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Abstract: Meniscal injuries can cause cartilage degeneration, which usually leads to the development of osteoar-
thritis (OA) and results in progressive destruction of the knee joint. Therefore, it is important to identify methods to 
stop or slow the development of OA after the onset of meniscal defects. The current surgical techniques for meniscal 
injuries are insufficient to prevent the progression of knee OA, which has accelerated the development of alternative 
tissue engineering strategies. Much progress has been made in the use of biomechanical and biochemical stimuli 
in the past decades to engineer neotissue akin to native meniscus. In this review, we focus on the current progress 
in biomechanical and biochemical stimuli-based strategies applied to meniscal tissue engineering, and explore 
how these factors influence meniscal regeneration. By understanding the functional mechanism that can stimulate 
regeneration in the meniscus, we hope that this review will provide a theoretical basis and strategies for meniscus 
tissue engineering.
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Introduction

The menisci are two semicircular fibrocartilagi-
nous structures in the knee joint. They have 
many important functions for the knee, such as 
absorbing shock, transmitting stress and stabi-
lizing the knee joint [1]. Population-based data 
suggest that the prevalence of a meniscal tear 
or meniscal destruction ranges from 19% 
among 50 to 59 years of age to 56% among 70 
to 90 years of age in the general population [2]. 
With the rapid rise in aging populations world-
wide, the incidence of meniscal injuries may 
further increase. Previous clinical or zoological 
studies have found that if meniscal injury is not 
treated, it may lead to aggravation of clinical 
symptoms, osteoarthritis (OA), and even dis-
ability [3]. The annual cost of meniscal disease 
in the United States is estimated between 
$500 million and $5 billion [4].

Clinical treatment strategies for meniscal inju-
ries have changed with surgeons’ understand-

ing of the anatomic structure and function of 
the meniscus. In the past 60 years, because 
2/3 of the meniscus lacks blood vessels, it was 
considered difficult to heal it after meniscal 
injury. Therefore, the meniscus is often com-
pletely removed after injury, that is, total menis-
cectomy [5]. However, after total meniscecto-
my, the average stress on the knee cartilage will 
increase by 3 times, and peak stress will 
increase exponentially [3]. Clinical studies have 
shown that this accelerates the degeneration of 
knee cartilage and gradually leads to OA [3]. 
Later studies showed that in addition to the 
torn part that needs to be removed, the remain-
ing intact part needs to be preserved to main-
tain the function of the meniscus [6, 7]. 
However, even with partial meniscectomy, carti-
lage damage, osteophyte formation, and early 
degeneration of the knee joint can still occur 
[8]. Therefore, the current treatment strategy is 
to preserve as much meniscal tissue as possi-
ble. However, there are still many patients with 
complex meniscal injuries that are difficult to 
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suture and heal, and eventually require a total 
meniscectomy. Montgomery et al. reported 
that among patients undergoing meniscal sur-
geries, 96% of patients undergo meniscectomy, 
with only 4% undergoing meniscal repair [9]. 
For patients with total meniscectomy, alloge-
neic meniscus graft is often recommended. 
However, an allograft also has obvious disad-
vantages, such as limited supply, immune 
rejection, and disease transmission [10].

The current surgical techniques for meniscal 
injuries are insufficient to halt the development 
and progression of OA, thus stimulating the 
need for alternative tissue engineering strate-
gies. To engineer neotissue akin to native 
meniscus, many advances have been achieved 
by using biomechanical and biochemical stimu-
li in the past decades. In this review, we focus 
on current progress in biomechanical and bio-
chemical stimuli-based strategies used in 
meniscus tissue engineering, and explore how 
these factors influence meniscal regeneration. 
By explaining the functional mechanisms that 
can stimulate regeneration in the meniscus, 
this review will provide a theoretical basis for 
strategies for meniscus tissue engineering.

Meniscus anatomy and functional properties

The menisci are located between the femur 
and tibia, and can be divided into a C-shaped 
medial meniscus and an O-shaped lateral 
meniscus (Figure 1). The meniscus has a high 
water content (72% water), with the remaining 
28% composed of organic matter, including 
extracellular matrix (ECM) and cells [11]. In the 
ECM, collagen makes up the vast majority, fol-
lowed by glycosaminoglycan (GAG), DNA, glyco-
proteins, and elastin [11]. The content of these 
substances changes with age and physiologic 
environment [12]. The collagen content of the 
meniscus increases with weight bearing and 
joint movement until the age of 30, and stabi-
lizes until starting to decrease around the age 
of 80 [12]. According to the distribution of blood 
vessels and nerves, the meniscus can be divid-
ed into 3 areas, namely the outer, intermediate, 
and inner areas [13]. The outer area of the 
meniscus, which is usually called the red-red 
area, is rich in blood vessels and nerves, and 
has the ability to heal. This area contains a 
large amount of type I collagen fibers, which 
make up 90% of its composition by dry weight, 

