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Abstract: Genetic instability is a hallmark of cancer and, with the introduction of poly (ADP-ribose) polymerase 
(PARP) inhibitors, is a targetable feature of many tumors. Currently, two PARP inhibitors, olaparib and rucaparib, 
have received approval as monotherapy by the Food and Drug Administration for the treatment of men with cas-
tration resistant prostate cancer with selected mutations involving the homologous recombination (HR) pathway. 
However, it is currently debated whether an HR mutation is a prerequisite for response or if patients with HR-
proficient mCRPC may also benefit from their use when combined with other targeted or immunotherapeutic agents. 
Several large phase III trials of PARP inhibitors with novel androgen axis inhibitors in groups of unselected patients 
are underway. Additionally, there are several early phase trials combining PARP inhibitors with radioligands or im-
munecheckpoint inhibitors. Here we discuss the currently ongoing or recently concluded trials of PARP inhibitor 
based combinatorial therapies in unselected patients with mCRPC, the rationale behind these trials, and how these 
may impact the treatment paradigm in men with mCRPC. 
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Introduction

Two inhibitors of poly (ADP-ribose) polymerase 
(PARP), olaparib and rucaparib, have recently 
received single-agent Food and Drug Admini- 
stration approval for patients with metastatic 
castration resistant prostate cancer (mCRPC) 
harboring mutations in the homologous recom-
bination (HR) genes [1]. Specifically, rucaparib 
is approved for treatment of patients with 
mCRPC who have been treated with androgen 
receptor (AR) directed therapy and a taxane-
based chemotherapy and have a deleterious 
germline and/or somatic BRCA mutation [2]. 
Olaparib was approved for patients with mCRPC 
who have progressed on a novel hormonal  
therapy (NHT; abiraterone or enzalutamide) 
based on the PROfound trial, which required 
patients to have a deleterious germline or 
somatic HR mutation (BRCA1, BRCA2, ATM, 
BARD1, BRIP1, CDK12, CHEK1, CHEK2, FANCL, 
PALB2, RAD51B, RAD51C, RAD51D or RAD54L) 
[3]. 

Both of these drugs currently require an HR 
mutation to be present, meaning that the major-
ity of patients with mCRPC are not eligible for 
their use. In the PROfound trial, only 28% of the 
screened population had a qualifying mutation 
[4]. Expanding the benefits of PARP inhibitors to 
a broader group of patients, i.e., to those with 
HR proficient tumors, is an area of active inves-
tigation in several phase II and III clinical trials 
(Table 1). Herein, we discuss the role of the 
DNA repair pathway in mCRPC, PARP inhibitor’s 
mechanisms of action, and the evidence and 
rationale for developing various combinatorial 
regimens for treatment of unselected patients 
with mCRPC.

Mechanisms of action of PARP inhibitors 

PARP inhibitors were the first example of a clini-
cal drug that took advantage of synthetic lethal-
ity [5]. Originally described almost a century 
ago, synthetic lethality is where two deficien-
cies - both tolerable in isolation-combine and 
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Table 1. PARP inhibitor clinical trials that are not selecting for or including patients without an HR mutation

NCT ID Phase Status Arms Primary 
outcome N Study Designs Start Date

Primary 
Completion 

Date

Completion 
Date

NCT03732820 (PROpel) III Active, not 
recruiting

Olaparib + abiraterone vs. placebo + 
abiraterone

rPFS 904 Randomized, parallel assignment, 
quadruple blinding

Oct 2018 Apr 2021 May 2026

NCT03834519 (KEYLYNK-010) III Recruiting Pembrolizumab + olaparib vs. abi-
raterone or enzalutamide

rPFS, OS 780 Randomized, parallel assignment, 
open label

May 2019 Apr 2022 Apr 2023

NCT03748641 (MAGNITUDE) III Recruiting Niraparib + abiraterone vs. placebo + 
abiraterone

rPFS 1000 Randomized, parallel assignment, 
quadruple blinding

Jan 2019 Jul 2022 Feb 2025

NCT04455750 (CASPAR) III Not yet 
recruiting

Rucaparib + enzalutamide vs. pla-
cebo + enzalutamide

rPFS, OS 1002 Randomized, parallel assignment, 
double blinding

Jan 2021 May 2023 Sep 2026

NCT03787680 II Recruiting Olaparib + AZD6738 ORR 47 Non-randomized, single group assign-
ment, open label

