Original Article The ovarian carcinoma risk with the polymorphisms of CYP1B1 come from the positive selection

Liying Zhang, Liyuan Feng, Meng Lou, Xihan Deng, Chuanzhong Liu, Li Li

Department of Gynecologic Oncology, The Affiliated Tumor Hospital of Guangxi Medical University, Nanning, China Received November 22, 2020; Accepted March 18, 2021; Epub May 15, 2021; Published May 30, 2021

Abstract: Ovarian carcinoma is one of the major causes of gynecological cancer. This study aimed to evaluate the association of CYP1 family polymorphism with the risk of ovarian carcinoma and chemotherapy resistance. Positive selection was detected among human CYP1A1, CYP1A2, and CYP1B1, and other species. Several positive sites were detected by site models and brach-site models. Meta-analysis was conducted for the sites rs1056836 (MAF 0.39) and rs1056827 (MAF 0.36) of CYP1B1 to clarify the association between gene polymorphisms and ovarian carcinoma risk. Subgroup analysis showed the association of rs1056836 polymorphism with ovarian cancer risk among Caucasians and Asians, while all the six genetic models showed no association among African-Americans. All the six genetic models showed no association of rs1056827 polymorphism with ovarian cancer risk. The polymorphisms of rs1056836 associated with ovarian cancer risk were detected in chemotherapy-sensitive and drugresistant ovarian cancer patients. DNA was extracted from 62 chemotherapy resistance Ovarian carcinoma tissue samples and 137 chemotherapy-sensitive ovarian carcinoma tissue samples as controls. Gene polymorphisms were genotyped using the Sequenom MassARRAY SNP approach. There was no significant association between the CYP1B1 rs1056836 polymorphism and chemotherapy resistance of ovarian cancer in all genetic models. The results suggest that rs1056836 polymorphism of gene CYP1B1 under obvious selection pressure had a significantly increased risk for ovarian carcinoma. However, it had no significant correlation with chemotherapy resistance of ovarian cancer.

Keywords: Ovarian carcinoma, CYP1B1, positive selection

Introduction

Ovarian carcinoma is one of the major causes of gynecological cancer and subsequently a reason for mortality among women. Each year, more than 220,000 new cases are diagnosed globally, and it is projected that 14,000 ovarian cancer patients will die annually in the United State of America (U.S.A) [1, 2]. At present, maximum cytoreductive surgery and chemotherapy based on platinum combined with paclitaxel are the standard treatment strategies for patients with epithelial ovarian cancer. However, due to the high degree of heterogeneity of ovarian cancer, most patients undergoing standard treatment relapse within 2-3 years and develop multidrug resistance to chemotherapy drugs. The mechanism of ovarian cancer occurrence and drug resistance still remains unclear. Recently, several studies have revealed that the development of cancer and drug resistance may be an evolutionary process [3, 4]. With the development of cancer evolution theory, some scholars have recently used molecular evolution theory to find a new and effective treatment of ovarian cancer.

Studies have shown that the occurrence of ovarian cancer is closely related to the expression of estradiol [5]. Further, the CYP1 family can convert estradiol into a more carcinogenic 4-hydroxyestradiol through the aromatic hydrocarbon pathway [6]. CYP1 family of enzymes is one of the important members of the CYP superfamily. CYP1 family includes three proteins namely; CYP1A1, CYP1A2, and CYP1B1. The family plays a vital role in the bioactivation of the pro-carcinogenic compounds to carcinogenic derivatives. Further, it is also important for endogenous hormone regulation, pharmacokinetics, and the response of drugs that are regulated by AhR [6]. Similarly, studies have linked it to the pathogenesis of various cancers in the reproductive organs such as the endome-

Figure 1. Phylogenetic tree of CYP1A1 gene.

trium, breast, and ovary [7-9]. CYP450 metabolism of foreign chemicals results in either successful detoxification or generation of toxic metabolites that contribute to increased risk of cancers and/or other toxic effects. However, the polymorphism in the CYP1 family gene results in different effects on the conversion efficiency and products of estradiol, resulting in differences in the occurrence of ovarian cancer and its resistance to drugs. This study conducted a selection pressure analysis on the CYP1 family from the perspective of biological evolution and screened out meaningful sites, thereby providing some theoretical basis for the occurrence and drug resistance of ovarian cancer.

Materials and methods

Sequence data collection

DNA sequences and CYP1A1, CYP1A2, and CYP1B1 protein were retrieved from Ensembl (http://asia.ensembl.org/index.html) and National Center for Biotechnology Information (NCBI). Subsequently, the verification of retrieved data file was carried out via EST-Blast in NCBI (http://blast.ncbi.nlm.nih.gov/Blast. cgi). Coding sequences utilized in the study included 50 specials of CYP1A1, 51 specials of CYP1A2, and 46 specials of CYP1B1 as indicated in Supplementary Tables 1, 2, 3.

Evolutionary analysis

The sequence alignment of the coding sequence for the protein of the CYP1 family was performed via the MUS-CLE website (https://www.ebi. ac.uk/Tools/msa/muscle/), followed by translating the coding sequence for codon alignments. Similarly, homologs alignment was performed for each specific exon. The alignment output was examined and manually modified for fitting the software requirements. The Maximum Likelihood (ML) technique was used for the construction of a phylogenetic tree of translat-

able sequences of CYP1 family protein (**Figure 1**; 1000 bootstrap replicates) [10, 11].

Recognition of positive selection

For the quantification of natural selection's accumulative effect on the molecular evolution of the CYP1 family, we applied non-synonymous per synonymous nucleotide substitutions (ω = dN/dS). To analyze the selective pressures, we employed the ML method in the CODEML program of PAML software package 4.4 [12, 13]. In CODEML, the site-models were initially utilized to allow heterogeneous ω across the sites, however, the ω ratios were constant among branches. Furthermore, the explanation was sorted out for the diverse structural and functional constraints experienced through specific site domains [14]. Further, the branchsite models were employed to identify positive selection sites among various species lineages.

The crowd validation

The positive selection sites were changed to DNA sites from searching the SNP sites of the CYP1 family in the SNP database (https://www.

ncbi.nlm.nih.gov/snp/). The sites with MAF > 0.05 in 1000 genomes website (http:// phase3browser.1000genomes.org/index.html) were then selected. Only rs1056836 and rs1056827 of CYP1B1 matched the condition.

Meta-analysis

Investigation of eligible studies: A comprehensive systematic literature search was conducted in Cochrane Library, PubMed, Web of Science, EMBASE, Chinese Biomedical Literature Database (SinoMed), Chinese National Knowledge Infrastructure (CNKI), and Wan-Fang database for randomized controlled trials about the rs1056836 and rs1056827 of CYP1B1. Statistical analyses were conducted by using Stata software (version 14.0) and RevMan software (version 5.3).

Inclusion criteria: For study selection, the following inclusion criteria were utilized: (i) casecontrol study; (ii) The data of genotype frequencies were accessible for both cases as well as controls (iii) published up to 1st October 2020 (iv) full-text articles; (v) literature published in both English and Chinese languages. The authors checked the literature via the exact test.

Data extraction: For the data extraction, the information collected from papers included the name of the authors, publication year, number of total cases as well as control, allele frequencies of the CYP1B1 rs1056827, and rs1056836 polymorphisms, country, and ethnicity. Two authors executed the search independently. In this study, disagreement regarding the eligibility criteria of any paper was resolved via the evaluation by a third reviewer and discussion till reaching a consensus.

Statistical analysis: Odds ratios (ORs) with 95% confidence intervals (CIs) were used for evaluating the strength and size of the association between CYP1B1 polymorphisms and the risk of ovarian carcinoma. Alternatively, OR were obtained from the data of genotype frequencies, and were transformed logarithmically for obtaining normality. OR was measured for homozygous carriers versus 'wild type' and heterozygous carriers versus 'wild type'. Furthermore, OR were measured for the recessive model, i.e., homozygous carriers, and the dominant model, i.e., heterozygous and homozygous carriers versus 'wild type'. Heterogeneity existing between the studies was evaluated via a chi-square-based Q-test and through estimation of l^2 , accordingly. Heterogeneity was considered in the case of *P*-value < 0.05, and when the DerSimonian Laird random-effects model was fitted. Otherwise, the standard Mantel-Haenszel fixed-effects model was adjusted.

The publication bias was determined via Egger's linear regression method. For the visual inspection of the funnel plot (plots of effect estimate against sample size), asymmetry was carried out. For publication bias, *P*-value < 0.05 was regarded as statistically significant. Statistical analyses for the data were conducted via statistical software, the stata 17.0. The *P*-values were for a two-sided test, the *P*-value < 0.05 was regarded as statistically significant.

Genotyping assay

Patient enrollment and sample collection and processing: In this study, 199 tissue samples of patients with stage I-IV ovarian serous adenocarcinoma were selected from the tissue sample bank of the gynecology and Oncology Department of Affiliated Cancer Hospital of Guangxi Medical University from January 2011 till July 2017. The Ethics Committee of The Affiliated Tumor Hospital of Guangxi Medical University approved the study. All patients received an explanation about the aims of the study and provided signed informed consent. All patients had undergone cytoreductive surgeries and the diagnosis of ovarian serous adenocarcinoma and had been confirmed by two pathologists. Patients were administered platinum-paclitaxel chemotherapy for no less than 4 cycles after surgery. All specimens were divided into two groups: sensitive group (137 cases) and resistant group (62 cases). including 50 cases from fresh frozen tissue, and 149 cases from paraffin tissue. The classification of drug sensitivity and resistance is based on NCCN guidelines: for patients receiving the first treatment, recurrence within half a year after 4-6 months of regular chemotherapy is considered as drug resistance, recurrence after more than half a year is considered as sensitive. In addition, if the disease continues to progress during chemotherapy, it is called

Figure 2. Phylogenetic tree of CYP1A2 gene.

"uncontrolled" and is considered resistant. The fresh frozen tissue was obtained from the tumor lesion during the operation, which was immediately placed into the cryopreservation tube and stored in the liquid nitrogen tank. The sensitive group was the ovarian epithelial carcinoma tissue sensitive to platinum, and the drug-resistant group was the ovarian epithelial carcinoma tissue resistant to platinum. The preserved FFPE tumor blocks were taken from the Affiliated Tumor Hospital of Guangxi Medical University and kept at ~25°C till the processing. Nuclear DNA extraction was performed from FFPE using the GeneJET FFPE DNA Purification Kit (Thermo Scientific, K0881). After the DNA extraction, quantification of DNA in each sample was carried out using nanodrop. The DNA concentration in all samples was in the concentration range from 50 to 500 ng/µl, which fulfilled the need for Sequenom MassARRAY SNP. Extracted DNA was kept at -80°C till the genotyping was carried out. The identification of the genotype was carried out with Sequenom MassARRAY SNP. Fisher's exact test and Chi-square test were carried out for the comparison of the variations between the two groups.

Genotyping: The identification for the genotype of CYP1B1 gene rs1056836 was carried out with Sequenom Mass-ARRAY SNP. The allelic frequency for the desired gene was calculated according to the genotypes. For the PCR setup, 2.0 µl of DNA extract (50 to 100 ng/µl) was performed in a 25 µl reaction mixture containing a standard PCR buffer, Tag DNA polymerase (1.0 U), dNTPs (200 uM), Mgcl, (1.5 mM), and primers (0.4 μ M). The PCR setup for the denaturation of DNA included 1 and 35 cycles at 94°C for 5 minutes and 30 s. accordingly. For annealing of primer, the program was as 58°C for 30 seconds and extension at 72°C for 1 minute and 10 minutes, respectively. The primary amplifica-

tion primer sequence was ACGTTGGATGTTG-TCAACCAGTGGTCTGTG. The secondary amplification primer sequence was ACGTTGGATGGC-CATCCTTGTCCAAGAATC. The single-base extension primer sequence was GGGTTAGGCCAC-TTCA.

Statistical methods: Fisher's exact test and Chi-square test were employed to evaluate the differences between each group regarding allelic frequencies and their genotype. Unconditional logistic regression was employed for comparing the odds ratio (OR) and *P* values to identify the correlation between gene polymorphism and risk of three kinds of tumors. Statistical analysis was carried out via SPSS version 18.0 (USA), and the P < 0.05 was regarded as statistically significant.

Results

Positive selection

A phylogenetic tree based on the sequence of amino acids among several Metazoa species was generated for establishing the association of their CYP1 family enzymes (see **Figures 1-3**).

Figure 3. Phylogenetic tree of CYP1B1 gene.

Initially, in the site model, results obtained from the LRT test statistic (2ΔInL) of M7-M8 comparisons were 8000.49129 (CYP1A1), 7133.20827 (CYP1A2), and 6608.43877 (CY-P1B1). Then the BEB approach was implemented and 31, 33, and 11 sites were detected within the three genes under the positive selection with BPP values > 0.95 (Table 1). Secondly, the one-ratio model revealed that the whole CYP1 family genes had gone through the purifying selection. The free-ratio model was analyzed and co-related with the oneratio model, the obtained results revealed that every branch had its independent u value (P < 0.01, see Table 2). The branch-site models were used to evaluate positively selected sites in the ancestral lineages. In consequence, 1, 2, and 2 positive sites were detected in CYP1A1, CYP1A2, and CYP1B1, respectively, when branch-site models were used (Table 3).

The SNP connection and the positive selection sites

All the positive selection sites were investigated in the SNP database (https://www.ncbi.nlm.nih.gov/projects/SNP/) and found 57 SNPs corresponding to them (**Table 4**). The

MAF of rs1056836 and rs-1056827 of CYP1B1 is 0.39 and 0.36, other SNPs are < 0.01. So, we chose these two SNPs for Meta-analyses to investigate whether they are related to the risk of ovarian cancer.

Meta analysis result

Characteristics of this polymorphism study: In total, 1, 655 articles were first retrieved from the database searching until 1st October 2020. Then, only 31 articles were obtained and selected after the duplicated publications were weeded out. Among them, 8 articles were abstracts, review articles, editorials, or meta-analyses, and 16 articles were related to other polymorphisms and diseases or had incomplete gen-

otype data. Hence, we further checked and excluded unwanted articles from the study following the criteria set for exclusion. Lastly, only 7 articles fulfilled the requirements of our study and were included in the meta-analysis [15-21]. Included seven studies associated with CYP1B1 rs1056836 polymorphism and the other three studies associated with CYP-1B1 rs1056827 polymorphism [17, 18, 21]. The related parameters and the baseline feature of the included studies are listed in **Table 5**.

Meta-Analysis of CYP1B1 rs1056836 and rs1056827 polymorphism with a risk of ovarian carcinoma: Meta-analysis was conducted for a total of 7 studies containing 1285 patients samples and 2660 controls to examine the relations between rs1056836 and ovarian cancer risk (shown in **Table 6**). Three studies involving 852 patients' samples and 1202 controls investigated the relations between rs1056827 and the ovarian cancer risk (shown in **Table 7**). In general, collectively our data showed that both rs1056836 and rs1056827 polymorphism in genes have no link with a higher risk of ovarian carcinoma in the six genetic models (**Table 8**).

