells [23]. 
The most important pathways 
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and on the ratio of MAPK activity to PI3K/Akt 
pathway activity [26]. 

According to a bioinformatics analysis, TP53, 
MAPK1, ESR1, NOTCH3 and CASP1 may play 
roles in OS development [27]. miRNAs (such as 
miR-21, miR-34a, miR-143, miR-148a, miR-
195a, miR-199a-3p, and miR-382) [26] partici-
pate in OS pathogenesis by regulating multiple 
target genes and signaling pathways. Although 
research into the molecular mechanisms con-
tinues to deepen, no evidence is available to 
verify the most fundamental and important 
aspects of OS pathogenesis, and identification 
of its etiology is crucial for finding new thera-
peutic targets. In addition, due to the existence 
of unknown factors, such as chromosome, 
karyotype and genome mutations, effective OS 
treatment and determining a complete treat-
ment strategy are difficult.

Treatment

Surgery and systemic chemotherapy are the 
main treatment options for OS, but their effica-
cy is not satisfactory. According to statistics, 
the 5-year survival rate using a multidisciplin- 
ary approach varies from 60 to 70% [28]. 
Patients with OS diagnosed with distant  
metastases usually have the primary tumor 
surgically removed, which significantly prolongs 
the survival of patients with OS originating in 
the extremities. However, for patients with pel-
vic/spine OS, primary tumor surgery does not 
improve survival [29].

apy had no effect, patients with local recur-
rence have shown significantly improved sur-
vival rates after chemotherapy [35]. In summa-
ry, simple surgery and chemotherapy cannot 
achieve the desired OS treatment results. In 
recent years, comprehensive treatment of OS 
has also led to the development of molecular 
targeted therapies, immunotherapy, gene ther-
apy, embolization, radiofrequency ablation and 
stem cell therapy [36], which may become the 
mainstream treatments sometime in the future.

Roles of exosomes in osteosarcoma progres-
sion

Promotion of angiogenesis

Exosomes carrying cargo cause changes in the 
activity and function of receptor cells, such as 
promoting osteoclast differentiation and bone 
resorption activity and enhancing blood vessel 
formation and endothelial cell growth, thus 
upregulating the expression of angiogenesis 
markers [37] (Figure 3). 

According to research, miR-21 can significantly 
affect the plasticity of cancer cells, leading to 
tumor metastasis and angiogenesis, and is 
also involved in tumor immune regulation [38]. 
Exosomes secreted by OS cells and carrying 
miR-148a and miR-21-5p as cargo can partici-
pate in establishment of the tumor microenvi-
ronment (TME) and stimulate endothelial cells 
to secrete more angiogenic factors and orga-
nize into tube-like structures. These effects 

Figure 3. Exosomes carrying genetic materials participate in the develop-
ment of osteosarcoma by promoting angiogenesis, invasion and metastasis, 
immune escape and drug resistance.

High-dose methotrexate (HD- 
MTX), Adriamycin, cisplatin 
and ifosfamide have antitu-
mor activity against OS and 
are currently recognized as 
first-line chemotherapy drugs 
[30-32]. In the past 30 years, 
the available chemotherapy 
regimen and therefore the 
survival rate have not chang- 
ed significantly [33]. Chemo- 
therapy-induced tumor necro-
sis is still the gold standard 
[34]. High-grade OS often 
recurs, and the pattern of 
recurrence differs in biologi-
cal significance. Compared 
with patients with systemic 
relapse, for whom chemother-
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may be important for changes in the osteoclast 
phenotype and endothelial cell activity [37]. 
Sex‑determining region‑related high-mobility 
group box 4 (SOX4) has been identified as a 
direct target gene of miR‑25‑3p. miR-25-3p  
can inhibit OS cell proliferation, migration and 
invasion by targeting SOX4 expression in bone 
tissue and thus plays a role in cancer suppres-
sion [39]. Moreover, miR-25-3p embedded in 
OS cell-derived exosomes can promote capil-
lary formation and vascular endothelial cell 
invasion [40].