Oct 2019 Nov 2021 Nov 2025

NCT03338790 (CheckMate 9KD) II Active, not 
recruiting

Nivolumab + rucaparib vs. nivolumab 
+ enzalutamide vs. nivolumab + 
docetaxel

ORR, RR-PSA 330 Non-randomized, parallel assignment, 
open label

Dec 2017 Jan 2021 Nov 2021

NCT03516812 II Active, not 
recruiting

Bipolar androgen therapy + olaparib TEAEs, PSA50 36 Single group assignment, open label Aug 2018 Mar 2021 Mar 2023

NCT04592237 II Recruiting Carboplatin + cabazitaxel + cetre-
limab + niraparib vs. carboplatin + 
cabazitaxel + niraparib

PFS 120 Randomized, parallel assignment, 
open label

Dec 2020 Dec 2025 Dec 2025

NCT02893917 II Active, not 
recruiting

Olaparib + cediranib vs. cediranib rPFS 90 Randomized, parallel assignment, 
open label

Dec 2016 Dec 2021

NCT03431350 (QUEST) I/II Recruiting Niraparib + cetrelimab vs. niraparib + 
abiraterone

TEAEs, CRR, 
ORR

140 Non-randomized, sequential assign-
ment, open label

Mar 2018 Jul 2021 Dec 2021

NCT04556617 I/II Recruiting PLX2853 + olaparib + abiraterone vs. 
PLX2853 + olaparib

TEAEs, ORR, 
RR-PSA

110 Non-randomized, parallel assignment, 
open label

Sep 2020 Feb 2023 Mar 2023

NCT03317392 I/II Recruiting Radium-223 + olaparib vs. ra-
dium-223

MTD, rPFS 120 Randomized, parallel assignment, 
open label

Oct 2018 Nov 2021 Nov 2021

Composite response rate (CRR), maximum tolerated dose (MTD), treatment emergent adverse events (TEAEs), objective response rate (ORR), prostate-specific antigen response rate (RR-PSA), progression-free survival (PFS), radiographic PFS 
(rPFS), PSA decline of at least 50% below baseline (PSA50).
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create conditions that are in-compatible with 
life [6].

When DNA undergoes a single-strand break 
(SSB), the damaged DNA structure is quickly 
recognized by PARP1 [7]. Upon binding to DNA, 
the catalytic subunit of PARP1 recruits various 
proteins via PARylation which then repair the 
break [8]. It is this catalytic subunit where clini-
cal PARP inhibitors compete with NAD+ for  
binding [9]. Pharmacologic inhibition of PARP 
results in the accumulation of SSBs that prog-
ress to double-strand breaks (DSBs) after DNA 
replication (Figure 1). Normally, the HR pathway 
ensures the faithful repair of these DSBs, but 
this is compromised when cells are deficient in 
various HR components (i.e., BRCA1/2, ATM, 

etc.). DSBs are instead repaired by the error 
prone non-homologous end joining pathway, 
which has the tendency to generate large-scale 
replication errors that result in mitotic catastro-
phe and cell death [9]. 

While cancer cells with genetic loss of PARP1 or 
PARP2 are still viable, their inhibition is poten-
tially cytotoxic, even in the absence of HR defi-
ciency. This is because, in addition to prevent-
ing catalytic function, PARP inhibitors can have 
allosteric effects on PARP1 that promote its 
retention or release from DNA [10]. It has 
recently been suggested that PARP inhibitors 
should be classified based on the allosteric 
effect they have on PARP1; with type 1 promot-
ing retention, type 2 inducing no or mild pro-