Gene	Model	InL	Compared models	np	df	LRT (2∆InL)	p value	ω	Positive selected sites
CYP1A1	MЗ	-27301.23484		103				0.1696	
	MO	-28218.98883	M3-M0	99	4	1835.50798	0	0.1501	none
	M2a	-27796.90516		102				0.2771	
	M1a	-27796.90516	M2a-M1a	100	2	0	1	0.2771	none
	M8	-31268.52748		102				0.3537	6S, 32Q, 35K, 39N, 147I, 172S 180G, 181P, 217L, 221N, 228V 246P, 247S, 249N, 250A, 256E 259Y, 260S, 262M, 271K, 339V 356R, 363S, 426E, 435P, 442V
	M7	-27268.28184	M8-M7	100	2	8000.49129	0	0.1808	465W, 483P, 509Q, 510L, 512S
CYP1A2	MЗ	-26990.93851		105	4	1619.60288	0	0.1522	
	MO	-27800.73995	M3-M0	101				0.1323	none
	M2a	-27550.1175		104	2	0	1	0.2474	
	M1a	-27550.1175	M2a-M1a	102				0.2474	none
	M8	-30536.17696		104	2	7133.20827	0	0.2278	5Q, 6S, 19A, 34R, 37K, 41S, 67R 71R, 149I, 174S, 185H, 190N 212S, 224H, 229T, 248P, 249A 252R, 255A, 258Q, 261L, 262W 267T, 273Q, 300N, 395T, 425S 434T, 435A, 443P, 444L, 484P
	M7	-26969.57282	M8-M7	102				0.1587	488K
CYP1B1	MЗ	-22636.80457		95	4	1302.626	0	0.1256	none
	MO	-23288.11757	M3-M0	91				0.1117	
	M2a	-23104.02312		94	2	0	1	0.1799	none
	M1a	-23104.02312	M2a-M1a	92				0.1799	
	M8	-25929.03736		94	2	6608.43877	0	0.3523	136H, 140H, 179A, 194R, 284R 317L, 367D, <i>432L,</i> 435P, 502K
	M7	-22624.81797	M8-M7	92				0.1296	517K

 Table 1. Site model tests of Metazoa on CYP1 genes subset

Subgroup analysis: The findings of the subgroup analysis by ethnicity in African-American, Caucasians, and Asians for all six genetic models are shown in Figures 4, 5. The Heterozygous model (GC versus GG: OR = 1.29, 95% CI: 1.03-1.61, P = 0.03), Homozygote model (CC versus GG: OR = 1.30, 95% CI: 1.02-1.65, P = 0.03), and Dominant model (CC+GC versus GG: OR = 1.47, 95% CI: 1.05-1.60, P = 0.016) established the link of rs1056836 polymorphism with ovarian cancer risk in Caucasians ethnicity. The Allele model (G versus C: OR = 2.71, 95% CI: 1.39-5.31), Homozygote model (CC versus GG: OR = 0.22, 95% CI: 0.06-0.77), and Recessive (GG versus GC+CC: OR = 0.22, 95% CI: 0.09-0.59), recognized the co-relations of rs1056836 polymorphism with ovarian cancer risk among Asians, However, all the six genetic models showed no association among African-American. All the six genetic models showed no relation of rs1056827 polymorphism with ovarian cancer risk among African-Americans, Caucasians, and Asians.

To evaluate the publication bias of for included studies, Egger's test was performed. The results for all models (allent model: P = 0.245; dominant model: P = 0.138; recessive model: P = 0.274; additive model: P = 0.224; Homozygous model: P = 0.200; Heterozygous model: P = 0.427) revealed no evidence of publication bias in the meta-analysis of rs1056836. However, two models of The Egger's test results pinpointed publication bias of rs1056827 (allent model: P = 0.718; dominant model: P = 0.151; recessive model: P =0.277; additive model: P = 0.027; Homozygous model: P = 0.418; Heterozygous model: P =0.049) in the meta-analysis.

Individual polymorphisms co-relation with drug-resistant of ovarian cancer

To find a link of polymorphism with drug-Resistant in ovarian cancer, the genotype of CYP1B1 (rs1056836) was analyzed via Sequenom MassARRAY SNP technology. We evaluated

						0		
Gene	Model	InL	Compared models	np	df	LRT (2∆InL)	p value	ω
CYP1A1	Fr	-28037.12928	M0/Fr	195	96	363.71911	0.00E+00	
	MO	-28218.98883		99				
	Та	-28215.07649	M0/Ta	100	1	73824688	0.005154	ω0 = 0.1495, ωa = 3.3534
	Tb	-28218.23963	M0/Tb	100	1	1.50E+00	0.220919	ω0 = 0.1494, ωa = 0.4635
	Тс	-28214.53803	M0/Tc	100	1	8.901592	0.00285	ω0 = 0.1488, ωa = 999.0000
	Td	-28218.92125	M0/Td	100	1	1.35E-01	0.713147	ω0 = 0.1498, ωa = 0.2003
	Те	-28218.98455	M0/Te	100	1	0.008556	0.926302	ω0 = 0.1500, ωa = 0.1588
	Tf	-28217.76654	M0/Tf	100	1	2.44E+00	0.117932	$\omega 0 = 0.1499$, $\omega a = 999.0000$
CYP1A2	Fr	-27583.02458	M0/Fr	199	98	435.430748	0.00E+00	
	MO	-27800.73995		101				
	Та	-27799.46573	M0/Ta	102	1	2.54844	0.110404	$\omega 0 = 0.1330$, $\omega a = 0.0473$
	Tb	-27798.74531	M0/Tb	102	1	3.99E+00	0.045791	$\omega 0 = 0.1316$, $\omega a = 999.0000$
	Тс	-27792.14895	M0/Tc	102	1	17.182014	3.40E-05	ω0 = 0.1300, ωa = 5.2984
	Td	-27798.61324	M0/Td	102	1	4.25E+00	0.0391	$\omega 0 = 0.1316$, $\omega a = 999.0000$
	Те	-27800.27495	M0/Te	102	1	0.930009	0.334861	$\omega 0 = 0.1322$, $\omega a = 0.5119$
	Tf	-27798.71841	M0/Tf	102	1	4.04E+00	0.044353	$\omega 0 = 0.1321$, $\omega a = 1.0464$
	Tg	-27797.54368	M0/Tg	102	1	6.39E+00	0.011461	ω0 = 0.1317, ωa = 999.0000
CYP1B1	Fr	-23145.36942	M0/Fr	179	88	285.496287	0.00E+00	
	MO	-23288.11757		91				
	Та	-23289.23363	M0/Ta	92	1	2.232128	0.135168	ω0 = 0.1114, ωa = 6.4575
	Tb	-23285.75435	M0/Tb	92	1	4.73E+00	0.029703	$\omega 0 = 0.1110$, $\omega a = 0.9007$
	Тс	-23287.41432	M0/Tc	92	1	1.406486	0.235641	$\omega 0 = 0.1115$, $\omega a = 999.0000$
	Td	-23282.36142	M0/Td	92	1	1.15E+01	6.92E-04	ω0 = 0.1106, ωa = 1.2861
	Те	-23284.89967	M0/Te	92	1	6.435791	0.011185	$\omega 0 = 0.1114$, $\omega a = 999.0000$
	Tf	-23287.15559	M0/Tf	92	1	1.92E+00	0.165423	$\omega 0 = 0.1116$, $\omega a = 999.0000$
	Tg	-23288.43365	M1/Tg	92	1	6.32E-01	0.426562	$\omega 0 = 0.1116$, $\omega a = 2.6526$
	Th	-23288.04399	M2/Th	92	1	1.47E-01	0.701278	$\omega 0 = 0.1119$, $\omega a = 0.0772$
	Ti	-23283.84198	M3/Ti	92	1	8.55E+00	0.003453	ω0 = 0.1103, ωa = 999.0000
	Tj	-23288.10274	M4/Tj	92	1	2.97E-02	0.863269	ω0 = 0.1117, ωa = 0.0981
	Tk	-23289.04418	M5/Tk	92	1	1.85E+00	0.173409	ω0 = 0.1116, ωa = 1.9973

Table 2. Branch model tests in a subset of Metazoa on CYP1 genes

variations in the Platinum resistance group and the Platinum sensitive group of CYP1B1 (rs1056836) distribution. The statistical analysis on the CYP1B1 (rs1056836) genotype distribution between the Platinum resistance group and the Platinum sensitive group did not show obvious differences (**Table 9**).

Discussion

The theory of molecular evolution originated from Darwin's theory of evolution, which refers to the evolution of biological macromolecules in the process of evolution to adapt to environmental changes [22]. The molecular evolutionary analysis employs statistical, mathematical, and computer science methods to study molecular sequence data of DNA and proteins, using

sequence similarity, evolutionary rate, divergence time, and phylogenetic tree to estimate molecular affinity [23]. Besides, the positive selection site analysis of adaptive evolutional protein sequences can provide information for the identification of important functional sites and amino acid structures. In recent years, comparative genomics and molecular phylogenetic analysis have been developed rapidly and are widely used in the classification of gene families, the incidence and growth of tumors, the evolution of viruses and immune escape, and the study of mechanisms [24-27]. In 1976, Nowell proposed a clonal evolution model, that is, cancer originates from a single mutant normal cell. The gene mutations that occur during the subsequent amplification process gradually enhance the survival advantage of the tumor

		Model	InL	np	df	LRT (2∆InL)	p value	Positive selected sites
CYP1A1	Та	Model A	-27796.22707	102				
		Model A null	-27796.41441	101	1	0.374674	0.540468	none
	Тс	Model A	-27791.46117	102				398G
		Model A null	-27794.66746	101	1	6.412593	0.011332	
CYP1A2	Tb	Model A	-27538.26421	104	1	18.321374	1.90E-05	184G, 418P
		Model A null	-27547.4249	103				
	Тс	Model A	-27541.84596	104	1	4.61194	0.031751	none
		Model A null	-27544.15193	103				
	Td	Model A	-27548.08974	104	1	4.033103	0.044616	none
		Model A null	-27550.10629	103				
	Tf	Model A	-27549.66766	104	1	0.191042	0.662051	none
		Model A null	-27549.76318	103				
	Ti	Model A	-27544.84393	104	1	1.999217	0.157381	none
		Model A null	-27545.84354	103				
CYP1B1	Td	Model A	-23095.44335	94	1	2.376804	0.12315	65A
		Model A null	-23096.63175	93				
	Те	Model A	-23102.86315	94	1	0.82245	0.364465	119A
		Model A null	-23103.27438	93				
	Ti	Model A	-23100.02028	94	1	1.933311	0.164397	none
		Model A null	-23100.98693	93				

Table 3. Branch-site model tests in a subset of Metazoa on CYP1 genes

Table 4. The SNPs corresponding to the positive selection sites

10010 11 1	ne en secrespenant				
gene	positive selection site	SNP	Change of basic group	Change of amino acid	MAF
CYP1A1	6S				
CYP1A1	32Q				
CYP1A1	35K				
CYP1A1	39N				
CYP1A1	116S				
CYP1A1	1471	rs960353942	As9	ls9	< 0.01
CYP1A1	172S				
CYP1A1	180G	rs775144476	Gs7	Gs7	< 0.01
CYP1A1	181P	rs766480120	Gs7	Ps7	< 0.01
CYP1A1	217L				
CYP1A1	221N				
CYP1A1	228V				
CYP1A1	246P	rs760213300	Cs7	Ps7	< 0.01
CYP1A1	247S				
CYP1A1	249N	rs771648532	As7	Ns7	< 0.01
CYP1A1	249N	rs749731774	Ts7	Ns7	< 0.01
CYP1A1	250A				
CYP1A1	256E	rs746238922	Gs7	Es7	< 0.01
CYP1A1	259Y				
CYP1A1	260S				
CYP1A1	262M	rs757497550	As7	Ms7	< 0.01
CYP1A1	271K				
CYP1A1	339V				

CYP1A1	356R	rs368650547	Gs3	Rs3	< 0.01
CYP1A1	356R	rs757872883	Gs7	Rs7	< 0.01
CYP1A1	3635	rs759604228	Cs7	Ss7	< 0.01
CYP1A1	426E	rs72547510	-s7	Es7	< 0.01
CYP1A1	435P				
CYP1A1	442V				
CYP1A1	465W	rs774927292	(7bp)→-	W7b	< 0.01
CYP1A1	483P	rs45500996	Cs4	Ps4	< 0.01
CYP1A1	509Q				
CYP1A1	510L	rs578153711	Gs5	Ls5	< 0.01
CYP1A1	512S	rs779920114	Ts7	Ss7	< 0.01
CYP1A1	398G				
CYP1A2	5Q				
CYP1A2	6S	rs764359866	Cs7	Ss7	< 0.01
CYP1A2	19A	rs746300395	TG74	AG7	< 0.01
CYP1A2	19A	rs1047643383	Gs1	As1	< 0.01
CYP1A2	19A	rs771691950	Cs7	As7	< 0.01
CYP1A2	34R	rs201934979	Cs2	Rs2	< 0.01
CYP1A2	34R	rs941101723	Gs9	Rs9	< 0.01
CYP1A2	37K	rs751602658	As7	Ks7	< 0.01
CYP1A2	41S				
CYP1A2	67R	rs760996321	As7	Rs7	< 0.01
CYP1A2	71R	rs755565165	Cs7	Rs7	< 0.01
CYP1A2	71R	rs779505412	Gs7	Rs7	< 0.01
CYP1A2	1491				
CYP1A2	174S	rs1002036121	Cs1	Ss1	< 0.01
CYP1A2	185H	rs147248980	C/G47	H/G	< 0.01
CYP1A2	190N				
CYP1A2	212S	rs758748797	As7	Ss7	< 0.01
CYP1A2	224H	rs773105304	Cs7	Hs7	< 0.01
CYP1A2	229T	rs755082460	Cs7	Ts7	< 0.01
CYP1A2	248P				
CYP1A2	249A	rs575035489	Cs5	As5	< 0.01
CYP1A2	252R	rs377683245	Gs3	Rs3	< 0.01
CYP1A2	255A				
CYP1A2	258Q	rs775258473	Cs7	Qs7	< 0.01
CYP1A2	261L				
CYP1A2	262W				
CYP1A2	267T	rs759584175	Cs7	Ts7	< 0.01
CYP1A2	267T	rs756704382	As7	Ts7	< 0.01
CYP1A2	273Q				
CYP1A2	300N				
CYP1A2	395T	rs911014711	As9	Ts9	< 0.01
CYP1A2	395T	rs149928755	Cs1	Ts1	< 0.01
CYP1A2	395T	rs915586110	Gs9	Ts9	< 0.01
CYP1A2	425S	rs780344039	Cs7	Ss7	< 0.01
CYP1A2	425S	rs969721209	Ts9	Ss9	< 0.01
CYP1A2	434T	rs770969636	As7	Ts7	< 0.01
CYP1A2	434T	rs200295985	Cs2	Ts2	< 0.01

CYP1A2	435A	rs745999166	Cs7	As7	< 0.01
CYP1A2	443P	rs889339647	Cs8	Ps8	< 0.01
CYP1A2	444L	rs140757511	Gs1	Ls1	< 0.01
CYP1A2	484P	rs370476434	Cs3	Ps3	< 0.01
CYP1A2	484P	rs148212809	Gs1	Ps1	< 0.01
CYP1A2	488K				
CYP1A2	184G				
CYP1A2	418P				
CYP1B1	136H	rs538072907	Cs5	HsN	< 0.01
CYP1B1	140H				
CYP1B1	179A	rs771076928	Gs7	As7	< 0.01
CYP1B1	194R				
CYP1B1	284R	rs368249322	Cs3	Rs3	< 0.01
CYP1B1	317L	rs199836011	Gs1	Ls1	< 0.01
CYP1B1	367D	rs916479886	Gs9	Ds9	< 0.01
CYP1B1	432L	rs1056836	Cs1	Ls1	0.39
CYP1B1	435P	rs113974874	Cs1	Ps1	< 0.01
CYP1B1	502K				
CYP1B1	517K				
CYP1B1	65A	rs554295550	Gs5	As5	< 0.01
CYP1B1	119A	rs1056827	Gs1	As1	0.36