with other collagens constituting less than 1% 
[14]. The cells in this area are mainly elongated 
fibroblast-like cells, surrounded by abundant 
collagen type I [15]. The inner area of the 
meniscus, which is called the white-white area, 
lacks blood vessels and nerves. Once dam-
aged, this inner area is difficult to heal. Unlike 
the outer area, the inner area contains relative-
ly fewer collagen fibers, and is slightly less than 
70% of the dry weight, of which 40% is collagen 
type I and 60% is collagen type II [14]. The cells 
in this area are mainly chondrocytes [15]. 
Regional variation of glycosaminoglycans 
(GAGs) has also been found, with a relatively 
higher proportion of proteoglycans in the inner 
two-thirds than in the outer one-third [16] 
(Figure 2A). The main function of GAG is to 
absorb water, which enables the meniscus to 
withstand compression [17]. The orientation 
and structure of collagen also differ between 
the meniscal surface layer and deeper tissue 
[18, 19]. The orientation of collagen fibers in 
the deep tissue is mainly in the circumferential 
direction. The collagen fibers covering the sur-
face of the meniscus tissue are randomly ori-
ented and have a network structure. The radial 
binding fibers are arborized from the outer area 
of the meniscus to the inner tip [20]. The pres-
ence of bonding fibers can affect the tensile 
modulus of the meniscus.

The meniscus can withstand various forces, 
such as compression, tension, and shear. It 
also plays an important role in the loadbearing, 
shock absorption, load transmission, and nutri-
tion of articular cartilage [21-23]. As the menis-
cus is wedge-shaped, it fits well between the 
flat tibial plateau and the curved femoral con-
dyle in articulation [24, 25]. In daily activities, 
the axial force between the tibia and femur 
compress the meniscus. The horn attachment 
and the wedge shape of the meniscus help con-
vert vertical compressive forces into horizontal 
hoop stresses (Figure 2B). If the meniscus 
deforms radially under compression, a shear 
force is generated between the collagen fibers 
of the meniscus [1, 26]. Due to the specialized 
structure, the meniscus sustains axial com-
pression with an aggregate modulus of 100-
150 kPa [27]. The tensile modulus varies 
between the circumferential and radial direc-
tions, which is approximately 100-300 MPa cir-
cumferentially and 10-fold lower than this radi-
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Figure 1. The knee joint, depicting meniscus and major ligaments. A. Anterior view. B. Superior view of the tibial 
plateau.

ally [28]. The shear modulus of the meniscus is 
approximately 120 kPa [28].

Biomechanical stimuli for meniscus tissue 
engineering

Mechanical stimulation has an important influ-
ence on the development, homeostasis, and 
degeneration of weight-bearing tissues. Studies 
have demonstrated the important role of physi-

cal movement in the formation of embryonic 
cartilage. When chick embryos undergo paraly-
sis, chondrogenesis of progenitor cells can be 
inhibited at the quadratojugal hook [29, 30]. 
Moreover, immobilization of chick embryos can 
inhibit the formation of articular joint cavity dur-
ing limb development, reducing the hyaluronan 
content in articular surfaces, and the meniscus 
is also absent in immobilized animals [31, 32]. 
Overall, these studies indicate that the trans-
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Figure 2. A. The internal structure of the meniscus depicting variation in collagen orientation, vascularization, and 
cell population. Reproduced with permission [13]. Copyright, 2019 Annual Reviews. B. The transduction of force 
upon and throughout the knee meniscus. Free body diagram of the forces acting on the knee lateral meniscus 
during loading. During everyday activity, the menisci are compressed by the downward force of the femur. Since 
the meniscus is a wedge, the femoral force is enacted at an angle, and thus a vertical component exists which is 
countered by the upward force of the tibia. Additionally, a horizontal component of the femoral force exists, which is 
exerted radially outward on each meniscus. This horizontal force is in turn countered by the anchoring force of the 
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duction of biomechanical stimulation to molec-
ular signals may regulate cell differentiation 
and maturation, highlighting the important role 
of mechanical stimulation in meniscal develop-
ment, growth, and health. In this review, we 
focus on three common biomechanical stimuli 
in meniscus tissue engineering, namely, hydro-
static pressure, direct compressive loading, 
and tension stimulation (Table 1).

Hydrostatic pressure

Under hydrostatic pressure, cells and tissues 
experience uniform and normal compression 
on all surfaces. Hydrostatic pressure is one of 
the major forms of mechanical stimulation, as 
it is resisted by the meniscus during every joint 
movement [33]. Similar to cartilage, meniscus 
experiences 3-10 MPa of hydrostatic pressure 
[34]. Under hydrostatic pressure condition, 
changes in the intracellular osmotic composi-
tion may affect gene expression and further 

influence the biomechanical properties of the 
meniscus [35].