Figure 1. The DNA repair pathway and the mechanisms of PARP inhibitors. Internal and external stress regularly 
generates single strand breaks. Poly (ADP-ribose) polymerase 1 (PARP1) recognizes these breaks, binds to the DNA, 
and recruits single strand break repair (SSBR) proteins. All clinical PARP inhibitors block the ability of PARP1 to re-
cruit repair proteins. They can also have allosteric effects promoting retention (type 1), promoting some or no reten-
tion (type 2), and promoting release (type 3). Without the homologous recombination (HR) pathway, cells are unable 
to reconcile replication fork stalling or double strand breaks and rely on the more error prone non homologous end 
joining (NHEJ) pathway. Shown in the top right boxes are diagram of the domains of PARP1 and a list of direct and 
indirect members of the HR pathway that have been evaluated in clinical trials. 
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retention allostery, and type 3 promoting 
release [11] (Figure 1). Drugs that induce reten-
tion of PARP on DNA are thought to be the most 
cytotoxic, even in HR proficient cells.

A unique relationship exists between the DNA 
repair pathways and the nuclear hormone 
receptors. This is most notably manifested in 
patients with germline HR mutations that have 
increased incidence of cancers involving the 
breast and prostate [12]. However, genome 
profiling studies have revealed that alterations 
in HR genes occur somatically at a frequency 
similar to the germline, and together can be 
found in 19-25% of patients with mCRPC [13, 
14]. These tumors tend to have higher Gleason 
scores, more frequent visceral metastases, 
and worse rates of survival [15-17]. Interesting- 
ly, several reports have identified prostate 
tumors that lack an HR mutation but have a 
DNA damage signature similar to that seen in 
HR deficiency [18, 19] and these may be targe-
table with PARP inhibitors.

Combination of PARP inhibitors with radiation 
and radiopharmaceuticals

In the 1990’s, it was realized that patients  
with hormone-sensitive prostate cancer had 
improved responses to radiation treatment 
when it was combined with androgen depriva-
tion therapy (ADT) [20]. The proposed molecu-
lar basis of this was somewhat non-intuitive, 
and it would later be discovered that AR is  
activated by radiation-induced DSBs and is 
able to upregulate several DNA repair genes 
during treatment [21-23]. Exposure to ADT 
results in the downregulation of DNA repair 
genes, prolonged irresolution of damaged foci, 
and increased tumor-cell death [23, 24]. A con-
sequence of this is that the activity of PARPs is 
increased which, in addition to their ability to 
promote cell survival, can also modulate the 
activity of AR. Thus, it has been proposed that 
PARP inhibitors would synergize with ADT and 
radiation-based therapies.

Two early phase trials for unselected patients 
with mCRPC are underway that combine PARP 
inhibitors with the radiopharmaceutical radium 
Ra 223 dichloride (radium-223). The single- 
arm NiraRad trial (NCT03076203) has been 
assessing the safety of niraparib and radi-
um-223 among 14 patients with mCRPC that 
have bone metastases. The larger phase I/II 

COMRADE trial (NCT03317392) is a random-
ized parallel alignment trial evaluating radi-
um-223 with or without olaparib in 112 patients 
with bone metastases. Both are expected to be 
completed by November of 2021.

Combination of PARP inhibitors with androgen 
signaling inhibitors

Even with ADT, AR continues to sustain tran-
scriptional activity through a myriad of resis-
tance mechanisms. This is why therapies that 
further reduce AR signaling, such as the NHTs, 
have greatly improved survival in patients  
after the onset of castration resistance [25]. 
Interestingly, PARPs might be able to disrupt  
AR activity in a manner that is independent of 
AR’s interaction with androgens. Recent work 
has suggested that PARP enzymes, PARP1 and 
PARP2, bind to the pioneering transcription fac-
tors GATA2 and FOXA1, respectively, and alter 
the chromatin landscape of the cell allowing AR 
to access prostate-cancer-specific enhancer 
regions (Figure 2) [26, 27]. Treatment with 
PARP inhibitors downregulates AR transcrip-
tional targets, including HR genes [24]. Addi- 
tionally, constitutively active AR splice variants 
(AR-Vs) are capable of driving proliferation, 
restoring the DNA damage response, and are 
associated with resistance to NHTs [28-31]. 
Since PARP inhibitors affect AR in a manner 
that is independent of androgens, it is possible 
that they could reduce the activity of AR-Vs, and 
were shown to do so in vitro [29]. It is for these 
reasons that a combination of the two drugs 
could potentiate each other and improve clini-
cal responses.