 Table 5. Characteristics of CYP1B1 rs1056836 and rs1056827 polymorphism studies and the risk

 for ovarian cancer

site	Study	year	Country	Ethnicity	Case	Control	P for HWE
rs1056836	Goodman	2001	America	Caucasian, Asian, Other	128	144	Yes
	Cecchin	2004	Italy	Caucasian	220	280	yes
	Sellers, a	2005	America	Caucasian	454	545	yes
	Sellers, b	2005	America	African American	36	53	NO
	ZHU ZY	2006	China	Asian	53	30	yes
	Holt, a	2007	America	Caucasian	277	447	yes
	Holt, b	2007	America	African-American	33	127	yes
	Delort	2008	France	Caucasian	51	1,000	yes
	Zahid	2014	America	African-American and Caucasian	33	34	yes
rs1056827	Sellers, a	2005	America	Caucasian	453	543	yes
	Sellers, b	2005	America	African American	36	53	no
	ZHU ZY	2006	China	Asian	53	30	no
	Holt, a	2007	America	Caucasian	277	450	yes
	Holt, b	2007	America	African-American	33	126	no

cell population, and eventually lead to the rapid proliferation of aneuploidy, thereby triggering Heterogeneity. This model proposes the mechanism of cancer and heterogeneity from an evolutionary perspective [28]. The poor treatment effect and high recurrence rate of ovarian cancer may be related to the high heterogeneity of cancer cells, which come from an evolutionary perspective. The most commonly mutated genes in ovarian cancer include p53 and BRCA1/BRCA2. KHAN had conducted an evolutionary analysis of the p53 gene in 26 mammals, showing multiple amino acid positions point under positive selection pressure [29]. LOU used PAML software to analyze the BRCA1 gene of 23 primates. Under the selection pressure analysis, the site model shows that the 10 amino acid sites of the gene are

		С	ase		Control				
Research	GG	GC	CC	HWE	GG	GC	CC	HWE	
Goodman	13	48	67	0.62	7	42	95	0.71	
Cecchin	35	126	59	0.06	57	139	84	1.0	
Sellers a	84	230	140	0.83	110	269	166	0.99	
Sellers b	23	0	13	0.00	31	0	22	0.00	
Zhu ZY	16	25	12	0.93	5	8	17	0.14	
Holt, a	41	129	107	0.98	90	216	141	0.91	
Holt, b	18	11	4	0.56	80	39	8	0.56	
Delort	6	27	18	0.69	203	475	322	0.52	
Zahid	10	14	9	0.69	6	15	12	0.94	

Table 6. Genotype distribution of rs1056836 polymorphism among ovarian cancer cases and controls

Table 7. Genotype distribution of the rs1056827 polymorphism among ovarian cancer cases and controls

		0							
Decerch		Cas	se		Control				
Research	GG	GT	TT	HWE	GG	GT	TT	HWE	
Sellers a	233	178	42	YES	110	269	166	YES	
Sellers b	6	30	0	NO	16	37	0	NO	
ZHU ZY	16	25	12	YES	5	8	17	YES	
Holt, a	131	116	30	YES	222	188	40	YES	
Holt, b	12	15	6	NO	49	50	27	NO	

under obvious positive selection pressure. The results of the branch model suggest that the positive selection pressure is more obvious on the three branches of human bonobos. The study also performed the same analysis on the BRCCA2 gene, showing that it is also under obvious positive selection pressure [30]. There is no report on the evolutionary analysis of the CYP1 family in metazoans at present. In our research, we revealed 57 positive selection sites in the CYP1 family. Particularly, the MAF of rs1056836 and rs1056827 of CYP1B1 is 0.39 and 0.36. It showed that CYP1B1 was under obvious positive selection pressure. The theory of molecular evolution helps to explain the mechanism of drug resistance of cancer cells in a new direction, to put forward more targeted and effective treatment measures.

Genetic factors significantly contribute to the tendency of ovarian carcinoma development. Though the causal genetic links in a pathological state largely remain unknown, it is assumed that changes in CYP1B1 polymorphic variants in their function to steroid hormones and procarcinogens may enhance the susceptibility to estrogen-dependent carcinomas, for example, breast and endometrial cancer [31, 32]. However, the essential role of CYP-1B1 polymorphism in ovarian cancer still needs to be explored. On chromosome 2p22-21, the locus of the CYP1B1 gene is present that contains three exons. Human CYP1B1 consists of three exons in size of 371, 1044, and 3707 bp in length, and having two introns in size of 390 and 3032 bp spanning 8.5 kbp of genomic DNA (GenBank accession no. U56438). The coding region starts at the 5'-end of the second exon and ends with the last exon. CYP1B1 is a crucial enzyme, which contributes to the metabolism of exogenous as well as endogenous substrates, many of which include carcinogenic compounds. Gene polymorphisms of CYP1B1 have been characterized in different cancers. The four most frequent polymorphisms of the CYP1B1 occur due to the substitutions in amino acids. The examples include Leu432Val, Asn453Ser, Arg48Gly, and Ala119Ser. P450 1B1 is an efficient catalyst for estrogen hydroxylation. It catalyzes the 4-hydroxylation reaction of 17β-estradiol (E2) that produces the less active metabolite, 4-hydroxyestra-

diol. 4-Hydroxyestradiol is believed to cause estrogen-dependent tumors [33]. The CYP1B1 polymorphism is the most relevant one for 4-hydroxyestradiol production which is characterized by a C to G conversion in codon 432, thus leading to the substitution of a Leu with a Val in the protein. The mutated allele is associated with higher efficiency of 4-hydroxyestradiol production. Women carrying the 432GG variant are presumed to be more exposed to the carcinogenic effects of 4-hydroxyestradiol, hence at higher risk of developing estrogenrelated cancer [34]. Several epidemiological studies have been carried out to evaluate the correlation between CYP1B1 polymorphisms and the risk of ovarian cancer. Though, the obtained results from these reports were erratic or contradictory [16, 18, 19]. However, the subgroup analysis of this meta-analysis showed the association of rs1056836 polymorphism with ovarian cancer risk among Caucasians and Asians.

Through database retrieval and meta-analysis, rs1056836 was found strictly associated with the incidence of ovarian cancer. This mechanism may come from molecular evolution. But

Table 8. Pooled odds ratios for heterozygous	homozygous carriers,	dominant and recessive	model for the polymorphisms CYP1B1 rs1056	3836
and rs1056827				

	Allele model		Heterozygous		Homozygous		Dominant model		Recessive model		F. additive model	
Polymorphisms	OR (95% CI)	Test for hetero- geneity	OR (95% CI)	Test for hetero- geneity								
rs1056836	1.03 (0.84-1.27)	0.002	1.21 (0.99-1.48)	0.622	0.98 (0.66-1.43)	0.015	1.15 (0.96-1.39)	0.144	0.87 (0.65-1.17)	0.007	0.88 (0.76-1.02)	0.462
rs1056827	0.94 (0.82-1.08)	0.935	1.09 (0.90-1.32)	0.707	1.06 (0.79-1.45)	0.570	1.09 (0.91-1.31)	0.776	1.04 (0.77-1.40)	0.762	0.93 (0.77-1.11)	0.624

А

ID	OR (95% CI)	% Weight
Caucasian		
Cecchin (2004)	0.97 (0.76, 1.25)	15.10
Sellers a (2005)	0.96 (0.80, 1.15)	16.92
Holt,a (2007)	0.77 (0.62, 0.96)	15.98
Delort (2008)	0.79 (0.52, 1.18)	11.15
Subtotal (I-squared = 4.8%, p = 0.369)	0.89 (0.79, 1.00)	59.15
Caucasian, Asian, Other		
Goodman (2001)	1.68 (1.13, 2.51)	11.41
Subtotal (I-squared = .%, p = .)	1.68 (1.13, 2.51)	11.41
Asian		
Zhu Zhuangyan (2006)	2.71 (1.39, 5.31)	6.51
Subtotal (I-squared = .%, p = .)	2.71 (1.39, 5.31)	6.51
African-American		
Holt,b (2007)	0.68 (0.37, 1.26)	7.35
Sellers b (2005)	0.87 (0.53, 1.43)	9.28
Subtotal (I-squared = 0.0%, p = 0.549)	0.79 (0.54, 1.16)	16.63
African-American and Caucasian		
Zahid (2014)	1.53 (0.77, 3.05)	6.30
Subtotal (I-squared = .%, p = .)	1.53 (0.77, 3.05)	6.30
Overall (I-squared = 67.7%, p = 0.002)	1.03 (0.84, 1.27)	100.00
NOTE: Weights are from random effects analysis		
.188 1	5.31	
Study		%
ID	OR (95% CI)	Weight
Caucasian		
Ceochin (2004)	1.48 (0.91, 2.4	(0) 16.17
Sellers a (2005)	1.12 (0.80, 1.5	6) 38.70
Holt,a (2007)	1.31 (0.85, 2.0	1) 22.08
Delort (2008)	1.92 (0.78, 4.7	3) 4.76
Subtotal (I-squared = 0.0%, p = 0.626)	1.29 (1.03, 1.6	31) 81.71
Subtotal (I-squared = 0.0%, p = 0.626) Caucasian, Asian, Other	1.29 (1.03, 1.6	81, 81.71
Subtotal (I-squared = 0.0%, p = 0.626) Caucasian, Asian, Other Goodman (2001)	1.29 (1.03, 1.6 0.62 (0.22, 1.6	91) 81.71 99) 5.89
Subtotal (I-squared = 0.0%, p = 0.626) Caucasian, Asian, Other Goodman (2001) Subtotal (I-squared = .%, p = .)	1.29 (1.03, 1.6 0.62 (0.22, 1.6 0.62 (0.22, 1.6	81.71 89) 5.89 89) 5.89
Subtotal (I-squared = 0.0%, p = 0.626) Caucasian, Asian, Other Goodman (2001) Subtotal (I-squared = .%, p = .) Asian	1.29 (1.03, 1.6 0.62 (0.22, 1.6 0.62 (0.22, 1.6	81.71 89) 5.89 89) 5.89
Subtotal (I-squared = 0.0%, p = 0.626) Caucasian, Asian, Other Goodman (2001) Subtotal (I-squared = .%, p = .) Asian Zhu Zhuangyan (2006)	1.29 (1.03, 1.6 0.62 (0.22, 1.6 0.62 (0.22, 1.6 0.62 (0.22, 1.6	31) 81.71 39) 5.89 39) 5.89 32) 2.81
Subtotal (I-squared = 0.0%, p = 0.626) Caucasian, Asian, Other Goodman (2001) Subtotal (I-squared = .%, p = .) Asian Zhu Zhuangyan (2006) Subtotal (I-squared = .%, p = .)	1.29 (1.03, 1.6 0.62 (0.22, 1.6 0.62 (0.22, 1.6 0.98 (0.27, 3.6	 81.71 81.71 9) 5.89 9) 5.89 5.89 <li< td=""></li<>
Subtotal (I-squared = 0.0%, p = 0.626) Caucasian, Asian, Other Goodman (2001) Subtotal (I-squared = .%, p = .) Asian Zhu Zhuangyan (2006) Subtotal (I-squared = .%, p = .) African-American Hall & (2007)	1.29 (1.03, 1.6 0.62 (0.22, 1.6 0.62 (0.22, 1.6 0.98 (0.27, 3.5 	 81.71 81.71 5.89 5.89 5.89 5.89 2.81 2.81 2.81
Subtotal (I-squared = 0.0%, p = 0.626) Caucasian, Asian, Other Goodman (2001) Subtotal (I-squared = .%, p = .) Asian Zhu Zhuangyan (2008) Subtotal (I-squared = .%, p = .) African-American Holt,b (2007) Sellere b (2026)	1.29 (1.03, 1.6 0.62 (0.22, 1.6 0.62 (0.22, 1.6 0.98 (0.27, 3.5 - 0.98 (0.27, 3.5 - 1.25 (0.54, 2.5	 81.71 81.71 5.89 5.89 5.89 2.81 2.81 2.81 5.63 6.00
Subtotal (I-squared = 0.0%, p = 0.626) Caucasian, Asian, Other Goodman (2001) Subtotal (I-squared = .%, p = .) Asian Zhu Zhuangyan (2006) Subtotal (I-squared = .%, p = .) African-American Holt,b (2007) Sellers b (2005) Subtotal (I-squared = .%, p = .)	1.29 (1.03, 1.6 0.62 (0.22, 1.6 0.62 (0.22, 1.6 0.98 (0.27, 3.5 - 1.25 (0.54, 2.5 (Excluded) 1.25 (0.54, 2.5	x1) x1.71 x9) 5.89 x9) 5.89 x9) 5.89 x2) 2.81 x2) 2.81 x1) 5.63 0.00 x1) 5.63
Subtotal (I-squared = 0.0%, p = 0.626) Caucasian, Asian, Other Goodman (2001) Subtotal (I-squared = .%, p = .) Asian Zhu Zhuangyan (2006) Subtotal (I-squared = .%, p = .) African-American Holt,b (2007) Sellers b (2005) Subtotal (I-squared = .%, p = .) African American	1.29 (1.03, 1.6 0.62 (0.22, 1.6 0.62 (0.22, 1.6 0.62 (0.22, 1.6 0.98 (0.27, 3.5 - 0.98 (0.27, 3.5 - 1.25 (0.54, 2.5 (Excluded) 1.25 (0.54, 2.5	81.71 81.71 89) 5.89 89) 5.89 89) 5.89 82) 2.81 82) 2.81 91) 5.63 0.00 5.63
Subtotal (I-squared = 0.0%, p = 0.626) Caucasian, Asian, Other Goodman (2001) Subtotal (I-squared = .%, p = .) Asian Zhu Zhuangyan (2008) Subtotal (I-squared = .%, p = .) African-American Holt,b (2007) Sellers b (2005) Subtotal (I-squared = .%, p = .) African-American and Caucasian Zabid (2014)	1.29 (1.03, 1.6 0.62 (0.22, 1.6 0.62 (0.22, 1.6 0.62 (0.22, 1.6 0.98 (0.27, 3.5 - 1.25 (0.54, 2.5 (Excluded) 1.25 (0.54, 2.5 0.54 (2.5)	31) 81.71 39) 5.89 39) 5.89 32) 2.81 32) 2.81 31) 5.63 0.00 1) 5.63 0.00 3.68
Subtotal (I-squared = 0.0%, p = 0.626) Caucasian, Asian, Other Goodman (2001) Subtotal (I-squared = .%, p = .) Asian Zhu Zhuangyan (2006) Subtotal (I-squared = .%, p = .) African-American Holt, b (2007) Sellers b (2005) Subtotal (I-squared = .%, p = .) African-American and Caucasian Zahid (2014) Subtotal (I-squared = .%, p = .)	1.29 (1.03, 1.6 0.62 (0.22, 1.6 0.62 (0.22, 1.6 0.98 (0.27, 3.5 - 1.25 (0.54, 2.5 (Excluded) - 1.25 (0.54, 2.5 0.56 (0.16, 1.5 0.56 (0.16, 1.5	31) 81.71 39) 5.89 39) 5.89 32) 2.81 32) 2.81 32) 2.81 31) 5.63 0.00 11) 5.63 0.00 31) 5.63 95) 3.96 95) 3.96
Subtotal (I-squared = 0.0%, p = 0.826) Caucasian, Asian, Other Goodman (2001) Subtotal (I-squared = .%, p = .) African-American Holt, b (2007) Sellers b (2005) Subtotal (I-squared = .%, p = .) African-American and Caucasian Zahid (2014) Subtotal (I-squared = .%, p = .) Overall (I-squared = 0.0%, p = 0.622)	1.29 (1.03, 1.6 0.62 (0.22, 1.6 0.62 (0.22, 1.6 0.98 (0.27, 3.5 0.98 (0.27, 3.5 1.25 (0.54, 2.9 (Excluded) 1.25 (0.54, 2.9 0.56 (0.16, 1.5 0.56 (0.16, 1.5 1.21 (0.99, 1.4	31) 81.71 39) 5.89 39) 5.89 32) 2.81 32) 2.81 31) 5.63 0.00 1) 5.63 0.00 31) 5.63 3.96 3.96 3.96 3.96 88) 100.00
Subtotal (I-squared = 0.0%, p = 0.626) Caucasian, Asian, Other Goodman (2001) Subtotal (I-squared = .%, p = .) African-American Holt, b (2007) Sellers b (2005) Subtotal (I-squared = .%, p = .) African-American and Caucasian Zahid (2014) Subtotal (I-squared = .%, p = .) Overall (I-squared = 0.0%, p = 0.622)	1.29 (1.03, 1.6 0.62 (0.22, 1.6 0.62 (0.22, 1.6 0.98 (0.27, 3.6 0.98 (0.27, 3.6 1.25 (0.54, 2.9 (Excluded) 1.25 (0.54, 2.9 0.56 (0.16, 1.9 0.56 (0.16, 1.9 1.21 (0.99, 1.4	31) 81.71 39) 5.89 39) 5.89 32) 2.81 32) 2.81 31) 5.63 0.00 0.00 31) 5.63 65) 3.96 85) 3.96 88) 100.00