Promotion of growth and invasion

In the TME, exosomes derived from OS and 
bone marrow cells (BMCs) can specifically  
stimulate migration of OS cells in vitro and in 
vivo through the urokinase plasminogen activa-
tor (uPA)-dependent signaling pathway [41]. 
Exosomes secreted by tumor cells promote 
tumor growth, metastasis, and angiogenesis by 
regulating the TME and can escape host 
immune surveillance [42, 43]. In addition, stro-
ma exosomes can induce OS cells to acquire a 
cancerous phenotype; for example, exosomes 
from cancer-associated cells in multidimen-
sional cultures can affect the proliferation, 
metastasis, drug resistance and epithelial-
mesenchymal transition of OS cells [44]. Stu- 
dies have shown that exosomes secreted by 
cancer-associated fibroblasts (CAFs) carrying 
miR-1228 as molecular cargo are transferred 
to OS cells and promote migration and invasion 
of these OS cells [45]. 

Exosomes secreted by tumor cells contribute 
not only to the formation of a suitable environ-
ment for metastasis or premetastasis but also 
to tumor-like transformation of the resident 
cells (mesenchymal cells, MSCs) in metastatic 
organs [46, 47]. When stem cells are recruited 
to the tumor stroma, tumor exosomes enter  
the stem cells to induce acquisition of a malig-
nant phenotype, and in turn, the stem cells 
secrete exosomes to promote OS cell prolifera-
tion, migration and invasion. Zhao et al. [48] 
demonstrated that bone marrow mesenchymal 
stem cell exosomes (BMSC-exos) encapsulate 
plasmacytoma variant translocation 1 (PVT1, a 
carcinogen) and transport it to OS cells. 
Transported PVT1 inhibits ERG degradation 
and ubiquitination in OS cells and sponges miR-
183-5p to promote tumor growth and metasta-
sis. Human BMSC-exos (hBMSC-exos) can pro-

mote OS cell proliferation, migration and inva-
sion by promoting oncogenic autophagy in OS. 
Silencing of autophagy-related gene 5 (ATG5) in 
OS cells can eliminate the tumor-promoting 
effect of hBMSC-exos [49]. The mechanism by 
which MSC-exos promote OS cell growth and 
metastasis may involve activation of the  
hedgehog signaling pathway [50] and IL-6/
STAT3 signaling pathway [51]. In conclusion, 
exosomes in the TME are key factors in OS 
growth and metastasis (Figure 3).

Exosomal miRNA participation in growth and 
invasion

OS cell lines selectively package miRNAs as 
molecular cargo for EVs. These miRNAs can  
act as paracrine drugs to regulate the TME, 
including immune cells, endothelial cells and 
fibroblasts [38]. Qin et al. [52] found that miR-
208a promotes OS cell proliferation, migration 
and invasion through downregulation of PD- 
CD4 and activation of the ERK1/2 pathway. 
miR-675 was significantly upregulated in 
patients with OS lung metastasis. In contrast to 
exosomes derived from nonmetastatic MG63 
cells, exosomes derived from a metastatic 
MG63 OS cell line induce an increase in the 
ability of recipient osteoblasts to migrate and 
invade. miR-675 affects the invasion and 
metastasis of OS tumor cells by inhibiting the 
expression of CANL1 in recipient cells [53]. 
Jerez et al. [54] used next-generation miRNA 
sequencing technology to examine miRNAs iso-
lated from microvesicle-depleted EVs. These 
EVs were derived from six human OS or osteo-
blast cell lines with different metastatic poten-
tial (i.e., SAOS2, MG63, HOS, 143B, U2OS and 
hFOB 1.19 cells). The most prominent miRNAs 
are miR-21-5p, miR-143-3p, miR-148a-3p and 
miR-181a-5p, which are enriched between 3- 
and 100-fold and are relatively abundant in  
the EVs derived from metastatic SAOS2 cells 
compared to the level in nonmetastatic MG63 
cells. Gene Ontology analysis of predictive tar-
gets indicates that miRNAs in EVs may regulate 
OS cell lines by potentially inhibiting apoptosis 
and/or cell-related gene networks (e.g., MAPK1, 
NRAS, FRS2, PRCKE, BCL2, and QKI) and cell 
transfer potential and adhesion [54].

