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Influence of swimming exercise  
on the expression of apoptotic gene  
caspase-3 in chondrocytes in osteoarthritis
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Abstract: Objective: To study swimming exercise’s effect on caspase-3 expression in chondrocytes in osteoarthritis 
(OA). Methods: 36 SD rats were randomly separated into normal group (n = 12), OA model group (n = 12) and swim-
ming exercise group (n = 12). After modeling, rats received no intervention in model group and swimming exercise 
once a day (15 min/time) for 4 consecutive weeks in swimming exercise group. After intervention for 4 weeks, 
specimens were taken to analyze tissue morphology by H&E staining, caspase-3 expression by Western blot and 
qPCR, chondrocytes apoptosis by TUNEL assay. Results: HE staining revealed abnormal bone tissue morphology in 
model group and swimming exercise group with improved morphology after swimming exercise. Model group and 
swimming exercise group all showed significantly higher Caspase-3 protein level than normal group with lower level 
after swimming exercise (P < 0.05). Consistently, qPCR showed similar expression profile of caspase-3 mRNA level 
to the protein level. Conclusion: Swimming exercise can inhibit caspase-3 level and chondrocytes apoptosis in OA, 
thus improving the joint morphology.
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Introduction

Osteoarthritis (OA) is a kind of common arthri- 
tic disease in clinic, which frequently occurs in 
the finger joint, shoulder joint, knee joint, etc. 
[1]. The major pathological changes of OA are 
cartilage destruction and osteoproliferation, 
and arthralgia and activity limitation are the 
most common clinical manifestations of pati- 
ents, seriously affecting the quality of life of 
patients [2, 3]. Currently, the exact cause and 
pathogenesis of OA remain unclear, but age, 
genetic factors and mechanical force are con-
sidered as major risk factors for OA [4]. Stu- 
dies have demonstrated that [5, 6] apoptosis  
of articular chondrocytes is observed in OA, 
and there is a close correlation between them. 
Caspase-3 is an important participant and ex- 
ecutor of the apoptotic process [7]. Moreover, 
studies have revealed that [8] caspase-3 is 
highly expressed in cartilages in OA, and is  
positively correlated with the severity of OA. 
Previous study indicated that age, but not 

short-term intensive swimming, affects chon-
drocyte turnover in zebrafish vertebral cartil- 
age [9]. The role of swimming exercise in ch- 
ondrocyte remains to be further determined. 
Swimming exercise is a commonly-used reha-
bilitation method, and its advantages include 
the higher accuracy of biological regulation in 
active exercise and rehabilitation via underwa-
ter exercise, which is often clinically used in  
the rehabilitation therapy of OA with an excel-
lent curative effect. This study aims to assess 
whether swimming exercise affects caspase-3 
level in chondrocytes in OA, so as to clarify the 
mechanism of swimming exercise.

Materials and methods

Laboratory animals and grouping

A total of 36 adult SD rats purchased from 
Shanghai SLAC Laboratory Animal Co., Ltd. we- 
re equally and randomly separated into normal 
group, model group and swimming exercise 
group using a random number table. All opera-
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tions and protocols on animals were approved 
by the Laboratory Animal Ethics Committee of 
the First Hospital of Jilin University.

Experimental reagents and instruments

Primary antibodies: anti-caspase-3 antibody 
(Abcam, USA) and anti-β-actin antibody, immu-
nohistochemistry kit (Maxim, Fuzhou), hema-
toxylin-eosin (HE) staining kit (Solarbio, Bei- 
jing), and fluorescence qPCR instrument (ABI 
7500, USA).

Construction of rat model of OA

After anesthesia with 7% chloral hydrate (5 
mL/kg), rats were fixed on the operating table 
under a supine position, the knee joint was 
exposed, the hair was shaved off and the joint 
was disinfected. Then 0.1 mL 2% papain and 
0.05 mL 0.05 mmol/L L-cysteine were inject- 
ed once into the knee joint, and they were in- 
jected again after 4 days to construct the rat 
model of OA.

Treatment in each group

Rats in normal group were fed normally with- 
out any treatment. The OA model was pre- 
pared using the above method in model group 
without any intervention. The OA model was 
also prepared using the above method in  
swimming exercise group, and rats were treat-
ed with swimming exercise at 3 days after  
modeling, and the specific method is as fol-
lows: the rats were placed in a 36 cm-deep 
pool at 32-36°C, and swam at a speed of 3 
cm/s once a day (15 min/time) for 4 consecu-
tive weeks.