В

C s

D

Study	%
ID	OR (95% CI) Weight
Caucasian	
Cecchin (2004)	1.14 (0.67, 1.96) 15.65
Sellers a (2005)	1 10 (0 77 1 59) 18 76
Holt,a (2007)	
Delort (2008)	1.89 (0.74, 4.84) 9.59
Subtotal (I-squared = 0.0%, p = 0.425)	1.30 (1.02, 1.65) 61.28
Caucasian, Asian, Other	
Goodman (2001)	0.38 (0.14, 1.00) 9.25
Subtotal (I-squared = .%, p = .)	0.38 (0.14, 1.00) 9.25
Asian	
Zhu Zhuangyan (2006)	0.22 (0.06, 0.77) 6.69
Subtotal (I-squared = %, p = .)	0.22 (0.06, 0.77) 6.69
Aircan-American	
Holt, b (2007)	2.22 (0.60, 8.19) 8.27
Sellers b (2005)	0.80 (0.33, 1.91) 10.43
Subtotal (I-squared = 39.3%, p = 0.199)	1.18 (0.44, 3.15) 16.70
African-American and Caucasian	
Zahid (2014)	0.45 (0.12, 1.70) 6.09
Subtotal (I-squared = .%, p = .)	0.45 (0.12, 1.70) 6.09
Overall (I-squared = 57.8%, p = 0.015)	0.98 (0.66, 1.43) 100.00
	,,
NOTE: Weights are from random effects analysis	
0824	15.0
.0034 1	10.6
Study	
	%
ID	% OR (95% Cl) Weight
ID	% OR (95% CI) Weight
ID Caucasian	% OR (95% CI) Weight
ID Caucasian Ceochin (2004)	% OR (95% CI) Weight
ID Caucasian Cecchin (2004) Sellers a (2005)	% OR (95% CI) Weight
ID Caucasian Ceochin (2004) Sellers a (2005) Holt,a (2007)	% OR (95% CI) Weight
ID Caucasian Cecchin (2004) Sellers a (2005) Holt,a (2007) Delort (2008)	% OR (95% CI) Weight 1.35 (0.85, 2.15) 15.10 1.11 (0.81, 1.53) 35.38 1.45 (0.97, 2.17) 19.56 1.91 (0.80, 4.54) 4.40
ID Caucasian Cecchin (2004) Sellers a (2005) Holt, a (2007) Delort (2008) Subtotal (I-souared = 0.0%, p = 0.575)	% OR (95% CI) Weight 1.35 (0.85, 2.15) 15.10 1.11 (0.81, 1.53) 35.38 1.45 (0.97, 2.17) 19.56 3 1.91 (0.80, 4.54) 4.40 1.30 (1.05, 1.60) 74.43
ID Caucasian Cecchin (2004) Sellers a (2005) Holt,a (2007) Delort (2008) Subtotal (I-squared = 0.0%, p = 0.575)	% OR (95% CI) Weight 1.35 (0.85, 2.15) 15.10 1.11 (0.81, 1.53) 35.38 1.45 (0.97, 2.17) 19.58 3 1.91 (0.80, 4.54) 4.40 1.30 (1.05, 1.60) 74.43
ID Caucasian Cecchin (2004) Sellers a (2005) Holt,a (2007) Delort (2008) Subtotal (I-squared = 0.0%, p = 0.575)	% OR (95% Cl) Weight 1.35 (0.85, 2.15) 15.10 1.11 (0.81, 1.53) 35.38 1.45 (0.97, 2.17) 19.58 1.91 (0.80, 4.54) 4.40 1.30 (1.05, 1.80) 74.43
ID Caucasian Cecchin (2004) Sellers a (2005) Holt,a (2007) Delort (2008) Subtral (I-squared = 0.0%, p = 0.575) Caucasian, Asian, Other	% OR (95% Cl) Weight 1.35 (0.85, 2.15) 15.10 1.11 (0.81, 1.53) 35.38 1.45 (0.97, 2.17) 19.56 1.91 (0.80, 4.54) 4.40 1.30 (1.05, 1.60) 74.43
ID Caucasian Cecchin (2004) Sellers a (2005) Holt,a (2007) Delort (2008) Subtotal (I-squared = 0.0%, p = 0.575) Caucasian, Asian, Other Goodman (2001)	% OR (95% Cl) Weight 1.35 (0.85, 2.15) 15.10 1.11 (0.81, 1.53) 35.38 1.45 (0.97, 2.17) 19.56 1.91 (0.80, 4.54) 4.40 1.30 (1.05, 1.60) 74.43 0.45 (0.17, 1.17) 6.33
ID Caucasian Cecchin (2004) Sellers a (2005) Holt,a (2007) Delort (2008) Subtotal (I-squared = .%, p = .)	% OR (95% CI) Weight 1.35 (0.85, 2.15) 15.10 1.11 (0.81, 1.53) 35.38 1.45 (0.97, 2.17) 19.56 1.91 (0.80, 4.54) 4.40 1.30 (1.05, 1.60) 74.43 0.45 (0.17, 1.17) 6.33 0.45 (0.17, 1.17) 6.33
ID Caucasian Cecchin (2004) Sellers a (2005) Holt,a (2007) Delort (2008) Subtotal (I-squared = 0.0%, p = 0.575) Caucasian, Asian, Other Goodman (2001) Subtotal (I-squared = .%, p = .)	% OR (95% CI) Weight 1.35 (0.85, 2.15) 15.10 1.11 (0.81, 1.53) 35.38 1.45 (0.97, 2.17) 19.56 1.91 (0.80, 4.54) 4.40 1.30 (1.05, 1.60) 74.43 0.45 (0.17, 1.17) 6.33 0.45 (0.17, 1.17) 6.33
ID Caucasian Cecchin (2004) Sellers a (2005) Holt,a (2007) Delort (2008) Subtotal (I-squared = 0.0%, p = 0.575) Caucasian, Asian, Other Goodman (2001) Subtotal (I-squared = .%, p = .) Asian	% % OR (95% Cl) Weight 1.35 (0.85, 2.15) 15.10 1.11 (0.81, 1.53) 35.38 1.45 (0.97, 2.17) 19.56 1.91 (0.80, 4.54) 4.40 1.30 (1.05, 1.60) 74.43 0.45 (0.17, 1.17) 6.33 0.45 (0.17, 1.17) 6.33
ID Caucasian Cecchin (2004) Sellers a (2005) Holt,a (2007) Delort (2008) Subtotal (I-squared = 0.0%, p = 0.575) Caucasian, Asian, Other Goodman (2001) Subtotal (I-squared = .%, p = .) Asian Zhu Zhuangyan (2006)	% Weight 1.35 (0.85, 2.15) 15.10 1.11 (0.81, 1.53) 35.38 1.45 (0.97, 2.17) 19.56 1.91 (0.80, 4.54) 4.40 1.30 (1.05, 1.60) 74.43 0.45 (0.17, 1.17) 6.33 0.45 (0.17, 1.17) 6.33 0.46 (0.15, 1.42) 4.66
ID Caucasian Ceochin (2004) Sellers a (2005) Holt,a (2007) Delort (2008) Subtotal (I-squared = 0.0%, p = 0.575) Caucasian, Asian, Other Goodman (2001) Subtotal (I-squared = .%, p = .) Asian Zhu Zhuangyan (2008) Subtotal (I-squared = .%, p = .)	% OR (95% Cl) Weight 1.35 (0.85, 2.15) 15.10 1.11 (0.81, 1.53) 35.38 1.45 (0.97, 2.17) 19.56 1.91 (0.80, 4.54) 4.40 1.30 (1.05, 1.60) 74.43 0.45 (0.17, 1.17) 6.33 0.45 (0.17, 1.17) 6.33 0.46 (0.15, 1.42) 4.66 0.46 (0.15, 1.42) 4.66
ID Caucasian Ceochin (2004) Sellers a (2005) Holt,a (2007) Delort (2008) Subtotal (I-squared = 0.0%, p = 0.575) Caucasian, Asian, Other Goodman (2001) Subtotal (I-squared = .%, p = .) Asian Zhu Zhuangyan (2008) Subtotal (I-squared = .%, p = .)	% Weight 1.35 (0.85, 2.15) 15.10 1.11 (0.81, 1.53) 35.38 1.45 (0.97, 2.17) 19.56 1.91 (0.80, 4.54) 4.40 1.30 (1.05, 1.60) 74.43 0.45 (0.17, 1.17) 6.33 0.45 (0.17, 1.17) 6.33 0.46 (0.15, 1.42) 4.66
ID Caucasian Ceochin (2004) Sellers a (2005) Holt,a (2007) Delort (2008) Subtotal (I-squared = 0.0%, p = 0.575) Caucasian, Asian, Other Goodman (2001) Subtotal (I-squared = .%, p = .) Asian Zhu Zhuangyan (2008) Subtotal (I-squared = .%, p = .) African-American	% OR (95% Cl) Weight 1.35 (0.85, 2.15) 15.10 1.11 (0.81, 1.53) 35.38 1.45 (0.97, 2.17) 19.56 1.91 (0.80, 4.54) 4.40 1.30 (1.05, 1.60) 74.43 0.45 (0.17, 1.17) 6.33 0.45 (0.17, 1.17) 6.33 0.46 (0.15, 1.42) 4.66 0.46 (0.15, 1.42) 4.66
ID Caucasian Ceochin (2004) Sellers a (2005) Holt,a (2007) Delort (2008) Subtotal (I-squared = 0.0%, p = 0.575) Caucasian, Asian, Other Goodman (2001) Subtotal (I-squared = .%, p = .) Asian Zhu Zhuangyan (2006) Subtotal (I-squared = .%, p = .) African-American Holt,b (2007)	% OR (95% Cl) Weight 1.35 (0.85, 2.15) 15.10 1.11 (0.81, 1.53) 35.38 1.45 (0.97, 2.17) 19.56 1.91 (0.80, 4.54) 4.40 1.30 (1.05, 1.60) 74.43 0.45 (0.17, 1.17) 6.33 0.45 (0.17, 1.17) 6.33 0.46 (0.15, 1.42) 4.66 0.46 (0.15, 1.42) 4.66 1.42 (0.65, 3.08) 5.11
ID Caucasian Cecchin (2004) Sellers a (2005) Holt,a (2007) Delort (2008) Subtotal (I-squared = 0.0%, p = 0.575) Caucasian, Asian, Other Goodman (2001) Subtotal (I-squared = .%, p = .) Asian Zhu Zhuangyan (2006) Subtotal (I-squared = .%, p = .) African-American Holt,b (2007) Sellers b (2005)	% OR (95% Cl) Weight 1.35 (0.85, 2.15) 15.10 1.11 (0.81, 1.53) 35.38 1.45 (0.97, 2.17) 19.56 1.91 (0.80, 4.54) 4.40 1.30 (1.05, 1.60) 74.43 0.45 (0.17, 1.17) 6.33 0.45 (0.17, 1.17) 6.33 0.46 (0.15, 1.42) 4.66 0.46 (0.15, 1.42) 4.66 0.46 (0.15, 1.42) 4.66 0.46 (0.15, 1.42) 4.56
ID Caucasian Cecchin (2004) Sellers a (2005) Holt,a (2007) Delort (2008) Subtotal (I-squared = 0.0%, p = 0.575) Caucasian, Asian, Other Goodman (2001) Subtotal (I-squared = .%, p = .) Asian Zhu Zhuangyan (2006) Subtotal (I-squared = 0.9%, p = .) African-American Holt,b (2007) Sellers b (2005) Subtotal (I-squared = 0.0% p = 0.332)	% OR (95% Cl) Weight 1.35 (0.85, 2.15) 15.10 1.11 (0.81, 1.53) 35.38 1.45 (0.97, 2.17) 19.56 1.91 (0.80, 4.54) 4.40 1.30 (1.05, 1.60) 74.43 0.45 (0.17, 1.17) 6.33 0.45 (0.17, 1.17) 6.33 0.46 (0.15, 1.42) 4.66 0.46 (0.15, 1.42) 4.66 0.46 (0.15, 1.42) 4.66 1.42 (0.65, 3.08) 5.11 0.80 (0.33, 1.91) 5.50 1.10 (0.82, 1.95) 10.61