Participation in immune escape

Immune escape is the key mechanism of tumor 
progression. Cancer exosomes directly or indi-
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rectly (via MSCs) affect innate or adaptive 
immune components and participate in tumor 
immune escape (Figure 3). Tumor-derived exo-
somes (TEMs) carry immunosuppressive mole-
cules and factors known to interfere with the 
function of immune cells. The development, 
maturation and antitumor activity of an immune 
cell can be directly or indirectly affected upon 
exosome delivery of an inhibitory protein simi-
lar to protein in the parent tumor cell. Exosomes 
also deliver genomic DNA, mRNA and miRNA to 
immune cells, thereby reprogramming the func-
tion of these cells to promote tumor progres-
sion [55, 56]. Metastatic OS cell exosomes pro-
mote the expression of M2 macrophage mark-
ers and induce immunosuppression by produc-
ing TGFB2 (found in key tumor-mediated immu-
nosuppression-related signaling pathways) 
[57].

TEMs incubated with T cells induce apoptosis 
of activated CD8+ cells via the Fas ligand path-
way [58]. TEMs induce immune suppression by 
promoting T regulatory cell expansion and  
inactivation of antitumor CD8(+) effector T 
cells, thus contributing to tumor escape [58]. 
Inhibition of the cytotoxic killing capacity of nat-
ural killer (NK) cells was correlated with the 
expression of MHC 1 short chains in malignant 
exosomes. Incubation of NK cells with exo-
somes downregulated NKG2D expression and 
decreased NK cell functionality [59]. Compar- 
ed with normal osteoblasts, OS-derived exo-
somes contain immunomodulatory substanc-
es, which can reduce the proliferation rate of T 
cells and promote the T-regulated phenotype 
[60]. Although TEMs can express tumor anti-
gens and are therefore proposed to be of use in 
OS vaccines, they can also inhibit T cell signal-
ing molecules and induce apoptosis, which 
makes TEM-based OS vaccines difficult to man-
ufacture on a large scale.

Induction of drug resistance

The greatest problem with chemotherapy in OS 
patients is drug resistance, which may cause a 
rapid increase in metastasis [61]. Previous 
studies have shown that acquired multidrug 
resistance (MDR) is mediated by exosomes 
released by drug-resistant cells [62]. Exosomes 
are the main mechanism by which drug resis-
tance is transferred (Figure 3). The exosomes 
of doxorubicin-resistant OS cells can be 

absorbed by surrounding cells to induce a doxo-
rubicin-resistant cell phenotype, which may be 
the reason why exosomes with MDR-1 mRNA 
and its product P-glycoprotein enhance the 
ability to resist the action of doxorubicin in pre-
viously sensitive cells [63]. Exosomes can not 
only induce TME cells, tumor metastasis and 
tumorigenic phenotype acquisition but can also 
induce drug resistance in OS cells. Exosomes 
produced by resistant cancer cells and/or TME 
cells confer resistance to anticancer drugs to 
other cells, apparently through a variety of 
mechanisms [64]. According to reports, tumor 
resistance is related to upregulation of miR-25-
3p in OS exosomes [40]. 

Roles of exosomes in osteosarcoma treat-
ment

Exosomes are a double-edged sword; they not 
only play an important role in tumorigenesis, 
angiogenesis and metastasis but can also 
inhibit tumor progression [65] (Table 2). Various 
exosome components provide emerging diag-
nostic and therapeutic methods for fighting OS 
and have attracted substantial attention in the 
field of liquid biopsy and biomarker determina-
tion. Exosomes are used as diagnostic bio-
markers of many cancer types (e.g., colon can-
cer [66] and breast cancer [67]). By taking 
advantage of exosomes in the circulation sys-
tem, cancer can be detected early. In addition, 
exosomes provide indications of disease pro-
gression and the response of cancer patients 
to treatment [68, 69]. Studies have reported 
that exosomal integrins can be used to predict 
organ-specific metastasis [70]. The miRNA in 
exosomes can also regulate the drug sensitivity 
of cancer cells [71]. Exosomes secreted by 
immune cells may be used in cancer diagnosis 
and immunotherapy and are being developed 
for vaccination and chemical drug delivery [72].