Sampling

After anesthesia, cartilage tissues were col-
lected from 6 rats in each group, fixed in 4% 
paraformaldehyde at 4°C, and decalcified with 
ethylene diaminetetraacetic acid (EDTA) decal-
cifying solution. The decalcifying solution was 
replaced once every 3 d till the complete de- 

HE staining: The paraffin sections (5 μm-thick) 
were routinely dewaxed and soaked in water, 
followed by HE staining using the HE staining  
kit according to the instructions to observe the 
morphology of knee joint of rats.

TUNEL assay: The paraffin sections were rou-
tinely dewaxed and soaked in water, followed 
by analysis of chondrocytes apoptosis by TU- 
NEL kit.

Immunohistochemistry: The paraffin sections 
were routinely dewaxed and soaked in water, 
and the citric acid buffer was added and heat-
ed for antigen retrieval followed by endogen- 
ous peroxidase blockage and addition of anti-
caspase-3 antibody (1:200) for overnight incu- 
bation at 4°C and then secondary antibody for 
10 min. After incubation with streptavidin-per-
oxidase solution and DAB addition for develop-
ment, the sections were counterstained with 
hematoxylin followed by observation under a 
microscope.

Western blot: The tissue protein was isolated 
using lysis solution and quantified by BCA assay 
followed by separation on SDS-PAGE for west-
ern blot using anti-caspase-3 antibody (1:2000 
dilution). The membrane was developed after 
addition of chemiluminescence reagent.

qPCR: RNA was extracted for cDNA synthesis 
followed by qPCR with conditions: 96°C 10  
min, 40 cycles of 96°C 10 s, 60°C 30 s. Gene 
expression was analyzed using GAPDH as a  
reference. The primer sequences were shown 
in Table 1.

Statistical methods

Data in this study were presented as mean ± 
standard deviation; Statistical Product and 
Service Solutions (SPSS) 19.0 software (SPSS 
Inc., Chicago, IL, USA) was used for data pro-
cessing. Continuous data from multiple groups 
were analyzed by using one-way ANOVA, with 
the Tukey’s post hoc test. P-values < 0.05 were 
considered statistically significant.

Table 1. Primer sequences
Name Primer sequence
Caspase-3 Forward: 5’-TATTCCACAGCACCTGGTTA-3’

Reverse: 5’-CAATACATGGAATCTGTTTCTT-3’
GADPH Forward: 5’-ACGGCAAGTTCAACGGCACAG-3’

Reverse: 5’-GAAGACGCCAGTAGACTCCACGAC-3’

calcification of tissues. Then tissues we- 
re prepared into paraffin sections used  
for immunohistochemical detection. The 
knee cartilage tissues were isolated di- 
rectly from the remaining 6 rats for mea-
suring caspase-3 level.

Detection method
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Results

Observation of tissue morphology via HE stain-
ing

In normal group, the knee joint had normal  
morphology, complete structure and normal 
chondrocytes arranged closely and in order, 
and there were complete tidal lines a little far 
away from the joint surface. In model group,  
the knee cartilages were damaged with abnor-
mal morphology, incomplete structure and par-
tial loss, the number of chondrocytes was re- 
duced and disorganized, and tidal lines were 
incomplete and near to the joint surface. In 
swimming exercise group, the knee cartilages 
were partially damaged, but the morphology 
and structure were improved, the number of 
chondrocytes was larger and they were arrang- 
ed in well order, and there were complete tidal 

lines which were a little far away from the joint 
surface (Figure 1).

Immunohistochemical staining

Caspase-3 positive expression showed dark 
brown color and was lower in normal group  
and higher in model group and swimming exer-
cise group (Figure 2) with a significantly redu- 
ced level after swimming exercise than model 
group (P < 0.05) (Figure 3).

Caspase-3 protein expression

Caspase-3 protein expression was significantly 
higher in model group and swimming exercise 
group than normal group (Figures 4, 5) and it 
was significantly decreased after swimming ex- 
ercise in comparison to the model group (P < 
0.05) (Figure 5).

Figure 1. Observation of tissue morphology via HE staining (scale bar 20 μm).

Figure 2. Immunohistochemical detection of caspase-3 expression (scale bar 20 μm).
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Caspase-3 mRNA expression 

Caspase-3 mRNA level was lower in normal 
group and higher in model group and swim- 
ming exercise group with a declined level after 
swimming exercise in comparison to model 
group (P < 0.05) (Figure 6).

TUNEL apoptosis detection

The apoptotic rate was lower in normal group 
and higher in model group and swimming exer-
cise group with a decreased level in swimming 
exercise group in comparison to model group  
(P < 0.05) (Figure 7).

