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Abstract: MiRNAs (miRs) have been proven to be well-validated therapeutic targets. Emerging evidence has 
demonstrated that intricate, intrinsic and paradoxical functions of miRs are context-dependent because of their 
multiple upstream regulators, broad spectrum of downstream molecular targets and distinct expression in various 
tissues, organs and disease states. Targeted therapy has become an emerging field of research. One key for the 
development of successful miR-based/targeted therapy is to acquire integrated knowledge of its regulatory network 
and its association with disease phenotypes to identify critical nodes of the underlying pathogenesis. Herein, we 
systematically summarized the comprehensive role of miR-24-3p (miR-24), along with its passenger strands miR-
24-1-5p* (miR-24-1) and miR-24-2-5p* (miR-24-2), emphasizing their microenvironment, intracellular targets, and 
associated gene networks and regulatory phenotypes in 18 different cancer types and 13 types of other disorders. 
MiR-24 targets and regulates numerous genes in various cancer types and enhances the expression of several 
oncogenes (e.g., cMyc, BCL2 and HIF1), which are challenging in terms of druggability. In contrast, several tumor 
suppressor proteins (p21 and p53) have been reported to be downregulated by miR-24. MiR-24 also regulates the 
cell cycle and is associated with numerous cancer hallmarks such as apoptosis, proliferation, metastasis, invasion, 
angiogenesis, autophagy, drug resistance and other diseases pathogenesis. Overall, miR-24 plays an emerging role 
in the diagnosis, prognosis and pathobiology of various diseases. MiR-24 is a potential target for targeted therapy in 
the era of precision medicine, which expands the landscape of targetable macromolecules, including undruggable 
proteins.
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MiR biogenesis

MiRs are small non-coding RNAs (ncRNAs) of 
around ~20-24 nt in length and function as 
gene regulators at the post-transcriptional level 
targeting mRNAs and/or affecting their transla-
tion. The first miR discovered was lin-4 in 1993 
in Caenorhabditis elegans [1]. To date, 1917 
miR precursors and 2656 mature miRs have 
been identified in humans according to the 
miRBase database (http://www.mirbase.org/) 
[2]. The function of each miR varies consider-
ably under different cellular circumstances [3]. 
MiRs are transcribed from their assigned DNA 
(deoxyribonucleic acid) sequences to primary 
miRs (pre-miRs) and further processed into 
precursor miRs (pre-miRs) followed by mature 
miRs (Figure 1). MiRs are synthesized via 
canonical and non-canonical pathways [4]. In 

the canonical pathway, pri-miRs are transcribed 
from designated genes and further processed 
into pre-miRs using a complex made of RNA 
binding protein DGCR8 (complex involving 
DiGeorge Syndrome Critical Region 8) and 
Drosha (ribonuclease III enzyme), which is 
famously known as “microprocessor complex” 
[5]. DGCR8 binds to the N6-methylated GGAC 
and other motifs within pri-miR, whereas 
Drosha mediates cleavage of the pri-miR, form-
ing a 2nt 3’-overhang on pre-miR [4]. The gener-
ated pre-miRs are then exported to the cyto-
plasm by a protein complex named XPO5 
(exportin 5)/RanGTPase and thereby processed 
using Dicer (RNase III endonuclease) to pro-
duce mature miR [6]. Various groups of com-
mon proteins [Dicer, Drosha exportin-5, and 
AGO-2 (Argonaute2)] were used in both path-
ways. Generally, non-canonical miR-biogenesis 
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can be considered a Dicer-independent and 
DGCR8/Drosha-independent pathway [4]. As 
per the majority of studies, miRs bind to a spe-
cific sequence at the 3’-untranslated region (3’-
UTR) of the target mRNAs, named as seed 
sequences. It induces translational suppres-
sion along with deadenylation and decapping of 
mRNA [7] by forming the miR-induced silencing 
complex (miRISC) with the guide strand and 
AGO protein. The target specificity of miRISC is 
mediated by interaction with the target mRNA’s 
complementary sequences, also known as miR 
response elements (MREs). The degree of com-
plementarity is a determining factor for AGO2-
dependent slicing such as miRISC-mediated 
translational inhibition and decay of target 
mRNA. The complete complementarity of the 
“miR:MRE” interaction activates the endonu-
clease activity of AGO2 and targets the cleav-
age of mRNA (Figure 1) [7]. 