OS cell-derived exosomes may become poten-
tial targets in cancer therapy [16]. The specific 
RNA molecules contained in exosomes are 
powerful tumor indicators because they reflect 
the current state of the tumor. Therefore, we 
can design drugs that target these RNA mole-
cules to develop personalized drug treatments. 
Previous evidence has shown that miRNA mol-
ecules in the serum of OS patients can be 
potential targets [73, 74]. However, the specific 
mechanisms of these RNA molecules and their 
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expression in exosomes must be further clari-
fied to better implement intervention measures 
and prevent the influence of irrelevant proteins 
or harmful RNA molecules. Next, the current 
relevant research on the use of exosomes in OS 
diagnosis, treatment and prognosis determina-
tion is introduced.

Exosomal miRNAs as biomarkers

miRNAs are single-stranded, noncoding RNA 
molecules comprising 18-24 nucleotides. miR-
NAs have activity in various organisms and  
are involved in posttranscriptional regulation of 
gene expression [75] (Table 1). The expression 
of miRNAs is fine-tuned and very specific [76]. 
Abnormal miRNA expression is found in nearly 
all tumor types and has the potential to be us- 
ed as a biomarker in a variety of cancer types 
[77]. OS cell lines can selectively package miR-
NAs as EV molecular cargoes that act as para-
crine drugs to regulate the TME. The mecha-
nism by which miRNA is incorporated into exo-

somes is very specific because it is based on a 
specific sorting mechanism [78]. Exosomal 
miRNA profiles are markers of tumor cell types 
and reflect parental cell characteristics [79, 
80]. miRNAs that reflect the characteristics of 
OS cells can signify differences in OS patients 
and can be used as biomarkers.

The serum and plasma levels of exosomal miR-
21 differ between OS patients and healthy con-
trols, which supports the contention that miR-
21 has a role as an OS biomarker [38]. Through 
high-throughput sequencing analysis, Ye et al. 
[81] found that miR-92a-3p, miR-130a-3p, miR-
195-3p, miR-335-5p, and let-7i-3p expression 
levels in the exosomes of OS patients were 
higher than in healthy patients. In vitro and in 
vivo studies have indicated that secretions 
from 143B OS cells exhibited miR-195-3 upreg-
ulation, which promoted cell proliferation and 
invasion. The results of the experiment verified 
that miRNAs derived from the exosomes of OS 
cells in plasma can be used as new diagnostic 

Table 1. Summary of studies on exosomal miRNAs in osteosarcoma
Secretory cells Receptor cell Cargo (miRNA) Influences References
OS cell lines Osteoclast and endothelial 

cells
miR-21-5p and miR-148a Osteoclastogenesis, bone resorption and 

tumor angiogenesis
[37]

OS cell lines Immune cells, endothelial 
cells and fibroblasts

miR-21 Angiogenesis, metastasis and immune 
escape of osteosarcoma cells

[38]

OS cell lines N/A miR-25-3p Promotion of capillary formation and vascu-
lar endothelial cell invasion; relationship to 
drug resistance

[40]

CAFs OS cell lines miR-1228 Promotion of OS cell migration and invasion [45]

BMSCs OS cell lines miR-208a Promotion of cell proliferation, migration 
and invasion

[52]

OS cell lines Osteoblasts miR-675 Promotion of cell migration and invasion by 
targeting CALN1

[53]

OS or osteoblast cell lines N/A miR-21-5p, miR-143-3p, 
miR-148a-3p and 181a-5p

Regulation of osteosarcoma cells by poten-
tially inhibiting apoptosis and/or cell-related 
gene networks 

[54]

OS cell lines N/A miR-195-3 p Upregulation of osteosarcoma cells to pro-
mote cell proliferation and invasion

[81]

MSCs OS cell lines miR-143 Suppression of osteosarcoma cell migration [94]
N/A: Not Applicable.

Table 2. Exosomes applications
Application prospect Purpose Molecular References
Biomarkers Diagnose the disease and determine 

the stage
miRNA
ncRNA 

[77-82, 83]

Liquid biopsy Diagnose and confirm the disease under 
non-invasive conditions

cell-free DNA (cfDNA), lncRNAs 
and proteins

[85]

Drug carriers Targeted therapy miRNA, proteins and chemical 
drugs  

[93-96]

Prognostic indicators Clinical prognosis monitoring miRNA and mRNA [17, 40, 82, 99]
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biomarkers and might provide treatment 
options for OS [81]. Fujiwara et al. [82] success-
fully verified that serum exosomal miR-25-3p 
can be used as a noninvasive blood-based bio-
marker for tumor monitoring in OS patients. 
Clinical development of this methodology as a 
noninvasive diagnostic or monitoring strategy 
may be promising for use in patients with malig-
nant diseases. In addition to miRNA, noncoding 
RNA (ncRNA) can be used as a new potential 
biomarker or disease-targeting agent in many 
diseases. Exosomes used as carriers to effec-
tively transfer ncRNA to receptor cells can also 
play key roles in OS disease treatments [83].