Preclinical work suggested that ETS fusions, a 
genomic event found in around half of patients, 
enhances susceptibility to PARP inhibitors [32]. 
Following this, the phase II trial NCI 9012 evalu-
ated the treatment of abiraterone with or with-
out veliparib in all-comers with mCRPC [33]. 
However, there was no significant improvement 
in outcome with the addition of veliparib, with 
regards to PSA response (72.4% vs. 63.9%; P = 
0.27) or progression free survival (PFS) (11 vs. 
10.1 months; P = 0.99). Although no difference 
was seen in the outcomes of patients with ETS 
fusions, other biomarkers such as alterations 
in the HR pathway, TP53, or PTEN were associ-
ated with a significantly longer PFS with addi-
tion of veliparib.
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In a phase II study of 142 post-docetaxel 
patients treated with abiraterone, the addition 
of olaparib was associated with an increased 
radiographic PFS of 13.8 months (95% CI  
10.8-20.4) compared to 8.2 months (95% CI 
5.5-9.7) with placebo [34]. Combination of the 
two agents was associated with an increased 
frequency of grade 3-5 adverse events, notably 
anemia and neutropenia. However, these were 

consistent with the known safety profiles of 
both agents and there were no novel adverse 
events. This study was not adequately powered 
for a subgroup analysis based on HR status, 
and complete genomic information was not 
available for all patients. 

The PROpel trial of olaparib or placebo with abi-
raterone in the first line setting will be one of 

Figure 2. A. Cells treated with Poly (ADP-ribose) polymerase 1 (PARP1) inhibitors (PARPi) have increased activation 
of the AKT survival pathway. Cederanib is able to decrease the translation of homologous recombination proteins 
through a hypoxia-dependent mechanism by inhibiting vascular endothelial growth factor receptor (VEGFR) and 
platelet derived growth factor receptor (PDFGFR) signaling. B. PARP1/2 have been shown to bind to pioneering 
transcription factors and change the chromatin landscape of cells to allow the androgen receptor (AR) to bind to 
prostate-cancer-specific enhancers. 
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four major phase III trials that will more defini-
tively answer if a PARP inhibitor and NHT com- 
bination is effective for unselected patients 
with mCRPC (NCT03732820). TALAPRO-2, a 
trial of talazoparib or placebo with enzalu-
tamide as first line therapy after the onset of 
mCRPC, is also underway assessing efficacy  
of the combination in both selected and 
unselected patients (NCT03395197). Similarly, 
the MAGNITUDE trial will combine niraparib or 
placebo with abiraterone and will include two 
cohorts based on the presence or absence of 
HR alterations (NCT03748641). All have radio-
graphic PFS as the primary endpoint, and 
include secondary end points assessing the 
time to the initiation of chemotherapy and all 
plan on collecting genomic data [35-37]. Addi- 
tionally, the phase III CASPAR trial (NCT044- 
55750) of enzalutamide with rucaparib or pla-
cebo in 1,002 patients recently began recruit-
ment and has a planned completion by 
September 2026.

Combinations of PARP and immune check-
point inhibitors

Prostate cancers have demonstrated a remark-
able intrinsic resistance to immune checkpoint 
inhibitors (ICIs) [38]. These tumors are consid-
ered to be immunologically cold, containing one 
of the lowest immune cell infiltrates of any 
tumor in an analysis of data from the Cancer 
Genome Atlas [39]. Thus, agents that “heat up” 
the tumor microenvironment may improve out-
comes when combined with ICIs. 