ID Caucasian Cecchin (2004) Sellers a (2005) Holt, a (2007) Delort (2008) Subtotal (I-squared = 0.0%, p = 0.575) Caucasian, Asian, Other Goodman (2001) Subtotal (I-squared = .%, p = .) Asian Zhu Zhuangyan (2006) Subtotal (I-squared = .%, p = .) African-American Holt,b (2007) Sellers b (2005) Subtotal (I-squared = 0.0%, p = 0.332)	% OR (95% Cl) Weight 1.35 (0.85, 2.15) 15.10 1.11 (0.81, 1.53) 35.38 1.45 (0.97, 2.17) 19.56 1.91 (0.80, 4.54) 4.40 1.30 (1.05, 1.60) 74.43 0.45 (0.17, 1.17) 6.33 0.45 (0.17, 1.17) 6.33 0.46 (0.15, 1.42) 4.66 0.46 (0.15, 1.42) 4.66 0.46 (0.15, 1.42) 4.66 0.46 (0.15, 1.42) 5.11 0.80 (0.33, 1.91) 5.50 1.10 (0.62, 1.95) 10.61
ID Caucasian Cecchin (2004) Sellers a (2005) Holt,a (2007) Delort (2008) Subtotal (I-squared = 0.0%, p = 0.575) Caucasian, Asian, Other Goodman (2001) Subtotal (I-squared = .%, p = .) Asian Zhu Zhuangyan (2006) Subtotal (I-squared = .%, p = .) African-American Holt,b (2007) Sellers b (2005) Subtotal (I-squared = 0.0%, p = 0.332)	% OR (95% Cl) Weight 1.35 (0.85, 2.15) 15.10 1.11 (0.81, 1.53) 35.38 1.45 (0.97, 2.17) 19.56 1.91 (0.80, 4.54) 4.40 1.30 (1.05, 1.60) 74.43 0.45 (0.17, 1.17) 6.33 0.45 (0.17, 1.17) 6.33 0.46 (0.15, 1.42) 4.66 0.46 (0.15, 1.42) 4.66 0.46 (0.15, 1.42) 4.66 1.42 (0.65, 3.08) 5.11 0.80 (0.33, 1.91) 5.50 1.10 (0.62, 1.95) 10.61
ID Caucasian Cecchin (2004) Sellers a (2005) Holt,a (2007) Delort (2008) Subtotal (I-squared = 0.0%, p = 0.575) Caucasian, Asian, Other Goodman (2001) Subtotal (I-squared = .%, p = .) Asian Zhu Zhuangyan (2006) Subtotal (I-squared = .%, p = .) African-American Holt,b (2007) Sellers b (2005) Subtotal (I-squared = 0.0%, p = 0.332) African-American and Caucasian	% OR (95% Cl) Weight 1.35 (0.85, 2.15) 15.10 1.11 (0.81, 1.53) 35.38 1.45 (0.97, 2.17) 19.56 1.91 (0.80, 4.54) 4.40 1.30 (1.05, 1.60) 74.43 0.45 (0.17, 1.17) 6.33 0.45 (0.17, 1.17) 6.33 0.45 (0.15, 1.42) 4.66 0.46 (0.15, 1.42) 4.66 0.46 (0.15, 1.42) 4.66 1.42 (0.65, 3.08) 5.11 0.80 (0.33, 1.91) 5.50 1.10 (0.62, 1.95) 10.61
ID Caucasian Ceochin (2004) Sellers a (2005) Holt,a (2007) Delort (2008) Subtotal (I-squared = 0.0%, p = 0.575) . Caucasian, Asian, Other Goodman (2001) Subtotal (I-squared = .%, p = .) . Asian Zhu Zhuangyan (2006) Subtotal (I-squared = .%, p = .) . African-American Holt,b (2007) Sellers b (2005) Subtotal (I-squared = 0.0%, p = 0.332) . African-American and Caucasian Zahid (2014)	% OR (95% Cl) Weight 1.35 (0.85, 2.15) 15.10 1.11 (0.81, 1.53) 35.38 1.45 (0.97, 2.17) 19.56 1.91 (0.80, 4.54) 4.40 1.30 (1.05, 1.60) 74.43 0.45 (0.17, 1.17) 6.33 0.45 (0.17, 1.17) 6.33 0.46 (0.15, 1.42) 4.66 0.46 (0.15, 1.42) 4.66 0.46 (0.15, 1.42) 4.66 1.42 (0.65, 3.08) 5.11 0.80 (0.33, 1.91) 5.50 1.10 (0.62, 1.95) 10.61 0.51 (0.16, 1.62) 3.96
ID Caucasian Cecchin (2004) Sellers a (2005) Holt,a (2007) Delort (2008) Subtotal (I-squared = 0.0%, p = 0.575) Caucasian, Asian, Other Goodman (2001) Subtotal (I-squared = .%, p = .) Asian Zhu Zhuangyan (2006) Subtotal (I-squared = .%, p = .) African-American Holt,b (2007) Sellers b (2005) Subtotal (I-squared = 0.0%, p = 0.332) African-American and Caucasian Zahid (2014) Subtotal (I-squared = .%, p = .)	% OR (95% Cl) Weight 1.35 (0.85, 2.15) 15.10 1.11 (0.81, 1.53) 35.38 1.45 (0.97, 2.17) 19.56 1.91 (0.80, 4.54) 4.40 1.30 (1.05, 1.60) 74.43 0.45 (0.17, 1.17) 6.33 0.45 (0.17, 1.17) 6.33 0.46 (0.15, 1.42) 4.66 0.46 (0.15, 1.42) 4.66 1.42 (0.65, 3.08) 5.11 0.80 (0.33, 1.91) 5.50 1.10 (0.62, 1.95) 10.61 0.51 (0.16, 1.62) 3.96 0.51 (0.16, 1.62) 3.96
ID Caucasian Ceochin (2004) Sellers a (2005) Holt,a (2007) Delort (2008) Subtotal (I-squared = 0.0%, p = 0.575) Caucasian, Asian, Other Goodman (2001) Subtotal (I-squared = .%, p = .) Asian Zhu Zhuangyan (2006) Subtotal (I-squared = .%, p = .) African-American Holt,b (2007) Sellers b (2005) Subtotal (I-squared = .%, p = .) African-American and Caucasian Zahid (2014) Subtotal (I-squared = .%, p = .)	% OR (95% Cl) Weight 1.35 (0.85, 2.15) 15.10 1.11 (0.81, 1.53) 35.38 1.45 (0.97, 2.17) 19.56 1.91 (0.80, 4.54) 4.40 1.30 (1.05, 1.60) 74.43 0.45 (0.17, 1.17) 6.33 0.45 (0.17, 1.17) 6.33 0.45 (0.17, 1.17) 6.33 0.46 (0.15, 1.42) 4.66 0.46 (0.15, 1.42) 4.66 1.42 (0.65, 3.08) 5.11 0.80 (0.33, 1.91) 5.50 1.10 (0.62, 1.95) 10.61 0.51 (0.16, 1.62) 3.96
ID Caucasian Cecchin (2004) Sellers a (2005) Holt,a (2007) Delot (2008) Subtotal (I-squared = 0.0%, p = 0.575) Caucasian, Asian, Other Goodman (2001) Subtotal (I-squared = .%, p = .) Asian Zhu Zhuangyan (2006) Subtotal (I-squared = .%, p = .) African-American Holt,b (2007) Sellers b (2005) Subtotal (I-squared = .%, p = .) African-American and Caucasian Zahid (2014) Subtotal (I-squared = .%, p = .) Overall (I-squared = 34.3%, p = 0.144)	% OR (95% Cl) Weight 1.35 (0.85, 2.15) 15.10 1.11 (0.81, 1.53) 35.38 1.45 (0.97, 2.17) 19.58 1.91 (0.80, 4.54) 4.40 1.30 (1.05, 1.60) 74.43 0.45 (0.17, 1.17) 6.33 0.45 (0.17, 1.17) 6.33 0.45 (0.17, 1.17) 6.33 0.46 (0.15, 1.42) 4.66 0.46 (0.15, 1.42) 4.66 1.42 (0.65, 3.08) 5.11 0.80 (0.33, 1.91) 5.50 1.10 (0.62, 1.95) 10.61 0.51 (0.16, 1.62) 3.96 0.51 (0.16, 1.62) 3.96 1.15 (0.96, 1.39) 100.00
ID Caucasian Cecchin (2004) Sellers a (2005) Holt,a (2007) Delort (2008) Subtotal (I-squared = 0.0%, p = 0.575) Caucasian, Asian, Other Goodman (2001) Subtotal (I-squared = .%, p = .) Asian Zhu Zhuangyan (2006) Subtotal (I-squared = .%, p = .) African-American Holt,b (2007) Sellers b (2005) Subtotal (I-squared = .%, p = .) African-American and Caucasian Zahid (2014) Subtotal (I-squared = .%, p = .) Overall (I-squared = 34.3%, p = 0.144)	% OR (95% CI) Weight 1.35 (0.85, 2.15) 15.10 1.11 (0.81, 1.53) 35.38 1.45 (0.97, 2.17) 19.56 1.91 (0.80, 4.54) 4.40 1.30 (1.05, 1.80) 74.43 0.45 (0.17, 1.17) 6.33 0.45 (0.17, 1.17) 6.33 0.45 (0.17, 1.17) 6.33 0.46 (0.15, 1.42) 4.66 0.46 (0.15, 1.42) 4.66 1.42 (0.65, 3.08) 5.11 0.80 (0.33, 1.91) 5.50 1.10 (0.62, 1.95) 10.61 0.51 (0.16, 1.62) 3.96 0.51 (0.16, 1.62) 3.96 1.15 (0.96, 1.39) 100.00
ID Caucasian Cecchin (2004) Sellers a (2005) Holt,a (2007) Delort (2008) Subtotal (I-squared = 0.0%, p = 0.575) Caucasian, Asian, Other Goodman (2001) Subtotal (I-squared = .%, p = .) Asian Zhu Zhuangyan (2008) Subtotal (I-squared = .%, p = .) African-American Holt,b (2007) Sellers b (2005) Subtotal (I-squared = 0.0%, p = 0.332) African-American and Caucasian Zahid (2014) Subtotal (I-squared = .%, p = .) Overall (I-squared = 34.3%, p = 0.144)	% OR (95% CI) Weight 1.35 (0.85, 2.15) 15.10 1.11 (0.81, 1.53) 35.38 1.45 (0.97, 2.17) 19.56 1.91 (0.80, 4.54) 4.40 1.30 (1.05, 1.60) 74.43 0.45 (0.17, 1.17) 6.33 0.45 (0.17, 1.17) 6.33 0.45 (0.15, 1.42) 4.66 0.46 (0.15, 1.42) 4.66 0.46 (0.15, 1.42) 4.66 1.42 (0.65, 3.08) 5.11 0.80 (0.33, 1.91) 5.50 1.10 (0.62, 1.95) 10.61 0.51 (0.16, 1.62) 3.96 0.51 (0.16, 1.62) 3.96 1.15 (0.96, 1.39) 100.00
ID Caucasian Cecchin (2004) Sellers a (2005) Holt, a (2007) Delort (2008) Subtotal (I-squared = 0.0%, p = 0.575) Caucasian, Asian, Other Goodman (2001) Subtotal (I-squared = .%, p = .) African-American Holt, b (2007) Sellers b (2005) Subtotal (I-squared = .%, p = .) African-American Holt, b (2007) Sellers b (2005) Subtotal (I-squared = 0.0%, p = 0.332) African-American and Caucasian Zahid (2014) Subtotal (I-squared = .%, p = .) Overall (I-squared = 34.3%, p = 0.144)	% OR (95% CI) Weight 1.35 (0.85, 2.15) 15.10 1.11 (0.81, 1.53) 35.38 1.45 (0.97, 2.17) 19.56 1.91 (0.80, 4.54) 4.40 1.30 (1.05, 1.60) 74.43 0.45 (0.17, 1.17) 6.33 0.45 (0.17, 1.17) 6.33 0.45 (0.15, 1.42) 4.66 0.46 (0.15, 1.42) 4.66 0.46 (0.15, 1.42) 4.66 1.42 (0.65, 3.08) 5.11 0.80 (0.33, 1.91) 5.50 1.10 (0.62, 1.95) 10.61 0.51 (0.16, 1.62) 3.96 0.51 (0.16, 1.62) 3.96 1.15 (0.96, 1.39) 100.00