Studies have shown enhanced extracellular 
matrix formation in chondrocytes under hydro-
static pressure condition. For example, a 1.3-
fold increase in GAG was found in chondrocytes 
exposed to hydrostatic pressure compared 
with static controls [36]. Chondrocytes stimu-
lated with hydrostatic pressure show a signifi-
cant increase of 64% more GAG [37]. In tissues 
derived from juvenile chondrocytes, GAG con-
tent was significantly increased when hydro-
static pressures were between 7 and 10 MPa 
[36, 38, 39]. When exposing chondrocytes in a 
monolayer to 10 MPa hydrostatic pressure for 
4 h, GAG synthesis was enhanced to 65% under 
intermittent pressure and 32% under constant 
pressure, and collagen type II was also 
increased in response to both intermittent and 
constant pressure [40].

attachments at the posterior and anterior horns of the meniscus. Additionally, as this compression occurs, circum-
ferential stress is created along the meniscus. Therefore, the menisci function by converting compressive loads to 
circumferential tensile loads. Reproduced with the permission [14]. Copyright 2011, Elsevier.

Table 1. Effect of biomechanical stimuli for meniscal tissue engineering
Biomechanical stimulus Effects Culture conditions
Hydrostatic pressure Chondrogenic differentiation of stem cells ↑ Monolayer [44, 50, 52]

Scaffold [45, 47, 49, 53]
Explant [48]

Collagen synthesis ↑ Monolayer [40]
Proteoglycan/GAG synthesis ↑ Monolayer [40]

Explant [36-39]
Matrix metalloproteases expression ↓ Explant [41, 42]

Direct compression stimulation Chondrogenic differentiation of stem cells ↑ Scaffold [65-71]
Collagen synthesis ↑ Scaffold [56, 116]

Explant [57, 58]
Proteoglycan/GAG synthesis ↑ Scaffold [60, 61, 116]

Explant [58]
NO release ↓ Explant [63]

Tension stimulation Chondrogenic differentiation of stem cells ↑ Monolayer [81]
Scaffold [75, 76]

Collagen synthesis ↑ Explant [73]
Scaffold [75, 76]

Proteoglycan/GAG synthesis ↑ Explant [73]
Scaffold [74, 75]

Matrix metalloproteases expression ↓ Explant [77]
NO and PGE2 release ↓ Monolayer [77, 78]
NO and PGE2 release ↑ Monolayer [79, 80]
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Hydrostatic pressure may also reduce catabolic 
gene expression on the meniscus. A study 
showed that hydrostatic pressure led to the 
downregulation of matrix metalloproteinase 
(MMP)-1 and MMP-13 mRNA expression, 
whereas cyclic hydrostatic pressure resulted in 
significantly enhanced expression of tissue 
inhibitors of metalloproteinases (TIMPs) and 
collagen type I mRNA [41]. Similarly, another 
study demonstrated that hydrostatic pressure 
could reduce the upregulation of catabolic 
genes, including inducible nitric oxide synthase 
(iNOS), cyclooxygenase-2 (COX-2), and MMPs, 
which increase in the absence of in vivo 
mechanical loading [42]. Furthermore, the 
expression of proteoglycan core protein was 
increased under physiologic levels of hydrostat-
ic pressure (1 or 5 MPa), whereas hydrostatic 
pressure at excessively high levels (10 or 50 
MPa) reduced the expression of proteoglycan 
core protein and induced interleukin-6 (IL6) 
and tumor necrosis factor-α (TNF-α) expression 
[43].

Many studies have shown the importance of 
hydrostatic pressure for the chondrogenic dif-
ferentiation of mesenchymal stem cells (MSCs). 
In the study by Angele et al., when hydrostatic 
pressure was applied to MSCs, there was an 
increase in GAG and collagen matrix synthesis 
at days 14 and 28 [44]. In the study by Correia 
et al., under physiologic hydrostatic pressure, 
greater matrix deposition and chondrogenic dif-
ferentiation were found for human adipose 
stem cells encapsulated in gellan gum hydro-
gels, with increased gene expression of SOX-9, 
collagen type II, and aggrecan [45]. Moreover, 
MSCs under cyclic hydrostatic compression 
resulted in increased type II collagen and 
aggrecan gene expression [46]. Other studies 
found similar results, in which applying hydro-
static pressure for 14 or 21 days enhanced 
chondrogenic (ACAN, COL1A1, COL2A1 and 
SOX9) gene expression in MSCs [47-53].