MiR-24 clusters

MiR-24 is encoded by miR-23 and miR-27 in 
two different gene clusters (Figure 2), miR-23b-
27b-24-1 and miR-23a-27a-24-2 within the 
intronic region of chromosome 9 (Chr9) and 
intergenic region of chromosome 19 (Chr19), 
respectively. The primary transcript of the miR-
23a-27a-24-2 cluster is by ~2.2 kb long [8]. The 
promoter of cluster miR-23a-27a-24-2 lacks 

24 is transcribed by polymerase II/polymerase 
III to produce a pri-miR product, which is char-
acterized by a stem-loop structure with exten-
sions of single strands at both ends [8, 11]. A 
large ductile terminal loop (≥ 10 bp) of pre-miR 
can be used to process 5’- and 3’-single-strand-
ed RNA overhangs and effectively synthesizes 
functional miR using a microprocessor complex 
[12]. Runx1 and AML1-ETO occupy the miR-
24a-23a-27-2 locus in chr19 and reciprocally 
controls miR-24 transcription [13].

A single miR in any cluster has multiple 
upstream and downstream regulators that tar-
get numerous mRNAs and regulate different 
signaling pathways and cellular processes 
depending on the cell context. MiRs might be 
misregulated in several diseases, including 
cancer. In addition, miRs can be used as bio-
markers in clinical settings because of their 
extreme stability and ease of detection. 
Bioinformatics analysis using miRDB (http://
mirdb.org/) revealed 959 predicted targets  
of miR-24. Similarly, as per TargetScan  
v7.2 (http://www.targetscan.org), 761 predict-
ed transcripts have conserved sites for the 
miR-24 target. To date, it has been predomi-
nantly summarized regarding the cooperative 
effect of three miRs in miR-23a-27a-24-2 clus-
ters on human diseases and cancer [14-17]. In 
this review, we have summarized the compre-

Figure 1. Schematic representation of the miR biogenesis.

both common and less com-
mon promoter elements su- 
ch as the initiator element, 
downstream promoter element 
(DPE), TFIIB recognition ele-
ment (BRE), TATA box, MED-1 
(multiple start site element 
downstream), and downstream 
core element (DCE). The miR-
23a-27a-24-2 promoter is uni- 
que from the promoters of RNA 
pol II transcribed snRNA genes 
by lacking the proximal se- 
quence element (PSE) [9]. 
Interestingly, after the primary 
transcript of the miR cluster is 
made, not all three miRs need 
to be formed proportionally. In 
HEK293T cells, overexpres-
sion of miR-23a-27a-24-2 clus-
ter enhanced the expression of 
miR-27a and miR-24-2, but  
the expression of miR-23a re- 
mained unchanged [10]. MiR-
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MiR-24 in various cancer

Similar to other miRs, miR-24 expression is 
deregulated in different cancers, at different 
stages of tumorigenesis and it has also been 
shown to function as a tumor suppressor (TS) 
or oncogenic (oncomiR) depending on the cell 
context. Herein, we encapsulated the associa-
tion of miR-24 (Figure 3 and Table 1) as well as 
miR-24-1 (Figure 4 and Table 2) and miR-24-2 
(Figure 4 and Table 3) in various cancers, high-
lighting its roles in regulation of different bio-
logical processes, cancer phenotypes, target 
genes and pathways in each cancer type.