A series of experiments in breast, lung, and 
ovarian cancer have shown that treatment with 
PARP inhibitors can induce a considerable 
amount of replication stress, even in HR profi-
cient cells. Because of this stress, genetic 
material can leak into the cytosol or form highly 
permeable micronuclei [40-42]. The ectopic 
DNA is then recognized by the cGAS/STING  
signaling axis, which triggers the transcription 
of a type I interferon response [43]. Though this 
can induce a potent immune response, it also 
upregulates immune checkpoints like pro-
grammed death-ligand 1 (PD-L1) [44]. These 
discoveries were paired with exciting results 
from preclinical models that showed a synergis-
tic effect of ICIs and PARP inhibitors. However, 
some clinical insight can be gained from a 
genomic analysis of tumors from the TOPACIO 
trial of niraparib and pembrolizumab in ovarian 

cancer. Two factors, a HR-deficient mutational 
signature and elevated presence of exhausted 
CD8+ T-cells prior to treatment, were capable 
of predicting all objective responses [45]. 

In a trial of olaparib and durvalumab in 17 
unselected post-NHT patients, nine (52.9%) 
had a PSA decline of ≥50% and four (23.5%) 
had a partial radiographic response. Seven of 
the nine PSA responders had genomic data 
available which showed all had some alteration 
in BRCA2, usually an indel or deletion. Patients 
with HR mutations had a significantly greater 
probability of achieving a PFS of at least 12 
months as compared to those without (83.3% 
vs. 36.4%, P = 0.031). Several biomarkers were 
indicative of response including an increase in 
dendritic cells, a higher amount of Ki-67+/
PD-1+/CD8+ T-cells, and a decrease in circulat-
ing tumor cells after treatment [46].

The phase Ib/II trial KEYNOTE-365 (NCT0286- 
1573) is currently evaluating the effect of the 
PD-1 inhibitor pembrolizumab in combination 
with olaparib on 84 post-docetaxel patients 
who progressed after at least two lines of NHT. 
No patients had a detectable HR mutation, but 
a preliminary report demonstrated that five of 
39 (13%) had a PSA response and two of the 28 
(7%) with measurable disease had a partial 
response of longer than 12 months [47]. Grade 
3-5 adverse events occurred in 51% of patients, 
the most common being nausea, fatigue, and 
anemia. Two patients died of treatment related 
adverse events. The phase III trial KEYLYNK- 
010 (NCT03834519) will follow up on these 
results and is planning to recruit 780 patients 
who have been treated with a taxane chemo-
therapy and NHT (abiraterone or enzalutamide). 
They will be randomized 2:1 to treatment with 
either pembrolizumab plus olaparib or an alter-
native NHT agent which they have not received 
previously [48]. 

The recent results of another phase I trial 
(NCT03572478) [49], describe rucaparib plus 
nivolumab in seven unselected patients with 
mCRPC who had progressed on at least one 
line of NHT. Only one patient had a PSA 
response to treatment and was found to have a 
pathogenic BRCA2 mutation. Pre-clinically, pro-
filing of the patient’s tumors and concurrent 
experiments on Myc-driven murine prostate 
cancer models found that PARP inhibitors were 
insufficient to produce a STING-dependent 
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immune response. Interestingly, a combination 
treatment of rucaparib with the phosphoinosit-
ide 3-kinase (PI3K) inhibitor, buparlisib, greatly 
increased macrophage-dependent anti-tumor 
immune activation. The authors showed that 
PARP/PI3K inhibition in the mouse models 
resulted in release of DNA-DSB-containing 
microvesicles from tumor cells that triggered 
cGAS/STING activation of nearby macrophages, 
which then induced potent anti-tumor immuni-
ty. These results suggest that PARP inhibitors 
may have a limited ability to increase respons-
es to ICIs in prostate cancer alone but PARP/
PI3K inhibition could augment ICI (discussed 
further in the following section). 

Checkmate 9KD (NCT03338790) is a non-ran-
domized three-arm phase II trial examining the 
combination of nivolumab with enzalutamide, 
rucaparib, or docetaxel in 330 patients with 
mCRPC. This study will give a better indication 
whether or not PARP inhibitors are capable of 
improving responses to immunotherapy rela-
tive to other combination regimens. 