By combining hydrostatic pressure and growth 
factor stimuli, the mechanical properties of the 
regenerated meniscus can be increased. In the 
study by Gunja et al., with the combination of 
hydrostatic pressure and transforming growth 
factor (TGF)-β1 stimuli, additive increases in 
collagen and GAG deposition as well as a syner-
gistic increase in compressive properties were 
observed in meniscal cell-seeded poly-l-lactic 

acid (PLLA) constructs [54]. Similarly, another 
study by Elder et al. found that static hydrostat-
ic pressure at 10 MPa resulted in 92% increas-
es in Young’s modulus, with corresponding 
increases in collagen content, and 96% increas-
es in aggregate modulus, with corresponding 
increases in GAG content [39]. Moreover, the 
combination of 10 MPa static hydrostatic pres-
sure and TGF-β1 demonstrated an 85% 
increase in GAG/wet weight, a 164% increase 
in aggregate modulus, a 173% increase in col-
lagen/wet weight, and a 231% increase in 
Young’s modulus when compared with the con-
trol [39].

Direct compression stimulation

During daily activity, the axial force between the 
femur and tibia compresses the meniscus. 
Previous studies have shown that the meniscus 
underwent axial compression with an aggre-
gate modulus of 100-150 kPa [27]. Compres- 
sive loading is thought to facilitate the exchange 
of nutrients and waste in the transport-limited 
zone of the meniscus [55].

Numerous studies demonstrate that matrix 
synthesis is increased by dynamic compression 
stimulation. With a compressive stimulation of 
0.5 kPa, the collagen content of chondrocytes 
was increased to 1.5-fold compared with free-
swelling controls [56]. Similarly, when chondro-
cytes were cultured under passive compressive 
loading at 5 kPa, the collagen content was 
increased by 61% [57]. This study also found 
that constructs under high compressive load-
ing tend to have lower collagen content, indicat-
ing that excessive compressive load can cause 
ECM protein degeneration [57]. When exposing 
fibrocartilaginous neotissues from the menis-
cus under 0.1 N compressive stress, a 27% 
increase in collagen content and 67% increase 
in GAG synthesis were obtained [58]. In chon-
drocyte-seeded agarose gels, the GAG content 
was also found to be increased by 60% under 
dynamic compressive stimulation [59, 60]. 
Additionally, under monolayer condition, chon-
drocytes stimulated with 20% dynamic com-
pressive strain resulted in a 45% increase in 
GAG synthesis [61].

Direct compressive loading has been shown to 
influence the anabolic and catabolic activities 
of meniscal cells. For example, compared to no 
dynamic loading, 10% compressive strain could 
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cause the upregulation of COX-2, Aggrecan, 
and ADAMTS5 gene expression in meniscal 
cells [62]. However, 20% dynamic compressive 
strains led to an upregulation of MMPs and 
ADAMTS4 compared to no dynamic loading 
[62]. Similarly, another study showed that iNOS 
and IL-1 gene expression, as well as nitric oxide 
(NO) release, were enhanced under 20% com-
pressive strain. However, a physiologic com-
pressive strain of 10% would reduce NO release 
compared to pathologic unloading (0% com-
pressive strain) [63]. McHenry et al. demon-
strated that 20% compressive strain, in which 
the strain and stress correspond to partial 
meniscectomy, result in the greatest proteogly-
can breakdown [64]. These results indicate 
that a physiologic compressive strain of 10% 
may result in anabolic activity, whereas a 20% 
compressive strain is associated with catabolic 
activity.

Several studies have shown that direct com-
pressive loading plays a crucial role in the chon-
drogenic differentiation of MSCs. In the study 
by Bian et al., after 70 days of culture of human 
MSCs in hyaluronic acid hydrogel constructs, 
dynamic compressive loading increased colla-
gen and GAG contents, and enhanced the 
mechanical properties [65]. In another study by 
Huang, after being subjected to a 10% com-
pressive strain at a frequency of 1 Hz for 4 
hours a day, compressive loading significantly 
enhanced the expression of chondrogenic 
markers (aggrecan and collagen II) at 3, 7 and 
14 days for MSCs in agarose cultures [66]. 
Similar results were obtained by other studies, 
whereby chondrogenic genes were increased 
by applying dynamic compressive loading for 
14 or 28 days [67-71].

By simultaneously applying dynamic compres-
sive stimulation and growth factors, it becomes 
possible to develop anisotropic reconstruction 
for the meniscus. In the study by Zhang et al., 
two types of stimuli were simultaneously used: 
TGF-β3 and connective tissue growth factor 
(CTGF) for 4 weeks (biochemical stimulation) 
followed by dynamic 10% compressive strain 
for 2 weeks (biomechanical stimulation). With 
the combination of biochemical and biome-
chanical stimuli, higher collagen I content was 
observed in the outer area, while higher GAG 
and collagen II contents were observed in the 
inner area, reminiscent of the structure of a 

native meniscus (Figure 3). Moreover, under 
the double stimuli, the inner area of the regen-
erated meniscus exhibited an upregulation of 
chondrogenic genes (COL2A1, ACAN, and 
SOX9), while the outer area exhibited an upreg-
ulation of fibrogenic genes (COL1A1, FN1, and 
TNC), which suggests zone-specific mRNA phe-
notypes [72].