Е

F

Study		%
ID	OR (95% CI)	Weight
Caucasian		
Cecchin (2004)	0.86 (0.58, 1.27)	15.55
Sellers a (2005)	1.02 (0.78, 1.33)	18.23
Holt,a (2007)	1.37 (1.00, 1.87)	17.30
Delort (2008)	1.15 (0.64, 2.07)	11.52
Subtotal (I-squared = 19.6%, p = 0.292)	1.09 (0.89, 1.33)	62.60
Caucasian, Asian, Other		
Goodman (2001)	0.57 (0.35, 0.92)	13.48
Subtotal (I-squared = .%, p = .)	0.57 (0.35, 0.92)	13.48
Asian		
Zhu Zhuangyan (2006)	0.22 (0.09, 0.59)	8.44
Subtotal (I-squared = .%, p = .)	0.22 (0.09, 0.59)	0.44
African-American		
Holt,b (2007)	2.05 (0.58, 7.28)	4.29
Sellers b (2005)	0.80 (0.33, 1.91)	7.41
Subtotal (I-squared = 31.5%, p = 0.227)	1.14 (0.46, 2.80)	11.70
African-American and Caucasian		
Zahid (2014)	0.66 (0.23, 1.86)	5.77
Subtotal (I-squared = .%, p = .)	0.66 (0.23, 1.86)	5.77
Overall (I-squared = 61.9%, p = 0.007)	0.87 (0.65, 1.17)	100.00
NOTE: Weights are from random effects analysis		
	1	
.0851 1	11.8	
Study	00 (05% 01)	%
Study ID	OR (95% CI)	% Weight
Study ID Caucasian	OR (95% CI)	% Weight
Study ID Caucasian Cecchin (2004)	OR (95% CI) 0.74 (0.52, 1.05)	% Weight 18.88
Study ID Caucasian Cecchin (2004) Sellers a (2005)	OR (95% CI) 0.74 (0.52, 1.05) 0.95 (0.74, 1.22)	% Weight 18.88 33.76
Study ID Caucasian Cecchin (2004) Sellers a (2005) Holt,a (2007)	OR (95% CI) 0.74 (0.52, 1.05) 0.95 (0.74, 1.22) 1.07 (0.79, 1.45)	% Weight 18.88 33.76 21.87
Study ID Caucasian Cecohin (2004) Sellers a (2005) Holt,a (2007) Delort (2008)	OR (95% CI) 0.74 (0.52, 1.05) 0.95 (0.74, 1.22) 1.07 (0.79, 1.45) 0.80 (0.46, 1.41) 0.92 (0.78, 1.08)	% Weight 18.88 33.76 21.87 7.17 81.67
Study ID Caucasian Cecchin (2004) Sellers a (2005) Holt,a (2007) Delort (2008) Subtotal (I-squared = 0.0%, p = 0.422)	OR (95% Cl) 0.74 (0.52, 1.05) 0.95 (0.74, 1.22) 1.07 (0.79, 1.45) 0.80 (0.46, 1.41) 0.92 (0.78, 1.08)	% Weight 18.88 33.76 21.87 7.17 81.67
Study ID Caucasian Cecchin (2004) Sellers a (2005) Holt,a (2007) Delort (2008) Subtotal (I-squared = 0.0%, p = 0.422) Caucasian, Asian, Other	OR (95% Cl) 0.74 (0.52, 1.05) 0.95 (0.74, 1.22) 1.07 (0.79, 1.45) 0.80 (0.46, 1.41) 0.92 (0.78, 1.08)	% Weight 18.88 33.76 21.87 7.17 81.67
Study ID Caucasian Cecchin (2004) Sellers a (2005) Holt,a (2007) Delort (2008) Subtotal (I-squared = 0.0%, p = 0.422) Caucasian, Asian, Other Goodman (2001)	OR (95% Cl) 0.74 (0.52, 1.05) 0.95 (0.74, 1.22) 1.07 (0.79, 1.45) 0.80 (0.48, 1.41) 0.92 (0.78, 1.08) 0.89 (0.41, 1.14)	% Weight 18.88 33.76 21.87 7.17 81.67 9.56
Study ID Caucasian Cecchin (2004) Sellers a (2005) Holt,a (2007) Delort (2008) Subtotal (I-squared = 0.0%, p = 0.422) Caucasian, Asian, Other Goodman (2001) Subtotal (I-squared = .%, p = .)	OR (95% Cl) 0.74 (0.52, 1.05) 0.95 (0.74, 1.22) 1.07 (0.79, 1.45) 0.80 (0.48, 1.41) 0.92 (0.78, 1.08) 0.69 (0.41, 1.14) 0.69 (0.41, 1.14)	% Weight 18.88 33.76 21.87 7.17 81.67 9.56 9.56
Study ID Caucasian Cecchin (2004) Sellers a (2005) Holt,a (2007) Delort (2008) Subtotal (I-squared = 0.0%, p = 0.422) Caucasian, Asian, Other Goodman (2001) Subtotal (I-squared = .%, p = .)	OR (95% Cl) 0.74 (0.52, 1.05) 0.95 (0.74, 1.22) 1.07 (0.79, 1.45) 0.80 (0.46, 1.41) 0.92 (0.78, 1.08) 0.69 (0.41, 1.14) 0.69 (0.41, 1.14)	% Weight 18.88 33.76 21.87 7.17 81.67 9.56 9.56
Study ID Caucasian Cecchin (2004) Sellers a (2005) Holt,a (2007) Delort (2008) Subtotal (I-squared = 0.0%, p = 0.422) Caucasian, Asian, Other Goodman (2001) Subtotal (I-squared = .%, p = .) Asian	OR (95% CI) 0.74 (0.52, 1.05) 0.95 (0.74, 1.22) 1.07 (0.79, 1.45) 0.80 (0.46, 1.41) 0.92 (0.78, 1.08) 0.69 (0.41, 1.14) 0.69 (0.41, 1.14)	% Weight 18.88 33.76 21.87 7.17 81.67 9.56 9.56
Study ID Caucasian Cecohin (2004) Sellers a (2005) Holt,a (2007) Delort (2008) Subtotal (I-squared = 0.0%, p = 0.422) Caucasian, Asian, Other Goodman (2001) Subtotal (I-squared = .%, p = .) Asian Zhu Zhuangyan (2008)	OR (95% Cl) 0.74 (0.52, 1.05) 0.95 (0.74, 1.22) 1.07 (0.79, 1.45) 0.80 (0.46, 1.41) 0.92 (0.78, 1.08) 0.69 (0.41, 1.14) 0.69 (0.41, 1.14) 0.41 (0.15, 1.08)	% Weight 18.88 33.76 21.87 7.17 81.67 9.56 9.56 3.52
Study ID Caucasian Cecchin (2004) Sellers a (2005) Holt,a (2007) Delort (2008) Subtotal (I-squared = 0.0%, p = 0.422) Caucasian, Asian, Other Goodman (2001) Subtotal (I-squared = .%, p = .) Asian Zhu Zhuangyan (2008) Subtotal (I-squared = .%, p = .)	OR (95% Cl) 0.74 (0.52, 1.05) 0.95 (0.74, 1.22) 1.07 (0.79, 1.45) 0.80 (0.46, 1.41) 0.92 (0.78, 1.08) 0.69 (0.41, 1.14) 0.69 (0.41, 1.14) 0.41 (0.15, 1.08) 0.41 (0.15, 1.08)	% Weight 18.88 33.76 21.87 7.17 81.67 9.56 9.56 3.52 3.52
Study ID Caucasian Cecchin (2004) Sellers a (2005) Holt,a (2007) Delort (2008) Subtotal (I-squared = 0.0%, p = 0.422) Caucasian, Asian, Other Goodman (2001) Subtotal (I-squared = .%, p = .) Asian Zhu Zhuangyan (2006) Subtotal (I-squared = .%, p = .) African-American	OR (95% Cl) 0.74 (0.52, 1.05) 0.95 (0.74, 1.22) 1.07 (0.79, 1.45) 0.80 (0.46, 1.41) 0.92 (0.78, 1.08) 0.69 (0.41, 1.14) 0.69 (0.41, 1.14) 0.41 (0.15, 1.08) 0.41 (0.15, 1.08)	% Weight 18.88 33.76 21.87 7.17 81.67 9.56 9.56 9.56 3.52 3.52
Study ID Caucasian Cecchin (2004) Sellers a (2005) Holt,a (2007) Delort (2008) Subtotal (I-squared = 0.0%, p = 0.422) Caucasian, Asian, Other Goodman (2001) Subtotal (I-squared = .%, p = .) Asian Zhu Zhuangyan (2008) Subtotal (I-squared = .%, p = .) African-American Holt,b (2007)	OR (95% Cl) 0.74 (0.52, 1.05) 0.95 (0.74, 1.22) 1.07 (0.79, 1.45) 0.80 (0.48, 1.41) 0.92 (0.78, 1.08) 0.69 (0.41, 1.14) 0.69 (0.41, 1.14) 0.41 (0.15, 1.08) 0.41 (0.15, 1.08) 0.89 (0.39, 2.00)	% Weight 18.88 33.76 21.87 7.17 81.67 9.56 9.56 9.56 3.52 3.52 3.52
Study ID Caucasian Cecchin (2004) Sellers a (2005) Holt,a (2007) Delort (2008) Subtotal (I-squared = 0.0%, p = 0.422) . Caucasian, Asian, Other Goodman (2001) Subtotal (I-squared = .%, p = .) . Asian Zhu Zhuangyan (2008) Subtotal (I-squared = .%, p = .) . African-American Holt, b (2007) Sellers b (2005)	OR (95% Cl) 0.74 (0.52, 1.05) 0.95 (0.74, 1.22) 1.07 (0.79, 1.45) 0.80 (0.48, 1.41) 0.92 (0.78, 1.08) 0.69 (0.41, 1.14) 0.69 (0.41, 1.14) 0.69 (0.41, 1.14) 0.41 (0.15, 1.08) 0.41 (0.15, 1.08) 0.89 (0.39, 2.00) (Excluded)	% Weight 18.88 33.76 21.87 7.17 81.67 9.56 9.56 9.56 3.52 3.52 3.52 3.21 0.00
Study ID Caucasian Cecchin (2004) Sellers a (2005) Holt, a (2007) Delort (2008) Subtotal (I-squared = .%, p = .) Asian Zhu Zhuangyan (2008) Subtotal (I-squared = .%, p = .) African-American Holt, b (2007) Sellers b (2005) Subtotal (I-squared = .%, p = .)	OR (95% Cl) 0.74 (0.52, 1.05) 0.95 (0.74, 1.22) 1.07 (0.79, 1.45) 0.80 (0.48, 1.41) 0.92 (0.78, 1.08) 0.69 (0.41, 1.14) 0.69 (0.41, 1.14) 0.41 (0.15, 1.08) 0.41 (0.15, 1.08) 0.41 (0.15, 1.08) 0.89 (0.39, 2.00) (Excluded) 0.89 (0.39, 2.00)	% Weight 18.88 33.76 21.87 7.17 81.67 9.56 9.56 9.56 3.52 3.52 3.52 3.21 0.00 3.21
Study ID Caucasian Cecchin (2004) Sellers a (2005) Holt,a (2007) Delort (2008) Subtotal (I-squared = 0.0%, p = 0.422) Caucasian, Asian, Other Goodman (2001) Subtotal (I-squared = .%, p = .) African-American Holt,b (2007) Sellers b (2005) Subtotal (I-squared = .%, p = .)	OR (95% Cl) 0.74 (0.52, 1.05) 0.95 (0.74, 1.22) 1.07 (0.79, 1.45) 0.80 (0.48, 1.41) 0.92 (0.78, 1.08) 0.69 (0.41, 1.14) 0.69 (0.41, 1.14) 0.41 (0.15, 1.08) 0.41 (0.15, 1.08) 0.41 (0.15, 1.08) 0.89 (0.39, 2.00) (Excluded) 0.89 (0.39, 2.00)	% Weight 18.88 33.76 21.87 7.17 81.67 9.56 9.56 9.56 3.52 3.52 3.52 3.21 0.00 3.21
Study ID Caucasian Cecohin (2004) Sellers a (2005) Holt,a (2007) Delort (2008) Subtotal (I-squared = 0.0%, p = 0.422) Caucasian, Asian, Other Goodman (2001) Subtotal (I-squared = .%, p = .) Asian Zhu Zhuangyan (2006) Subtotal (I-squared = .%, p = .) African-American Holt,b (2007) Sellers b (2005) Subtotal (I-squared = .%, p = .) African-American and Caucasian	OR (95% Cl) 0.74 (0.52, 1.05) 0.95 (0.74, 1.22) 1.07 (0.79, 1.45) 0.80 (0.46, 1.41) 0.92 (0.78, 1.08) 0.69 (0.41, 1.14) 0.69 (0.41, 1.14) 0.41 (0.15, 1.08) 0.41 (0.15, 1.08) 0.41 (0.15, 1.08) 0.89 (0.39, 2.00) (Excluded) 0.89 (0.39, 2.00)	% Weight 18.88 33.76 21.87 7.17 81.67 9.56 9.56 9.56 3.52 3.52 3.52 3.21 0.00 3.21
Study ID Caucasian Cecohin (2004) Sellers a (2005) Holt, a (2007) Delort (2008) Subtotal (I-squared = 0.0%, p = 0.422) Caucasian, Asian, Other Goodman (2001) Subtotal (I-squared = .%, p = .) Asian Zhu Zhuangyan (2006) Subtotal (I-squared = .%, p = .) African-American Holt, b (2007) Sellers b (2005) Subtotal (I-squared = .%, p = .) African-American and Caucasian Zahid (2014)	OR (95% Cl) 0.74 (0.52, 1.05) 0.95 (0.74, 1.22) 1.07 (0.79, 1.45) 0.80 (0.46, 1.41) 0.92 (0.78, 1.08) 0.69 (0.41, 1.14) 0.69 (0.41, 1.14) 0.69 (0.41, 1.14) 0.41 (0.15, 1.08) 0.41 (0.15, 1.08) 0.41 (0.15, 1.08) 0.89 (0.39, 2.00) (Excluded) 0.89 (0.39, 2.00) 1.13 (0.43, 2.99) 1.42 (0.40, 2.97)	% Weight 18.88 33.76 21.87 7.17 81.67 9.56 9.56 9.56 3.52 3.52 3.52 3.21 0.00 3.21 2.03 2.03
Study ID Caucasian Cecchin (2004) Sellers a (2005) Holt,a (2007) Delot (2008) Subtotal (I-squared = 0.0%, p = 0.422) Caucasian, Asian, Other Goodman (2001) Subtotal (I-squared = .%, p = .) Asian Zhu Zhuangyan (2006) Subtotal (I-squared = .%, p = .) African-American Holt,b (2007) Sellers b (2005) Subtotal (I-squared = .%, p = .) African-American and Caucasian Zahid (2014) Subtotal (I-squared = .%, p = .)	CR (95% Cl) 0.74 (0.52, 1.05) 0.95 (0.74, 1.22) 1.07 (0.79, 1.45) 0.80 (0.46, 1.41) 0.92 (0.78, 1.08) 0.69 (0.41, 1.14) 0.69 (0.41, 1.14) 0.41 (0.15, 1.08) 0.41 (0.15, 1.08) 0.41 (0.15, 1.08) 0.89 (0.39, 2.00) (Excluded) 0.89 (0.39, 2.00) 1.13 (0.43, 2.99) 1.13 (0.43, 2.99)	% Weight 18.88 33.76 21.87 7.17 81.67 9.56 9.56 3.52 3.52 3.52 3.21 0.00 3.21 2.03 2.03
Study ID Caucasian Cecohin (2004) Sellers a (2005) Holt,a (2007) Delot (2008) Subtotal (I-squared = 0.0%, p = 0.422) Caucasian, Asian, Other Goodman (2001) Subtotal (I-squared = .%, p = .) African-American Holt,b (2007) Sellers b (2005) Subtotal (I-squared = .%, p = .) African-American and Caucasian Zahid (2014) Subtotal (I-squared = .%, p = .) Overall (I-squared = .%, p = .)	OR (95% Cl) 0.74 (0.52, 1.05) 0.95 (0.74, 1.22) 1.07 (0.79, 1.45) 0.80 (0.48, 1.41) 0.92 (0.78, 1.08) 0.69 (0.41, 1.14) 0.69 (0.41, 1.14) 0.69 (0.41, 1.14) 0.41 (0.15, 1.08) 0.41 (0.15, 1.08) 0.41 (0.15, 1.08) 0.89 (0.39, 2.00) (Excluded) 0.89 (0.39, 2.00) 1.13 (0.43, 2.99) 1.13 (0.43, 2.99) 0.88 (0.76, 1.02)	% Weight 18.88 33.76 21.87 7.17 81.67 9.56 9.56 3.52 3.52 3.52 3.52 3.21 0.00 3.21 2.03 2.03 100.00
Study ID Caucasian Cecobin (2004) Sellers a (2005) Holt,a (2007) Delort (2008) Subtotal (I-squared = 0.0%, p = 0.422) Caucasian, Asian, Other Goodman (2001) Subtotal (I-squared = .%, p = .) Asian Zhu Zhuangyan (2008) Subtotal (I-squared = .%, p = .) African-American Holt,b (2007) Sellers b (2005) Subtotal (I-squared = .%, p = .) African-American and Caucasian Zahid (2014) Subtotal (I-squared = .%, p = .) Overall (I-squared = 0.0%, p = 0.462)	OR (95% Cl) 0.74 (0.52, 1.05) 0.95 (0.74, 1.22) 1.07 (0.79, 1.45) 0.80 (0.48, 1.41) 0.92 (0.78, 1.08) 0.69 (0.41, 1.14) 0.69 (0.41, 1.14) 0.69 (0.41, 1.14) 0.41 (0.15, 1.08) 0.41 (0.15, 1.08) 0.41 (0.15, 1.08) 0.89 (0.39, 2.00) (Excluded) 0.89 (0.39, 2.00) 1.13 (0.43, 2.99) 1.13 (0.43, 2.99) 0.88 (0.76, 1.02)	% Weight 18.88 33.76 21.87 7.17 81.67 9.56 9.56 3.52 3.52 3.52 3.21 0.00 3.21 2.03 2.03 100.00
Study ID Caucasian Cecohin (2004) Sellers a (2005) Holt.a (2007) Delort (2008) Subtotal (I-squared = 0.0%, p = 0.422) Caucasian, Asian, Other Goodman (2001) Subtotal (I-squared = .%, p = .) Arican-American Holt.b (2007) Sellers b (2005) Subtotal (I-squared = .%, p = .) African-American and Caucasian Zahid (2014) Subtotal (I-squared = .%, p = .) Overall (I-squared = 0.0%, p = 0.462)	CR (95% Cl) 0.74 (0.52, 1.05) 0.95 (0.74, 1.22) 1.07 (0.79, 1.45) 0.80 (0.46, 1.41) 0.92 (0.78, 1.08) 0.69 (0.41, 1.14) 0.69 (0.41, 1.14) 0.69 (0.41, 1.14) 0.41 (0.15, 1.08) 0.41 (0.15, 1.08) 0.41 (0.15, 1.08) 0.89 (0.39, 2.00) (Excluded) 0.89 (0.39, 2.00) 1.13 (0.43, 2.99) 1.13 (0.43, 2.99) 0.88 (0.76, 1.02)	% Weight 18.88 33.76 21.87 7.17 81.67 9.56 9.56 3.52 3.52 3.52 3.21 0.00 3.21 2.03 2.03 100.00

Figure 4. Forest plot for the inclusive correlation between V432L polymorphism and the risk for ovarian cancer. Shows the Allele model (A) Heterozygous model (B) Homozygote model (C) Dominant model (D) Recessive model (E) and additive model (F) depicts the recessive model. The fixed-effects model is implemented for a 95% confidence interval and to derive the pooled OR. The size of the square has been proportional to the weight of all studies and each study has been indicated via point estimate of the OR with 95% CI (extended lines).