Liquid biopsy

Accurate diagnosis of OS and disease staging 
are prerequisites for effective surgical and 
medical treatment. Tissue biopsy and imaging 
are still commonly used disease sampling and 
evaluation methods, respectively. However, tis-
sue biopsy samples are sometimes difficult  
to obtain, and it is impossible to accurately 
assess a situation of nonobvious tumor metas-
tasis. A surgical margin may need to be rees-
tablished several times [84]. In contrast, liquid 
biopsy is used to obtain samples for analysis  
of therapeutic circulating tumor cell (CTC) tar-
gets, cell-free circulating tumor DNA (ctDNA) 
released from metastatic remnants into the 
peripheral blood and gene mutations that con-
fer drug resistance. Liquid biopsy enables a 
focused examination on cell-free DNA (cfDNA), 
lncRNAs and proteins in EVs and thus is a 
potential diagnostic tool for determining new 
therapeutic targets in patients with viral hepati-
tis and fatty liver [85].

Liquid biopsy is a noninvasive and time-saving 
method for obtaining samples that can be eval-
uated to obtain accurate information regarding 
early and midterm OS, which is helpful in mak-
ing the best treatment decisions, assessing the 
response to treatment and evaluating new 
drugs or drug combinations for future trials  
[86, 87]. Zang et al. [88] established an OS bio-
bank that provides samples for research for the 
purpose of promoting clinical and basic scien-
tific research using exosomes to dynamically 
monitor tumors. Brady et al. [89] confirmed that 
serum-derived exosomes contain unique pro-
tein characteristics, which were tracked 
throughout the canine OS disease process. 

Distinctive serum exosomal proteins can be 
obtained through noninvasive liquid biopsy and 
used to diagnose and provide real-time infor-
mation on disease progression, similar to the 
method used for evaluating human malignan-
cies [90, 91]. As a new diagnostic and thera-
peutic tool for OS clinical management, exo-
somes have shown great application pros- 
pects.

Drug carriers

Currently, miRNA is considered a potential anti-
cancer drug; however, the conventional meth-
ods of delivering miRNAs, proteins and chemi-
cal drugs do not usually produce the desired 
effect. Exogenous miRNA is easily degraded in 
the body, exogenous protein cannot perform 
the required function due to a lack of natural 
conformation, and administered chemical 
drugs are lethal to normal cells. However, use 
of exosomes as carriers can solve these prob-
lems [92].

Exosomes have recently emerged as promis- 
ing drug delivery systems with low immunoge-
nicity, high biocompatibility, and high delivery 
efficacy [93]. Shimbo et al. [94] showed that 
exosomes can deliver synthetic miR-143 into 
OS cells, greatly reducing OS cell migration. Wei 
et al. [95] developed a nanodrug composed of 
Adriamycin and exosomes derived from MSCs. 
Compared with free Adriamycin, the prepared 
nanodrug showed enhanced cell uptake effi-
ciency and antitumor effects in the MG-63 OS 
cell line and effectively killed OS cells. 
Chemotherapy is the main adjuvant therapy for 
OS, but serious systemic chemotherapy side 
effects cannot be prevented. Exosomes can 
suppress tumors by delivering appropriate 
amounts of chemical drugs, which greatly 
reduces systemic harm [93]. Compared with 
other artificial carriers, exosomes, as natural 
carriers of chemicals, can also prevent phago-
cytosis by macrophages and prolong the half-
life of the chemicals [96].