Combinations of PARP inhibitors and kinase 
inhibitors 

Components of the cellular growth pathway, 
such as the receptor tyrosine kinase vascular 
endothelial growth factor receptor (VEGFR) and 
the downstream serine/threonine kinases AKT 
and PI3K, are frequently dysregulated in cancer 
and can be targeted by several FDA approved 
small molecule inhibitors. Their combination 
with PARP inhibitors has shown pre-clinical and 
early phase promise. Mechanistic investiga-
tions have shown that PARP inhibition induces 
the activation of the PI3K/AKT pathway which 
promotes cell survival [50]. Inhibition of VEGFR 
was also found to downregulate BRCA1/2 
(Figure 2) [51]. Interestingly, in a trial of ovarian 
cancer, patients with wild-type or unknown 
BRCA1/2 status saw the greatest benefit with 
the addition of cediranib, a VEGFR inhibitor, to 
olaparib compared to those with BRCA1/2 
mutated tumors [52].

A recently concluded phase II trial (NCT028- 
93917) randomized 90 men with mCRPC to 
either cediranib plus olaparib or olaparib alone. 
Early results showed that the addition of cedira-
nib was associated with an increased rPFS of 
11.1 months verses 4 months on olaparib 
monotherapy (hazard ratio 0.54, 95% CI 0.317-

0.928, P = 0.026) [53]. Notably, grade 3 or 4 
adverse events were seen in 77% verses 58% 
of patients in the respective treatment arms. 
Results on correlation of objective response 
with respect to the HR status are expected in 
the near future. Another small phase Ib trial is 
evaluating a combination of rucaparib with the 
AKT inhibitor, ipatasertib, in an unselected 
group of breast, ovarian, and prostate cancer 
patients (NCT03840200).

Conclusions and future directions 

Several other agents that might have synergy 
with PARP inhibitors are currently in early-phase 
clinical trials. A phase II trial of the ATR inhibitor 
AZD6738 and olaparib began recently in 47 
patients with mCRPC who had progressed on 
first-line therapy (NCT03787680). The develop-
ment of ATR inhibitors for prostate cancer will 
also allow for a multi-faceted targeting of the 
DNA damage response pathway. 

Laboratory research in mCRPC will need to 
expand beyond the cellular effects of PARP 
inhibitors and also examine their modulation  
of the tumor microenvironment. Additionally, 
other clinical and molecular biomarkers of effi-
cacy and toxicity to combination treatments are 
needed. The recently developed radiolabeled 
small-molecule inhibitor [18F]FluorThanatrace 
allows for in vivo measurements of PARP1 
expression via positron emission tomography 
[54, 55]. A phase I trial is currently underway 
which will evaluate its ability to assess PARP 
expression in prostate cancer (NCT03334500). 
Further research correlating this imaging tech-
nique to PARP inhibitor response may someday 
provide real-time information to aid in decision 
making on candidacy for treatment with PARP 
inhibitors, possibly independent of HR status. 

PARP inhibitors are usually very well tolerated, 
with a side effect profile dominated by grade 
1-2 nausea, fatigue, and anemia. Another 
advantage is that these are oral agents. The 
developments of myelodysplastic syndrome or 
acute myeloid leukemia are rare complications 
of their use which have been seen in the treat-
ment of other malignancies [56]. Though more 
long-term safety data are needed, this appears 
to occur less frequently in prostate cancer [4, 
34, 57]. This complication has been associated 
with previous treatment with platinum agents 
[56], which are commonly used for treatment of 
ovarian cancer and not of prostate cancer. 



PARPi for unselected mCRPC

7434 Am J Transl Res 2021;13(7):7427-7439

While those with HR mutations derive the great-
est benefit, PARP inhibitors are a class of drugs 
with enormous potential to be effi-cacious in a 
larger proportion of men with mCRPC in combi-
nation with other agents such as ICIs, targeted 
therapies, and radiation therapy. The key will be 
to develop predictive biomarkers of response, 
beyond just the presence or absence of an HR 
mutation, to these combinatorial therapies to 
maximize benefit and minimize toxicities. 
Altogether, the results of the phase III trials of 
PARP inhibitor combinations with NHT are wait-
ed on with much anticipation, the application of 
PARP inhibitors outside the setting of HR defi-
ciency will likely remain a thriving area of pros-
tate cancer research long after they are 
complete. 
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