А	Study		%
	ID	OR (95% CI)	Weight
	Caucasian		
	Sellers a (2005)	0.97 (0.80, 1.18)	48.39
	Holt,a (2007)	0.91 (0.72, 1.15)	36.18
	Subtotal (I-squared = 0.0%, p = 0.868)	0.95 (0.82, 1.10)	84.57
	· · · · · · · · · · · · · · · · · · ·		
	African-American		
	Sellers b (2005)	0.75 (0.41, 1.39)	5.50
	Holt,b (2007)	1.02 (0.58, 1.78)	5.94
	Subtotal (I-squared = 0.0%, p = 0.474)	0.89 (0.59, 1.34)	11.44
	· · · · · · · · · · · · · · · · · · ·		
	Asian		
	Zhu Zhuangyan (2008)	1.01 (0.52, 1.99)	3.99
	Subtotal (I-squared = .%, p = .)	1.01 (0.52, 1.99)	3.99
	Overall (I-squared = 0.0%, p = 0.935)	0.94 (0.82, 1.08)	100.00
		1	
B	Study	2.7/	%
D	D	OR (95% CI)	Weight
	-		
	Caucasian		
	Sellers a (2005)	1.05 (0.80, 1.36)	52.89
	Holt,a (2007)	1.05 (0.76, 1.43)	36.98
	Subtotal (I-squared = 0.0%, p = 0.996)	1.05 (0.85, 1.28)	89.87
	Δ frican_Δmerican		
	Sellers h (2005)	- 2 16 (0 75 6 21)	2 46
	Holt b (2007)	1 23 (0 52 2 88)	4 70
	Subtatel (/ any and = 0.0% a = 0.412)	1.25 (0.32, 2.00)	7.10
	Subtotal (+squared = 0.0%, p = 0.412)	1.55 (0.60, 2.99)	7.10
	Asian		
	Zhu Zhuangyan (2006)	1.46 (0.52, 4.11)	2.97
	Subtotal (I-squared = .%, p = .)	1.46 (0.52, 4.11)	2.97
	Overall (I-squared = 0.0%, p = 0.707)	1.09 (0.90, 1.32)	100.00

С Study % ID OR (95% CI) Weight Caucaslan 50.63 Sellers a (2005) 1.03 (0.66, 1.60) Holt,a (2007) 1.27 (0.76, 2.14) 32.84 Subtotal (I-squared = 0.0%, p = 0.543) 1.12 (0.80, 1.58) 83.48 African-American 0.91 (0.31, 2.69) Holt,b (2007) 9.14 Sellers b (2005) (Excluded) 0.00 Subtotal (I-squared = .%, p = .) 0.91 (0.31, 2.69) 9.14 Aslan Zhu Zhuangyan (2006) 0.82 (0.24, 2.80) 7.39 Subtotal (I-squared = .%, p = .) 0.82 (0.24, 2.80) 7.39 Overall (I-squared = 0.0%, p = 0.870) 1.08 (0.79, 1.48) 100.00 24 4.16 D Study % D OR (95% CI) Weight Caucasian Sellers a (2005) 1.04 (0.81, 1.34) 52.88 Holt,a (2007) 1.09 (0.80, 1.46) 36.00 Subtotal (I-squared = 0.0%, p = 0.842) 1.06 (0.88, 1.28) 88.88 African-American Sellers b (2005) 2.16 (0.75, 6.21) 2.19 Holt,b (2007) 1.11 (0.50, 2.47) 5.09 Subtotal (I-squared = 0.0%, p = 0.325) 1.43 (0.76, 2.68) 7.28 Asian 3.84 Zhu Zhuangyan (2006) 1.19 (0.48, 2.91) Subtotal (I-squared = .%, p = .) 1.19 (0.48, 2.91) 3.84 Overall (I-squared = 0.0%, p = 0.776) 1.09 (0.91, 1.31) 100.00 .161 6.21 1

Figure 5. Forest plot for the inclusive relationship of A119S polymorphism and risk for ovarian carcinoma that reveals the Allele model (A) Heterozygous model (B) Homozygote model (C) Dominant model (D) Recessive model (E) and additive model (F) shows the recessive model. The fixed-effects model is implemented for a 95% confidence interval and to derive the pooled OR. The size of the square has been proportional to the weight of all studies and each study has been revealed via point estimate of the OR with 95% CI (extended lines).

Genotype/allele CYP1B1 rs1056836	Sensitive N = 137	Resistant N = 62	OR (95% CI)	P-value
Genotypic frequencies				
CC	3	0	1	
GC	16	8	0.842 (0.693-1.023)	0.532
GG	118	54	0.975 (0.948-1.003)	0.553
Recessive model				
Others	19	8	1	
GG	118	54	0.920 (0.379-2.233)	1.000
Dominant model				
CC	3	0	1	
Others	134	62	1.463 (1.330-1.609)	0.554
Allelic frequencies				
С	22	8	1	
G	252	116	1.266 (0.547-2.928)	0.684

Table 9. Association link of rs1056836 polymorphisms with drug-Resistant of ovarian cancer

genotyping assay results revealed that there was no considerable correlation between this locus and drug resistance of ovarian cancer. Overall results show that the SNP (rs1056836) of the CYP1B1 gene might be used as an indicator of ovarian cancer. Furthermore, structural and functional studies should be conducted for this SNP.

Acknowledgements

This study was supported by the Subject of Guangxi Scientific Research and Technology Development Program (No. 14124004); Guangxi Zhuang Autonomous Region Health and Family Planning Commission self-funded research project (No. Z2016288).

Disclosure of conflict of interest

None.

Address correspondence to: Li Li, Department of Gynecologic Oncology, Affiliated Tumor Hospital of Guangxi Medical University, 71 Hedi Road, Nanning 530021, China. E-mail: lili@gxmu.edu.cn

References

- [1] Siegel RL, Miller KD and Jemal A. Cancer statistics, 2020. CA Cancer J Clin 2020; 70: 7-30.
- [2] Cornelison R, Llaneza DC and Landen CN. Emerging therapeutics to overcome chemoresistance in epithelial ovarian cancer: a minireview. Int J Mol Sci 2017; 18: 2171.
- [3] Friedman R. Drug resistance in cancer: molecular evolution and compensatory proliferation. Oncotarget 2016; 11: 11746-55.

- [4] Turajlic S and Swanton C. Metastasis as an evolutionary process. Science 2016; 352: 169-175.
- [5] Langdon SP, Gourley C, Gabra H and Stanley B. Endocrine therapy in epithelial ovarian cancer. Expert Rev Anticancer Ther 2017; 17: 109-117.
- [6] Go RE, Hwang KA and Choi KC. Cytochrome P450 1 family and cancers. J Steroid Biochem Mol Biol 2015; 147: 24-30.
- [7] Sergentanis TN, Economopoulos KP, Choussein S and Vlahos NF. Cytochrome P450 1A1 (CYP1A1) gene polymorphisms and ovarian cancer risk: a meta-analysis. Mol Biol Rep 2012; 39: 9921-9930.
- [8] Tian Z, Li YL, Zhao L and Zhang CL. Role of CYP1A2 1F polymorphism in cancer risk: evidence from a meta-analysis of 46 case-control studies. Gene 2013; 524: 168-174.
- [9] Liu JY, Yang Y, Liu ZZ, Xie JJ, Du YP and Wang W. Association between the CYP1B1 polymorphisms and risk of cancer: a meta-analysis. Mol Genet Genomics 2015; 290: 739-765.
- [10] Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W and Gascuel O. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 2010; 59: 307-321.
- [11] Guindon S, Delsuc F, Dufayard JF and Gascuel O. Estimating maximum likelihood phylogenies with PhyML. Methods Mol Biol 2009; 537: 113-137.
- [12] Yang Z. PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol 2007; 24: 1586-1591.
- [13] Bielawski JP. Detecting the signatures of adaptive evolution in protein-coding genes. Curr Protoc Mol Biol 2013; Chapter 19: Unit 19.1.
- [14] Stadler T and Yang Z. Dating phylogenies with sequentially sampled tips. Syst Biol 2013; 62: 674-688.

- [15] Goodman MT, McDuffie K, Kolonel LN, Terada K, Donlon TA, Wilkens LR, Guo C and Le Marchand L. Case-control study of ovarian cancer and polymorphisms in genes involved in catecholestrogen formation and metabolism. Cancer Epidemiol Biomarkers Prev 2001; 10: 209-216.
- [16] Cecchin E, Russo A, Campagnutta E, Martella L and Toffoli G. Lack of association of CYP1 B1*3 polymorphism and ovarian cancer in a Caucasian population. Int J Biol Markers 2004; 19: 160-163.
- [17] Sellers TA, Schildkraut JM, Pankratz VS, Vierkant RA, Fredericksen ZS, Olson JE, Cunningham J, Taylor W, Liebow M, McPherson C, Hartmann LC, Pal T and Adjei AA. Estrogen bioactivation, genetic polymorphisms, and ovarian cancer. Cancer Epidemiol Biomarkers Prev 2005; 14: 2536-2543.
- [18] Holt SK, Rossing MA, Malone KE, Schwartz SM, Weiss NS and Chen C. Ovarian cancer risk and polymorphisms involved in estrogen catabolism. Cancer Epidemiol Biomarkers Prev 2007; 16: 481-489.
- [19] Delort L, Chalabi N, Satih S, Rabiau N, Kwiatkowski F, Bignon YJ and Bernard-Gallon DJ. Association between genetic polymorphisms and ovarian cancer risk. Anticancer Res 2008; 28: 3079-3081.
- [20] Zahid M, Beseler CL, Hall JB, LeVan T, Cavalieri EL and Rogan EG. Unbalanced estrogen metabolism in ovarian cancer. Int J Cancer 2014; 134: 2414-2423.
- [21] Zhu ZY, Mi RR and Liu J. Polymorphism of CY-P1B1 gene and its susceptibility to ovarian cancer. Progress in Modern Obstetrics and Gynecology 2006; 184-187.
- [22] Liu Y. Natural selection and pangenesis: the darwinian synthesis of evolution and genetics. Adv Genet 2018; 102: 121-142.
- [23] Shakya M, Ahmed SA, Davenport KW, Flynn MC, Lo CC and Chain PSG. Standardized phylogenetic and molecular evolutionary analysis applied to species across the microbial tree of life. Sci Rep 2020; 10: 1723.
- [24] Mohapatra DP, Singh SK, Sahoo M, Patole S, Mishra M, Debata NK and Mohapatra H. Retrospective study on clonal relationship of multidrug-resistant klebsiella spp. indicates closed circulation and initiation of clonal divergence. J Med Microbiol 2018; 67: 611-619.
- [25] Benvenuto D, Giovanetti M, Salemi M, Prosperi M, De Flora C, Junior Alcantara LC, Angeletti S and Ciccozzi M. The global spread of 2019nCoV: a molecular evolutionary analysis. Pathog Glob Health 2020; 114: 64-67.

- [26] Yohe LR, Liu L, Davalos LM and Liberles DA. Protocols for the molecular evolutionary analysis of membrane protein gene duplicates. Methods Mol Biol 2019; 1851: 49-62.
- [27] De Grazia S, Lanave G, Bonura F, Urone N, Cappa V, Li Muli S, Pepe A, Gellert A, Banyai K, Martella V and Giammanco GM. Molecular evolutionary analysis of type-1 human astroviruses identifies putative sites under selection pressure on the capsid protein. Infect Genet Evol 2018; 58: 199-208.
- [28] Martincorena I and Campbell PJ. Somatic mutation in cancer and normal cells. Science 2015; 349: 1483-1489.
- [29] Khan MM, Ryden AM, Chowdhury MS, Hasan MA and Kazi JU. Maximum likelihood analysis of mammalian p53 indicates the presence of positively selected sites and higher tumorigenic mutations in purifying sites. Gene 2011; 483: 29-35.
- [30] Lou DI, McBee RM, Le UQ, Stone AC, Wilkerson GK, Demogines AM and Sawyer SL. Rapid evolution of BRCA1 and BRCA2 in humans and other primates. BMC Evol Biol 2014; 14: 155.
- [31] Abdul Aziz AA, Md Salleh MS, Mohamad I, Krishna Bhavaraju VM, Mazuwin Yahya M, Zakaria AD, Hua Gan S and Ankathil R. Singlenucleotide polymorphisms and mRNA expression of CYP1B1 influence treatment response in triple negative breast cancer patients undergoing chemotherapy. J Genet 2018; 97: 1185-1194.
- [32] Alsubait A, Aldossary W, Rashid M, Algamdi A and Alrfaei BM. CYP1B1 gene: implications in glaucoma and cancer. J Cancer 2020; 11: 4652-4661.
- [33] Sissung TM, Price DK, Sparreboom A and Figg WD. Pharmacogenetics and regulation of human cytochrome P450 1B1: implications in hormone-mediated tumor metabolism and a novel target for therapeutic intervention. Mol Cancer Res 2006; 4: 135-150.
- [34] Shimada T, Watanabe J, Kawajiri K, Sutter TR, Guengerich FP, Gillam EM and Inoue K. Catalytic properties of polymorphic human cytochrome P450 1B1 variants. Carcinogenesis 1999; 20: 1607-1613.