MSC-exos have an inherent homing ability  
similar to that of the parent cells, can protect 
cargo from extracellular degradation, and deliv-
er genetic material, immunomodulatory pro-
teins, enzymes, and growth factors directly to 
recipient cells [97]. Abello et al. [98] injected 
human umbilical cord mesenchymal stem cell 
(HUC-MSC) exosomes into OS mice, and within 
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24-48 hours of injection, the HUC-MSC exo-
somes continuously accumulated in tumors. 
Exosomes can be used as natural carriers of 
anticancer drug molecules at lower doses to 
induce therapeutic effects and reduce side 
effects. 

Prognostic indicators

By monitoring differences in miRNA and mRNA 
expression in the exosomes secreted by OS 
cells, cell responses to chemotherapy can be 
predicted [17]. In OS patients with adverse 
reactions to chemotherapy, a significant corre-
lation was found between the loss of control of 
miRNAs in exosomes, especially a decrease in 
miR-124, miR-133a, miR-199a-3p and miR-
385 and overexpression of miR-135b, miR-
148a, miR-27a and miR-9. These exosomal 
RNA molecules are reliable biomarkers in clas-
sifying OS with different chemotherapy sensi-
tivities [17]. miR-1258 expression is significant-
ly reduced in OS tissues and OS cell lines and is 
associated with malignant clinical manifesta-
tions and poor clinical prognoses of patients 
with OS [99]. Upregulation of miR-1258 signifi-
cantly inhibited cell proliferation and promoted 
cell cycle arrest in G0/G1. AKT3 has been iden-
tified as a direct target of miR-1258, which 
binds to the 3’-UTR of AKT3 mRNA. Therefore, 
the miR-1258-AKT3 axis may be a promising 
prognostic marker and therapeutic target in 
human OS [99]. 

A miR-25-3p imbalance in human OS cells is 
negatively correlated with clinical prognosis, 
while the Dkk3 expression level is positively 
correlated with clinical prognosis [40]. The 
expression of miR-25-3p was found to be 
upregulated in exosomes from OS cell lines, 
and when added to human umbilical vein endo-
thelial cells (HUVECs), exosomal miR-25-3p pro-
moted the formation of capillaries. The sen- 
sitivity of serum miR-25-3p levels as an indica-

tor of the prognosis of patients is greater than 
that of serum alkaline phosphatase (ALP, a 
known serum-based OS tumor marker) [82].  
In summary, exosomal miRNAs differentially 
expressed in OS patients before and after treat-
ment have the potential to be biomarkers of OS 
prognosis. 

Preclinical challenges of exosome application

Despite the great potential of exosome-based 
cancer treatment methods, many problems 
must be solved before they are used in the clin-
ic. Monolayer-cultured tumor cells are still the 
main source of cancer exosomes for research 
purposes, and these exosomes may differ in 
size distribution compared with the exosomes 
produced by tumor patients. Establishing tu- 
mor models through bioengineering for OS exo-
some research may lead to effective diagnostic 
improvements [100]. Most current research is 
based on extraction of exosomes from serum 
[101], although many researchers have begun 
to concentrate on noninvasively obtaining bio-
available specimens, such as saliva [102] and 
urine [103]. However, this method is still limit-
ed, and new types of tests for noninvasively 
obtained samples, such as vaginal discharge, 
stool or tears, should be developed. 

To date, no consensus has been reached on 
the technical standards for production and iso-
lation of exosomes [104] (Table 3). Therefore, 
exosomes used for biomarker identification 
and delivery of targeted cargo molecules are 
not subjected to technical standardization dur-
ing purification or analysis processes [105]. 
Exosome yields are low, and commercially pre-
pared exosomes are not suitable for clinical 
treatment due to profound protein contamina-
tion and aggregation [106]. Although exosome 
production is reported to be feasible on a small 
scale, many deficiencies have limited large-
scale production efforts [107]. The effects of 

Table 3. Preclinical challenges of exosomes
Exosome Details Challenges References
Origin Almost all body fluids Mostly from serum [101]

Isolation and Purification Ultracentrifugation, size exclusion chromatography, 
ExoQuick and total exosome isolation

Low yield, high protein contamination rate,  
ununified extraction standards

[104-107]

Storage conditions -80°C in phosphate buffer Changes in EV size and loss of biological function [111]

Targeted regulation There is no “one-to-one” connection between 
miRNA and target mRNA

The therapeutic dose, treatment plan and  
method of administration have not been deter-
mined. The interference of “harmful” RNA

[97, 117]
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various isolation procedures on exosome size, 
integrity, recovery and RNA and protein content 
are unclear; in other words, different separa-
tion methods may lead to differences in exo-
some concentration, purity, and size. A consis-
tent separation technology should be used for 
exosome production, and the same separation 
method should be applied in each study.