Tension stimulation

By pulling the tissue outward along the edges, 
a tensile force is generated in engineered tis-
sues. In the meniscus, the wedge shape and 
the horn attachments help convert the vertical 
forces to horizontal hoop stresses [14]. 
According to previous studies, the tensile mod-
ulus of the meniscus is 100-300 MPa circum-
ferentially and 10-fold lower radially [28].

In the study by Lee et al., uniaxial tensile load-
ing increased matrix formation in chondrocytes 
explant by 33% [73]. In fibrin hydrogel con-
structs, oscillatory tensile loading also led to an 
increase of 20.6% in GAG synthesis for chon-
drocytes [74]. By applying tensile stimulation to 
fibrocartilage constructs, increased collagen I 
mRNA expression as well as increased GAG 
and collagen contents were obtained [75]. 
Similarly, in the study by Baker et al., dynamic 
tensile loading resulted in increased expres-
sion of fibrous genes, enhanced collagen depo-
sition, and an increased tensile modulus for 
MSC-laden nanofibrous constructs [76].

Tensile loading could also influence catabolic 
activity on the meniscus. In the study by 
Agarwal et al., cyclic tensile strain reduced the 
catabolic effects of IL-1β on fibrochondrocytes 
by inhibiting MMP-1, COX-2, and iNOS mRNA 
expression and MMP-1, prostaglandin E2 
(PGE2), and NO release. Cyclic tensile strain 
also counteracted rHuIL-1β-induced suppres-
sion of proteoglycan synthesis [77]. Similarly, in 
the study by Gassner et al., cyclic tensile strain 
was directly attributed to the inhibition of iNOS 
mRNA expression and protein synthesis in 
chondrocytes. Furthermore, the inhibition of 
iNOS induction by cyclic tensile strain is paral-
leled by abrogation of IL-1β-induced downregu-
lation of proteoglycan synthesis [78]. However, 
conflicting results were obtained by other stud-
ies, whereby tensile stimulation increased the 
release of PGE2 and NO [79, 80].
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Several studies have used tension stimulation 
as a strategy for chondrogenic differentiation of 
MSCs. For example, in MSC-laden precultured 
constructs, tensile loading had a significant 
influence on the synthesis of ECM and expres-
sion of ECM-related genes [76]. Compared to 
nonloaded controls, four weeks of tensile stim-
ulation led to a twofold enhancement in colla-
gen I synthesis [76]. In another study, 24 h of 
dynamic tensile strain increased the synthesis 
of proteoglycan in MSC-seeded fibrin con-
structs [75]. Moreover, one week of dynamic 
tensile strain significantly enhanced the colla-
gen and GAG contents in the constructs [75]. 
Tension stimulation has been shown to prefer-
entially promote fibrogenesis (collagen I, versi-
can) over chondrogenesis (collagen II, Sox9, 
aggrecan) in adipose-derived stromal cells [81].

Biochemical stimuli for meniscal tissue engi-
neering

There are already a number of biochemical 
stimuli used for meniscus tissue engineering 
(Table 2). Commonly used biochemical stimuli 
include growth factors, such as TGF-βs, bone 
morphogenetic proteins (BMPs), basic fibro-
blast growth factor (bFGF), vascular endothelial 
growth factor (VEGF), insulin-like growth fac-
tor-1 (IGF-1), epidermal growth factor (EGF), 
platelet-derived growth factor (PDGF) and 
hepatocyte growth factor (HGF); small bioactive 
molecules such as E7 peptide, kartogenin 
(KGN), and Y-27632; biophysical factors such 
as chondroitinase ABC (C-ABC), lysyl oxidase-
like 2 (LOXL2); oxygen tension; and gene 
therapy.

Growth factors

Among numerous biochemical stimuli, growth 
factors are the most commonly used in menis-
cal tissue engineering (Table 2). A large number 
of growth factors, including the TGFβ family, 
EGF, PDGFs, and FGFs have shown efficacy for 
promoting ECM synthesis in meniscal regenera-