order	Common name	Species name	DNA sequence	protein sequence	Abbreviation
1	human	Homo sapiens	ENST0000379727.7	ENSP00000369050	human
2	Chimpanzee	Pan troglodytes	ENSPTRT00000066960.2	ENSPTRP00000058539	Chimpanzee
3	Gorilla	Gorilla	ENSGG0T00000016584.2	ENSGG0P00000016126	Gorilla
4	Orangutan	Pongo abelii	ENSPPYT00000007843.1	ENSPPYP00000007536	Orangutan
5	Gibbon	Nomascus leucogenys	ENSNLET00000018631.2	ENSNLEP00000017745	Gibbon
6	Macaque	Macaca mulatta	ENSMMUT00000031615.3	ENSMMUP00000029575	Macaque
7	Olive baboon	Papio anubis	ENSPANT00000007574.1	ENSPANP00000014273	Olive_baboon
8	Vervet-AGM	Chlorocebus sabaeus	ENSCSAT00000012341.1	ENSCSAP00000010381	Vervet_AGM
9	Marmoset	Callithrix jacchus	ENSCJAT00000034574.2	ENSCJAP00000032713	Marmoset
10	Bushbaby	Otolemur garnettii	ENSOGAT00000014451.2	ENSOGAP00000012947	Bushbaby
11	Mouse Lemur	Microcebus murinus	ENSMICT00000048712.1	ENSMICP00000033975	Mouse_Lemur
12	Elephant	Loxodonta africana	ENSLAFT00000015554.2	ENSLAFP00000018088	Elephant
13	Microbat	Myotis lucifugus	ENSMLUT0000008383.2	ENSMLUP00000007650	Microbat
14	Armadillo	Dasypus novemcinctus	ENSDN0T00000052025.1	ENSDN0P00000026692	Armadillo
15	Cat	Felis catus	ENSFCAT00000002015.2	ENSFCAP0000001863	Cat
16	Dog	Canis lupus familiaris	ENSCAFT00000028474.3	ENSCAFP00000026483	Dog
17	Dolphin	Tursiops truncatus	ENSTTRT00000007994.1	ENSTTRP00000007564	Dolphin
18	Horse	Equus caballus	ENSECAT00000015233.1	ENSECAP00000012229	Horse
19	Pig	Sus scrofa	ENSSSCT00000002135.2	ENSSSCP00000002085	Pig
20	Cow	Bos taurus	ENSBTAT00000061300.2	ENSBTAP00000053212	Cow
21	Mouse	Mus musculus	ENSMUST0000034865.5	ENSMUSP000003486225	Mouse
22	Squirrel	Ictidomys tridecemlineatus	ENSST0T00000013941.2	ENSSTOP00000012492	Squirrel
23	Megabat	Pteropus vampyrus	ENSPVAT00000015845.1	ENSPVAP00000014951	Megabat
24	Rat	Rattus norvegicus	ENSRN0T00000026473.4	ENSRN0P00000026473	Rat
25	Guinea Pig	Cavia porcellus	ENSCP0T00000015748.2	ENSCP0P00000014064	Guinea_Pig
26	hedgehog	Erinaceus europaeus	ENSETET00000010192.1	ENSETEP00000008275	hedgehog
27	Rabbit	Oryctolagus cuniculus	ENSOCUT00000017743.3	ENSOCUP00000015239	Rabbit
28	Ferret	Mustela putorius furo	ENSMPUT00000017441.1	ENSMPUP00000017185	Ferret
29	Opossum	Monodelphis domestica	ENSMODT00000012011.3	ENSMODP00000011788	Opossum
30	Wallaby	Notamacropus eugenii	ENSMEUT0000000131.1	ENSMEUP0000000119	Wallaby
31	Tasmanian devil	Sarcophilus harrisii	ENSSHAT00000018234.1	ENSSHAP00000018085	Tasmanian_devil
32	Platypus	Ornithorhynchus anatinus	ENSOANT00000005633.2	ENSOANP00000005631	Platypus
33	Chinese softshell turtle	Pelodiscus sinensis	ENSPSIT0000008339.1	ENSPSIP0000008296	softshell_turtle
34	Flycatcher	Ficedula albicollis	ENSFALT00000004745.1	ENSFALP00000004721	Flycatcher
35	Duck	Anas platyrhynchos	ENSAPLT00000011431.1	ENSAPLP00000010714	Duck
36	Xenopus	Xenopus tropicalis	ENSXETT00000061279.1	ENSXETP00000063291	Xenopus
37	Zebra Finch	Taeniopygia guttata	ENSTGUT0000004161.1	ENSTGUP0000004116	Zebra_Finch
38	Chicken	Gallus gallus	ENSGALT00000002018.5	ENSGALP0000002016	Chicken
39	Anole lizard	Anolis carolinensis	ENSACAT00000014825.3	ENSACAP00000014530	Anole_lizard
40	Spotted gar	Lepisosteus oculatus	ENSLOCT0000018040.1	ENSL0CP0000018008	Spotted_gar
41	Tilapia	Oreochromis niloticus	ENSONIT0000003676.1	ENSONIP0000003675	Tilapia
42	Amazon molly	Poecilia formosa	ENSPF0T00000015376.1	ENSPF0P0000015354	Amazon_molly
43	Cave fish	Astyanax mexicanus	ENSAMXT00000021404.1	ENSAMXP00000021404	Cave_fish
44	Cod	Gadus morhua	ENSGM0T0000000331.1	ENSGM0P0000000312	Cod
45	Fugu	Takifugu rubripes	ENSTRUT0000002337.1	ENSTRUP0000002327	Fugu
46	Stickleback	Gasterosteus aculeatus	ENSGACT00000019429.1	ENSGACP00000019391	Stickleback
47	Tetraodon	Tetraodon nigroviridis	ENSTNIT00000015092.1	ENSTNIP00000014891	Tetraodon
48	Medaka	Oryzias latipes	ENSORLT00000018074.1	ENSORLP00000018073	Medaka
49	Platyfish	Xiphophorus maculatus	ENSXMAT00000016834.1	ENSXMAP00000016810	Platyfish
50	Zebrafish	Danio rerio	ENSDART00000161538.1	ENSDARP00000139599	Zebrafish

Supplementary Table 1. CYP1A1 gene accession number from species, which are included in the selection and phylogenetic analyses

Mammalian order	Common name	Species name	DNA sequence	protein sequence	Abbreviation
1	human	Homo sapiens	ENST00000343932.4	ENSP00000342007	human
2	Gorilla	Gorilla gorilla gorilla	ENSGG0T0000010896.2	ENSGG0P00000010581	Gorilla
3	Gibbon	Nomascus leucogenys	ENSNLET00000018654.1	ENSNLEP00000017767	Gibbon
4	Olive baboon	Papio anubis	ENSPANT00000004824.1	ENSPANP00000014274	Olive_baboon
5	Macaque	Macaca mulatta	ENSMMUT00000030720.3	ENSMMUP00000028750	Macaque
6	Orangutan	Pongo abelii	ENSPPYT00000007844.2	ENSPPYP00000007537	Orangutan
7	Marmoset	Callithrix jacchus	ENSCJAT00000034599.1	ENSCJAP00000032736	Marmoset
8	Bushbaby	Otolemur garnettii	ENSOGAT00000014453.2	ENSOGAP00000017637	Bushbaby
9	Chimpanzee	Pan troglodytes	ENSPTRT00000013446.3	ENSPTRP00000012463	Chimpanzee
10	Horse	Equus caballus	ENSECAT0000009040.1	ENSECAP0000006831	Horse
11	Cow	Bos taurus	ENSBTAT0000000094.5	ENSBTAP0000000094	Cow
12	Squirrel	lctidomys tridecemlineatus	ENSST0T00000029961.1	ENSSTOP00000021252	Squirrel
13	Microbat	Myotis lucifugus	ENSMLUT00000014050.2	ENSMLUP00000012780	Microbat
14	Dolphin	Tursiops truncatus	ENSTTRT00000007995.1	ENSTTRP00000007565	Dolphin
15	Panda	Ailuropoda melanoleuca	ENSAMET00000009752.1	ENSAMEP00000009352	Panda
16	Dog	Canis lupus familiaris	ENSCAFT00000039456.2	ENSCAFP00000035314	Dog
17	Elephant	Loxodonta africana	ENSLAFT00000035152.1	ENSLAFP00000027591	Elephant
18	Sheep	Ovis aries	ENSOART0000003636.1	ENSOARP00000003572	Sheep
19	Pig	Sus scrofa	ENSSSCT00000002129.2	ENSSSCP00000002079	Pig
20	hedgehog tenrec	Erinaceus europaeus	ENSETET00000002401.1	ENSETEP00000001954	hedgehog_tenrec
21	Cat	Felis catus	ENSFCAT0000000343.2	ENSFCAP0000000315	Cat
22	Tree Shrew	Tupaia belangeri		ENSTBEP00000005505	Tree_Shrew
23	Rabbit	Oryctolagus cuniculus	ENSOCUT00000010056.3	ENSOCUP0000008665	Rabbit
24	Shrew	Sorex araneus	ENSSART0000000304.1	ENSSARP00000000273	Shrew
25	Guinea Pig	Cavia porcellus	ENSCP0T0000001250.2	ENSCPOP00000017610	Guinea_Pig
26	Pika	Ochotona princeps	ENSOPRT00000010487.1	ENSOPRP00000009583	Pika
27	Rat	Rattus 28 norvegicus	ENSRN0T00000021653.7	ENSRNOP00000021653	Rat
28	Mouse	Mus musculus	ENSMUST0000034860.4	ENSMUSP00000034860	Mouse
29	Wallaby	Notamacropus eugenii	ENSMEUT00000015717.1	ENSMEUP00000014310	Wallaby
30	Kangaroo rat	Dipodomys ordii	ENSDORT0000013132.1	ENSDORP00000012346	Kangaroo_rat
31	Opossum	Monodelphis domestica	ENSMODT00000012011.3	ENSM0DP00000011788	Opossum
32	Tasmanian devil	Sarcophilus harrisii	ENSSHAT00000018234.1	ENSSHAP00000018085	Tasmanian_devil
33	Chinese softshell turtle	Pelodiscus sinensis	ENSPSIT0000008339.1	ENSPSIP0000008296	softshell_turtle

Supplementary	/ Table 2	.CYP1A2	gene accession	number from s	pecies that a	re included in	the selection a	nd ph	vlogenetic and	alvses
									J - O	

34	Chicken	Gallus gallus	ENSGALT00000002018.5	ENSGALP00000002016	Chicken
35	Duck	Anas platyrhynchos	ENSAPLT00000011431.1	ENSAPLP00000010714	Duck
36	Zebra Finch	Taeniopygia guttata	ENSTGUT0000004161.1	ENSTGUP0000004116	Zebra_Finch
37	Anole lizard	Taeniopygia guttata	ENSACAT00000014825.3	ENSACAP00000014530	Anole_lizard
38	Flycatcher	Ficedula albicollis	ENSFALT00000004745.1	ENSFALP00000004721	Flycatcher
39	Xenopus	Xenopus tropicalis	ENSXETT00000061279.1	ENSXETP00000063291	Xenopus
40	Spotted gar	Lepisosteus oculatus	ENSLOCT0000018040.1	ENSLOCP0000018008	Spotted_gar
41	Chicken	Gallus gallus	ENSGALT00000040012.2	ENSGALP00000039219	Chicken
42	Stickleback	Gasterosteus aculeatus	ENSGACT00000019429.1	ENSGACP00000019391	Stickleback
43	Tetraodon	Tetraodon nigroviridis	ENSTNIT00000015092.1	ENSTNIP00000014891	Tetraodon
44	Tilapia	Oreochromis niloticus	ENSONIT0000003676.1	ENSONIP0000003675	Tilapia
45	Zebrafish	Danio rerio	ENSDART00000161538.1	ENSDARP00000139599	Zebrafish
46	Cod	Gadus morhua	ENSGM0T0000000331.1	ENSGM0P0000000312	Cod
47	Cave fish	Astyanax mexicanus	ENSAMXT00000021404.1	ENSAMXP00000021404	Cave_fish
48	Medaka	Oryzias latipes	ENSORLT00000018074.1	ENSORLP00000018073	Medaka
49	Fugu	Takifugu rubripes	ENSTRUT0000002337.1	ENSTRUP0000002327	Fugu
50	Amazon molly	Poecilia formosa	ENSPF0T00000015376.1	ENSPF0P00000015354	Amazon_molly
51	Platyfish	Xiphophorus maculatus	ENSXMAT00000016834.1	ENSXMAP00000016810	Platyfish

Supplementary Table 3. CYP1b1 gene accession number from species that are included in the selection and phylogenetic analyses

Mammalian order	Common name	Species name	DNA sequence	protein sequence	Abbreviation
1	human	Homo sapiens	ENST00000610745.4	ENSP00000478561	human
2	Chimpanzee	Pan troglodytes	ENSPTRT00000022042.3	ENSPTRP00000020335	Chimpanzee
3	Orangutan	Pongo abelii	ENSPPYT00000014510.2	ENSPPYP00000013944	Orangutan
4	Gibbon	Nomascus leucogenys	ENSNLET00000020780.2	ENSNLEP00000019784	Gibbon
5	Vervet-AGM	Chlorocebus sabaeus	ENSCSAT00000010318.1	ENSCSAP0000008414	Vervet
6	Olive baboon	Papio anubis	ENSPANT0000007322.1	ENSPANP00000011533	Olive_baboon
7	Marmoset	Callithrix jacchus	ENSCJAT00000007727.2	ENSCJAP0000007313	Marmoset
8	Tree Shrew	Tupaia belangeri	ENSTBET0000001843.1	ENSTBEP00000001596	Tree_Shrew
9	Dolphin	Tursiops truncatus	ENSTTRT00000007063.1	ENSTTRP0000006681	Dolphin
10	Horse	Equus caballus	ENSECAT00000020731.1	ENSECAP00000017028	Horse
11	Mouse Lemur	Microcebus murinus	ENSMICT00000042808.1	ENSMICP00000020375	Mouse_Lemur
12	Ferret	Mustela putorius furo	ENSMPUT00000010354.1	ENSMPUP00000010192	Ferret
13	Rabbit	Oryctolagus cuniculus	ENSOCUT00000016155.3	ENSOCUP00000013885	Rabbit
14	Panda	Ailuropoda melanoleuca	ENSAMET00000019372.1	ENSAMEP00000018626	Panda

15	Dog	Canis lupus familiaris	ENSCAFT00000047464.2	ENSCAFP00000042136	Dog
16	Bushbaby	Otolemur garnettii	ENSOGAT00000014191.2	ENSOGAP00000012713	Bushbaby
17	Squirrel	lctidomys tridecemlineatus	ENSST0T0000001645.2	ENSSTOP0000001475	Squirrel
18	Cow	Bos taurus	ENSBTAT00000013922.2	ENSBTAP00000013922	Cow
19	Armadillo	Dasypus novemcinctus	ENSDN0T00000047745.1	ENSDN0P00000029542	Armadillo
20	Mouse	Mus musculus	ENSMUST0000024894.1	ENSMUSP00000024894	Mouse
21	Sheep	Ovis aries	ENSOART00000009894.1	ENSOARP00000009752	Sheep
22	Guinea Pig	Cavia porcellus	ENSCP0T00000014371.2	ENSCP0P00000012819	Guinea_Pig
23	Elephant	Loxodonta africana	ENSLAFT00000031675.1	ENSLAFP00000028088	Elephant
24	Hyrax	Procavia capensis	ENSPCAT00000011200.1	ENSPCAP00000010459	Hyrax
25	Kangaroo rat	Dipodomys ordii	ENSDORT0000007803.1	ENSDORP00000007316	Kangaroo_rat
26	Microbat	Myotis lucifugus	ENSMLUT00000013788.2	ENSMLUP00000012545	Microbat
27	Rat	Rattus norvegicus	ENSRNOT0000082017.1	ENSRNOP00000071724	Rat
28	Opossum	Monodelphis domestica	ENSMODT0000010756.1	ENSMODP00000010550	Opossum
29	Wallaby	Notamacropus eugenii	ENSMEUT00000007415.1	ENSMEUP00000006754	Wallaby
30	Tasmanian devil	Sarcophilus harrisii	ENSSHAT00000020730.1	ENSSHAP00000020566	Tasmanian_devil
31	Tarsier	Carlito syrichta	ENSTSYT0000008735.1	ENSTSYP0000008021	Tarsier
32	Chinese softshell turtle	Pelodiscus sinensis	ENSPSIT00000005914.1	ENSPSIP00000005879	turtle
33	Chicken	Gallus gallus	ENSGALT00000047969.1	ENSGALP00000048510	Chicken
34	Zebra Finch	Taeniopygia guttata	ENSTGUT0000009158.1	ENSTGUP00000009061	Zebra_Finch
35	Flycatcher	Ficedula albicollis	ENSFALT00000012490.1	ENSFALP00000012440	Flycatcher
36	Coelacanth	Latimeria chalumnae	ENSLACT00000018774.2	ENSLACP00000018641	Coelacanth
37	Spotted gar	Lepisosteus oculatus	ENSLOCT00000020495.1	ENSL0CP00000020460	Spotted_gar
38	Xenopus	Xenopus tropicalis	ENSXETT00000054079.2	ENSXETP00000054079	Xenopus
39	Zebrafish	Danio rerio	ENSDART00000131147.2	ENSDARP00000107132	Zebrafish
40	Stickleback	Gasterosteus aculeatus	ENSGACT0000003949.1	ENSGACP00000003935	Stickleback
41	Cave fish	Astyanax mexicanus	ENSAMXT00000021545.1	ENSAMXP00000021545	Cave_fish
42	Amazon molly	Poecilia formosa	ENSPF0T00000010612.1	ENSPF0P00000010597	Amazon_molly
43	Fugu	Takifugu rubripes	ENSTRUT00000017470.1	ENSTRUP00000017396	Fugu
44	Platyfish	Xiphophorus maculatus	ENSXMAT00000007749.1	ENSXMAP00000007741	Platyfish
45	Medaka	Oryzias latipes	ENSORLT00000001045.1	ENSORLP00000001044	Medaka
46	Tilapia	Oreochromis niloticus	ENSONIT00000013064.1	ENSONIP00000013054	Tilapia