Storage temperature is an important factor for 
maintaining EV activity [108]. Previous studies 
have shown that storage at high temperatures 
reduces the number of exosomes retained and 
the exosome content, while storage at -80°C 
causes fewer changes [109, 110]. Therefore, 
the common storage conditions are -80°C in 
phosphate buffer. Recent studies have indicat-
ed that low temperature can affect the stability 
of the EV lipid membrane, and ice crystals 
formed at low temperature can cause mechani-
cal damage, even damaging the lipid mem-
brane and resulting in loss of content and cor-
responding biological function [111] (Table 3). 
When stored at +20°C or +4°C for 1 day, the 
antibacterial effect of EVs is significantly 
decreased. Storage at -20°C for 28 days causes 
changes in EV size and loss of antibacterial 
function [112]. Although storage at -80°C has a 
significant effect on the number and size of 
EVs, it partially preserves antibacterial function 
for as many as 28 days but greatly changes the 
physical and functional characteristics of EVs 
[112]. Freeze-drying or spray-drying is a newly 
developed storage method for exosomes and is 
a possible alternative to refrigerated mainte-
nance of EVs; however, this approach has not 
been widely applied in experimental studies 
[113, 114]. Furthermore, different EV sources 
and sample preparation processes affect the 
quality and stability of EVs. For example, an 
increase in the number of freeze-thaw cycles 
will lead to a reduction in the number of EV par-
ticles and rapid degradation of the contents. 
Thus, appropriately reducing the number of 
freeze-thaw cycles during exosome use is nec-
essary [115, 116].

The molecular genetic basis of carcinogenesis 
and cancer progression is complex, and there 
is not a “one to one” connection between miR-
NAs and target mRNAs. An average miRNA  
can have more than 100 targets, and one 
mRNA can be regulated by a variety of  
miRNAs. Therefore, the potential regulatory cir-

cuit affected by a miRNA may be enormous. 
Currently, the research on miRNA targets is not 
perfect, and the roles of some of these poten-
tial targets in OS carcinogenesis and progres-
sion are still unknown. In the future, mean- 
ingful work needs to be carried out to deter-
mine the targets of miRNAs and the full range 
of their roles in OS. Biological nanoparticles 
have great application value in the field of can-
cer vaccines, but there is a lack of in-depth 
research focused on identification of the  
molecules, including membrane components, 
molecular signals and pathways, that are criti-
cal for the biological functions that lead to  
the release of biological nanoparticles [117] 
(Table 3). Further experimental studies should 
identify the exact disease-specific molecules 
that promote tissue repair and regeneration 
and prevent the interference of “harmful” RNA 
in exosomes. Information on the targeting abil-
ity of exosomes for gene therapy is lacking. Can 
bioengineering and cell modification tech-
niques be used to modify the surface of MSC-
exos to enhance their cell-targeting ability? In 
addition, it is necessary to determine the dis-
ease-specific treatment dose, the appropriate 
treatment plan and the best method of MSC-
exo administration [97].

Summary and prospects

Existing evidence indicates that exosomes are 
very promising for use in targeted OS therapy. 
As intercellular communication molecules, exo-
somes play important roles in OS pathogenesis 
and treatment, but to date, the specific func-
tions and mechanisms of exosomes are not 
fully understood, and the long-term safety of 
exosome therapy cannot be predicted. The 
understanding of exosome effectiveness, 
intrinsic components and mechanisms will  
continue to be expanded through future 
research. In addition, before applying exo-
somes in the clinic, their productivity and stor-
age conditions must be improved to prevent 
loss of exosome function, which is the key to 
their basic research and therapeutic applica-
tions. With the gradual gains in understanding 
of the nature of exosomes, the corresponding 
diagnostic and therapeutic techniques are con-
stantly being improved. Future research may 
devote more energy to in vivo models and clini-
cal applications to help clarify the issues cur-
rently limiting the use of exosomes.
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