tion [14, 82]. Compared with the untreated 
meniscal construct, the addition of FGF2 and 
TGFβ1 increased collagen production by 60% 
and 144%, respectively [83]. Moreover, TGFβ1 
could also promote the synthesis of GAG [83]. 
In the study by Bhargava et al., when BMP-2, 
HGF, and PDGF were applied to meniscal cells 
from different areas, a 2-3 fold enhancement in 
DNA production was observed [84]. In addition, 
cells in different meniscal areas have different 
responses to growth factors. For example, HGF 
has a higher influence on cells in the inner area, 
while BMP-2 has a higher influence on cells in 
the central area of the meniscus [84]. The influ-
ence of growth factors on the migration of 
meniscal cells was also studied. EGF increased 
the migration of cells from the inner and outer 
areas of the meniscus, IGF-1 increased the 
migration of cells from the inner and central 
areas of the meniscus, BMP-2 increased the 
migration of cells from the central area of the 
meniscus, and PDGF-AB and HGF enhanced 
the migration of cells from all meniscal areas 
[84]. By combining different growth factors, 
engineered meniscus could exhibit zone-specif-
ic matrix. In the study by Lee et al., by spatially 
delivering CTGF and TGFβ3 from a 3D-printed 
meniscus scaffold [85], inhomogeneous me- 
chanical properties as well as zone-specific 
matrix phenotypes were developed by endoge-
nous cells, with collagen II in the inner area, 
and collagen I in the outer area in the regener-
ated meniscus, which was reminiscent of the 
structure of a native meniscus [85] (Figure 4).

Small bioactive molecules

Many studies have shown encouraging results 
for small bioactive molecules such as E7 pep-
tides, KGN, Y-27632, and aptamers in menis-
cus and cartilage tissue engineering (Table  
2). For example, in the study by Yan et al., hyal-
uronic acid hydrogel with KGN-loaded PLGA 
nanoparticles showed improved biomechanical 
properties and more hyaline-like cartilage in 
terms of ECM, cartilage lacunae, and type II col-

Figure 3. Reconstruction of functional anisotropic meniscus by combining biomechanical and biochemical stimuli. 
A. Flowchart of stem cell-based strategies for construction of a tissue-engineered meniscus with anisotropic struc-
tures. BMSCs, bone marrow-derived stem cells. B. Zonal fibrochondrocyte differentiation of MSCs in 3D PCL scaf-
folds in the double-stimuli versus native meniscus (green, COL-1; red, COL-2). C. COL-1, COL-2, and GAG contents in 
the inner and outer regions of each study group. *P<0.05 between the inner region and outer region in the same 
group; #P<0.05 between the double-stimuli group and other groups in the same region. D. Gross view and low-mag-
nification immunofluorescence (IF) images of native or regenerated menisci at 24 weeks after in vivo implantation 
in rabbit knees. Green, COL-1; red, COL-2. Reproduced with permission [72]. Copyright 2019, Science.
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Table 2. Effect of growth factors, small bioactive molecules, biophysical factors, and low oxygen ten-
sion for meniscal tissue engineering
Biochemical stimulus Effects Culture conditions
Growth factors
    TGF-β1 Chondrogenic differentiation of stem cells and proliferation ↑ Monolayer [117, 118]

Scaffold [119]
Collagen synthesis ↑ Monolayer [120, 121] 

Scaffold [54, 83, 101, 122]
Scaffoldless [100]

Explant [123]
Proteoglycan/GAG synthesis ↑ Monolayer [120, 121]

Scaffold [54, 124, 125]
Scaffoldless [83]

Explant [123, 124]
Matrix metalloproteases expression ↓ Monolayer [126]

Explant [127]
    TGF-β3 Chondrogenic differentiation of stem cells and proliferation ↑ Scaffold [128-130]

Collagen synthesis ↑ Scaffold [129-131]
Monolayer [132]

Proteoglycan/GAG synthesis ↑ Scaffold [130, 131, 133, 134]
    BMP-2 Chondrogenic differentiation of stem cells and proliferation ↑ Monolayer [135]

Scaffold [136]
Chondrocytes migration ↑ Explant [137]

    BMP-7 Collagen synthesis ↑ Monolayer [138, 139]
Explant [140]

Matrix metalloproteases expression ↓ Monolayer [138, 139]
    b-FGF Proliferation ↑ Monolayer [141-143]

Scaffold [106, 144, 145]
Collagen synthesis ↑ Monolayer [142, 146]

Scaffold [147]
Proteoglycan/GAG synthesis ↑ Monolayer [146, 148]

Scaffold [106]
Explant [149]

    IGF-1 Chondrogenic differentiation of stem cells and proliferation ↑ Monolayer [122, 124, 150, 151]
Scaffold [83, 152]

Cell migration ↑ Explant [84]
Collagen synthesis ↑ Monolayer [121]

Scaffold [122, 153, 154]
Proteoglycan/GAG synthesis ↑ Scaffold [153]

Explant [123]
    PDGF Chondrogenic differentiation of stem cells and proliferation ↑ Monolayer [142, 155, 156]

Scaffold [157]
Explant [157]

Cell migration ↑ Monolayer [84]
Scaffold [157]
Explant [157]

Collagen synthesis ↑ Monolayer [142]
Proteoglycan/GAG synthesis ↑ Monolayer [148]