Discussion

The major pathological reactions of OA, a com-
mon degenerative joint disease in clinic, are 
degradation of articular cartilage and chondro-
cyte apoptosis [10]. OA is thought to be rela- 
ted to a variety of factors, including chondro-
cyte apoptosis, genetic factors and immune 
response [11, 12]. Studies have demonstrated 
that [13, 14] the apoptosis degree of chondro-
cytes in OA patients is significantly increased 
compared with normal chondrocytes, indicat-
ing a close correlation between chondrocyte 
apoptosis and OA. At the same time, some stu- 
dies have further confirmed [15, 16] that the 
results of in-situ hybridization are consistent 

Figure 4. Detection of caspase-3 protein expres-
sion via Western blotting. A. normal group. B. model 
group. C. swimming exercise group.

Figure 5. Caspase-3 protein expression. Note: *P < 
0.05 vs. normal group, #P < 0.05 vs. model group.

Figure 3. Average optical density of positive expres-
sion of caspase-3. Note: *P < 0.05 vs. normal group, 
#P < 0.05 vs. model group.

Figure 6. Caspase-3 mRNA expression. Note: *P < 
0.05 vs. normal group, #P < 0.05 vs. model group.

Figure 7. Apoptotic rate of chondrocytes. Note: *P < 
0.05 vs. normal group, #P < 0.05 vs. model group.
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between experimental rabbit model of OA and 
human OA, and TUNEL assay has shown that 
the degree of chondrocyte apoptosis in OA 
model was significantly higher than that of  
normal chondrocytes, further suggesting that 
chondrocyte apoptosis is one of the important 
pathological reactions of OA. Moreover, stu- 
dies have confirmed [17, 18] that the progres-
sion of OA is accelerated by chondrocyte apop-
tosis after OA occurs, so chondrocyte apop- 
tosis is involved in the process of OA progres-
sion. Capase-3-induced apoptosis, one of the 
known important components of death recep-
tor signal transduction, is known to have a 
close correlation with OA [19, 20]. Caspase-3 
inhibitors can effectively reduce the expres- 
sion of caspase-3 in chondrocytes in OA and 
inhibit the chondrocyte apoptosis, indicating 
caspase-3’s role in OA and chondrocyte apop-
tosis [21, 22]. Currently, it has been confirmed 
that the high expression of caspase-3 and 
chondrocyte apoptosis can be found in OA 
patients and rodent OA caused by modeling 
[23, 24]. Therefore, caspase-3 can serve as 
one of the important targets for inhibiting the 
chondrocyte apoptosis in OA. It has been indi-
cated that reduced Rspo-2 levels in OA os- 
teoblasts are responsible, at least in part, for 
their reduced Wnt/beta-catenin signaling and 
abnormal mineralization [25]. Spermidine acti-
vates RIP1 deubiquitination to inhibit TNF-
alpha-induced NF-kappaB/p65 signaling path-
way in osteoarthritis [26]. The limitation of the 
study therefore exists that the mechanisms of 
swimming exercise need further investigation 
besides caspase-3, which may lead to poten- 
tial new avenues of combined treatment of OA.

The advantages of swimming exercise are as 
follows: (1) the buoyancy of water reduces the 
weight load on the joint during exercise, (2) the 
resistance of water against joint movement 
enhances the exercise, and (3) the appropriate 
water temperature can alleviate the muscle 
spasm, ease the pain and improve the blood 
circulation in the joint. At the same time, stud-
ies have revealed that [27, 28] the effects of 
exercise on the body’s metabolism and struc-
tural morphology are highly specific, and only 
the exercise load of the specific type, intensity, 
frequency and duration can exert a positive 
effect on maintaining the normal function of 
articular cartilage. Swimming exercise is a typi-
cal cyclic motion of limbs, which has an excel-

lent rehabilitation effect in clinic. During swim-
ming exercise, the complex biological resistan- 
ce and discomfort in active motion of joint in  
OA can be perceived by the fine proprioceptive 
sensation, thus adjusting the body motion in 
time, so that the body function and pathologi-
cal changes can be compatible with the swim-
ming status [29, 30]. 

Conclusion

Results of this study indicate that swimming 
exercise can significantly inhibit the expres- 
sion of caspase-3, an apoptotic gene in OA, 
thus inhibiting chondrocyte apoptosis in OA, 
which may be one of the reasons for the good 
rehabilitation effect of swimming exercise on 
OA.
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