    HGF Proliferation ↑ Monolayer [84]
Scaffold [157]

Cell migration ↑ Monolayer [84]
Scaffold [157]
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lagen when compared with hyaluronic acid 
hydrogel alone [86]. In the study by Huang et 
al., KGN had direct effects on the chondrogenic 
differentiation of tendon stem cells in vivo and 
in vitro [87]. Moreover, a KGN-treated tendon 
graft could promote the formation of meniscus-
like tissue in vivo [87]. By using small bioactive 
molecules to recruit MSCs, the effect of menis-
cus and cartilage tissue regeneration could be 
enhanced. For example, when using the E7 
peptide, cartilage regeneration was enhanced 
by the specific homing of endogenous stem 
cells [88]. By applying a synovium-derived 
MSC-specific affinity peptide, meniscal repair 
was further reinforced by recruiting and retain-
ing endogenous stem cells [89]. Moreover, 
osteochondral regeneration was enhanced 
with an aptamer-loaded scaffold, which could 
also specifically recognize and recruit MSCs 
[90]. Rho-kinase inhibitors such as Y-27632 
also promote the chondrogenic differentiation 
of MSCs and inhibit the dedifferentiation of 
chondrocytes [91, 92].

Biophysical factors

As a biophysical agent, C-ABC affects meniscal 
and cartilage regeneration by removing derma-
tan sulfate and chondroitin from proteoglycan 
chains while leaving collagen intact [93, 94]. 

This process was studied previously for carti-
lage integration because it was thought to be 
able to target cartilage integration hindrances 
[95, 96]. For example, engineered cartilage 
treated with C-ABC could lead to increased 
compressive stiffness and tensile properties, 
as well as recovery of GAG content after 2-4 
weeks of culture compared to untreated groups 
[97-99]. The efficacy of C-ABC on engineered 
cartilage promotes its application in engineer-
ing meniscal tissue. Along these lines, self-
assembled meniscal constructs treated with 
C-ABC exhibited a 2-3 fold enhancement in ten-
sile modulus compared with untreated groups 
[100]. Furthermore, application of both TGF-β1 
and C-ABC resulted in significant increases in 
both the collagen density and fiber diameter by 
32% and 15%, respectively, as well as in the 
ultimate tensile strength and Young’s modulus 
of the engineered fibrocartilage [101] (Table 2).

Oxygen tension

Since the inner area of the meniscus lacks 
blood supply and has a hypoxic environment, 
studies have attempted to mimic this environ-
ment to restore a differentiated phenotype 
(Table 2). The primary key factor mediating the 
hypoxic response of meniscal cells is hypoxia-
inducible factor-1α (HIF-1α), which regulates 

Explant [157]
Collagen synthesis ↑ Scaffold [157]

    EGF Proliferation ↑ Monolayer [142]
Collagen synthesis ↑ Monolayer [142]

Small bioactive molecules
    KGN Chondrogenic differentiation of stem cells and proliferation ↑ Explant [87]

Scaffold [158, 159]
Collagen synthesis ↑ Explant [87]

Scaffold [158]
Proteoglycan/GAG synthesis ↑ Scaffold [159]

    E7 peptide Cell migration ↑ Scaffold [160-162]
    Y27632 Dedifferentiation of chondrocytes ↓ Monolayer [91]

Collagen synthesis ↑ Monolayer [163]
Biophysical factors
    C-ABC Collagen synthesis ↑ Explant [97, 99, 164]
    LOXL2 Collagen synthesis ↑ Explant [164]
Low oxygen tension Chondrogenic differentiation of stem cells ↑ Monolayer [104]

Scaffold [165]
Collagen synthesis ↑ Scaffold [105, 165]

Monolayer [165, 166]
Proteoglycan/GAG synthesis ↑ Scaffold [105, 165]

Monolayer [165, 166]
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Figure 4. Spatiotemporally released rhCTGF and rhTGFβ3 induced fibrocartilage-like matrix formation in 3D-printed 
porous scaffolds. A. Anatomic reconstruction of human meniscus. Human meniscus scaffolds were 3D-printed with 
layer-by-layer deposition of PCL fibers (100-µm diameter), forming 100- to 200-µm channels. B. Poly(lactic-co-glycol-
ic acid) (PLGA) micro-spheres (µS) encapsulating rhCTGF and rhTGFβ3 were in physical contact with PCL microfibers. 
C. Fluorescent dextrans simulating CTGF (green, 40 kD) and TGFβ3 (red, 10 kD) were delivered into the outer and 
inner zones, respectively, of human meniscus scaffolds to show scaffold loading. Distribution of dextrans was main-
tained from day 1 today 8. D. rhCTGF and rhTGFβ3 release from the PCL scaffolds over time in vitro. E. When the 
scaffolds were incubated atop human synovium MSC monolayers for 6 weeks, spatiotemporally delivered rhCTGF 
and rhTGFβ3 induced cells to form zone-specific collagen type I and II matrices, similar to the native rat meniscus. F. 
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oxygen homeostasis and may play an impor-
tant role in determining the phenotype of 
meniscal cells [102]. A study has shown that 
under hypoxic conditions, increased proteogly-
can and type II collagen production could be 
observed in meniscal fibrochondrocytes [103]. 
Hypoxia also promotes chondrocytic differenti-
ation and cartilage matrix synthesis in pluripo-
tent mesenchymal cells [104]. In addition, the 
synthesis of GAG and collagen II are significant-
ly enhanced in MSC-laden hydrogels under 
hypoxic culture [105]. By combining bFGF and 
hypoxia, a study has observed a significant 
increase in the ability of meniscal cells to syn-
thesize GAG and improvement in the compres-
sive properties of regenerated meniscal con-
structs [106].

Gene therapy

Gene therapy is an alternative method to aug-
ment tissue engineering by transferring genes 
to the repair sites [107]. Gene therapy pro-
motes tissue regeneration by enabling the sus-
tained, regulated, and local expression of gene 
products. Unlike growth factors developed in 
bioreactors and needed for storage, gene prod-
ucts are nascent proteins released through 
posttranslational modifications [108]. For 
meniscal tissue engineering, various pathways 
have been targeted to improve the repair effect 
via gene transfer (Table 3). For example, 
improvement of proliferative activities in MSCs 
and meniscal cells has been observed by gene 
transfer of FGF-2 [109, 110], TGF-β [110], and 
IGF-1 [111] for up to 21 days using nonviral 
(NV), adenoviral (AdV), and recombinant adeno-

associated virus (rAAV) vectors in vitro. It has 
also been shown that by gene transfer of TGF-β 
[112-114] for up to 21 days using AdV, retroviral 
(RV), and rAAV vectors, anabolic processes of 
MSCs and meniscal cells were enhanced. In 
vivo, gene therapies have been developed 
through transplanting meniscal cells modified 
by HGF AdV with a PGA scaffold in a mouse 
model [115] or through MSCs modified by IGF-I 
RV with an alginate scaffold in goat meniscal 
injuries [111], resulting in an improved repair 
effect for up to 16 weeks.

Conclusion

The current surgical treatment for meniscal 
injuries is insufficient to prevent the progres-
sion of OA, thus accelerating the development 
of alternative tissue engineering strategies. 
Although many advances in meniscal tissue 
engineering have been made by using biome-
chanical and biochemical stimuli to regenerate 
neotissue akin to native meniscus, there are 
still many problems to be solved in the future. 
For biochemical stimuli, further research is 
needed to study the effect of small bioactive 
molecules on meniscal tissue engineering. In 
addition, the spatiotemporal specificity of 
meniscal regeneration might be considered 
when designing growth factor application strat-
egies. It is also important to develop a sequen-
tial release model of multiple growth factors 
that can simulate cell proliferation, differentia-
tion, and tissue remodeling for regenerated 
meniscus. Hypoxia may be combined with 
growth factors to enhance the repair effect and 
develop anisotropic reconstruction for regener-

Outer, intermediate, and inner zone phenotypes of cells populating the regenerated meniscus (H&E staining) after 
12 weeks in vivo. G. Low-magnification images of retrieved meniscus grafts with spatiotemporal delivery of rhCTGF 
and rhTGFβ3 in comparison to empty µS after 12-week in vivo implantation. AB: alcian blue; PR: picrosirius red. 
Reproduced with permission [85]. Copyright 2014, Science.

Table 3. Effect of gene therapy for meniscal tissue engineering
Type of gene Cells Vector Effects
TGF-β Meniscal cells RV Matrix synthesis ↑ [113]

Meniscal and MSCs AdV Cell proliferation and matrix synthesis ↑ [112]
Meniscal cells rAAV Cell proliferation and matrix synthesis ↑ [110]

b-FGF Meniscal and MSCs rAAV Cell proliferation ↑ [109, 167] 
Meniscal cells NV Cell proliferation ↑ [110]

IGF-1 Meniscal cells NV Cell proliferation ↑ [111]
HGF Meniscal cells AdV Meniscal vascularization ↑ [115]
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ated meniscus. The safety and effect of gene 
therapy need further verification in the future. 
For biomechanical stimuli, more work is need-
ed to determine an optimal regimen because 
the effects of biomechanical stimuli on menis-
cal constructs vary depending on the type, 
time, magnitude, and frequency of the applied 
load. The combination of biomechanical stimuli 
and biochemical stimuli may be an alternative 
way to develop structural and functional anisot-
ropy in an engineered meniscus.
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