Bladder cancer (BDC)

Reviews on miRs [18, 19] in BDC have referred 
to miR-24 as a TS. Reduced expression of miR-
24 is associated with enhanced expression of 
CARMA3 in BDC cells. Enhancement of miR-24 
expression inhibits proliferation, arrested cell 
cycle and induces apoptosis. Additionally, sup-
pression of BDC cell invasion and epithelial-to-
mesenchymal transition (EMT) was observed 
under reduced levels of miR-24. Bioinformatics 
analysis and a luciferase-reporter assay proved 
CARMA3 as a potential target of miR-24 [20]. In 
contrast, another study reported [21] a higher 
expression of miR-24 in BDC tissues than in the 
adjacent non-cancerous tissue samples. In 
human ureter epithelium cells (HCV29), the rel-
ative mRNA expression of death effector 
domain-containing protein (DEDD) was higher 
than that in BDC cell lines (HBC, BLU87, T24 
and UM-UC-3). The T24 cell line had the highest 
level of miR-24 and the lowest level of DEDD. 
Ectopic expression of miR-24 affects the prolif-
erative and invasive characteristics of BDC 
cells (T24 and HBC). MiR-24 also stimulates 
T24 and HBC cell proliferation, significantly 
increases cell migration, induces apoptosis 
and upregulates autophagy marker LC3. A lucif-
erase-reporter assay indicated that miR-24 pro-
motes oncogenesis by blocking DEDD [21].

On the other hand, reduced miR-24-1 expres-
sion was mainly observed in BDC tissues and 
cell lines (BOY and T24), suggesting its func-
tions as a TS [22-25]. MiR-24-1 restoration 
instigates apoptosis and impedes proliferation 
of BDC cell. Forkhead box protein M1 (FOXM1) 
has been reported as an immediate target of 
miR-24-1. Elevated expression of FOXM1 has 
been validated in BDC clinical samples, and 
FOXM1 silencing instigates apoptosis in cancer 

Figure 2. Alignment of two different precursors 
(has-miR-24-1 and has-miR-24-2) of miR-24 locat-
ed (denoted by orange line) in two distant chromo-
somal regions (9q22.32 and 19p13.12) in human 
genome. Both the precursors after processed by 
RNase-III-type enzymes (Drosha and Dicer) formed 
identical mature products has-miR-24-3p (miR-24). 
Sequences and predicted hairpin loop structures of 
both hsa-miR-24-1 (pri-miR-24-1) and hsa-miR-24-2 
(pri-miR-24-2) also represented into the figure. Se-
quences represented in blue corresponding to guide 
strand miR-24-3p (miR-24) sequence. Sequences 
of the sister or passenger or star (*) strand formed 
(miR-24-1 and miR-24-2) after maturation of both 
the precursors are represented in green. Red arrows 
represented the Drosha cleavage site.

hensive role of miR-24 along with miR-24-1 and 
miR-24-2 in different types of cancer as well as 
other diseases, emphasizing its significance for 
targeted therapy.
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cells [25]. A study on urinary miRs reported that 
despite adverse handling conditions, miR-24 
was stable within urinary cells from patients 
with cancer compared to controls [18, 23].

Breast cancer (BRC)

Among many miRs aberrantly expressed in BRC 
[26, 27], the expression of miR-24 is reported 
to be enhanced in BRC samples compared to 
that in benign breast tissues. According to 
genome-wide miR analysis using SOLiD se- 
quencing, seven miRs (miR-103, -23a, -29a, 
-222, -23b, -24 and -25) were found to be co-
upregulated in BRC tissues [28]. Several onco- 
miRs are overexpressed during the diagnosis  
of early BRC (EBRC) patients. The expression  
of five miRs (let-7a, miR-19a, -24, -155, and 
-181b) in the serum of 63 EBRC patients and 
21 healthy individuals was determined after 
surgical resection and after chemo and/or 
radiotherapy. In the case of high-risk patients, 

miR-155, miR-19a, miR-181b, and miR-24 in 
serum were notably enriched compared to the 
low-risk group, whereas the expression of miR-
19a decreased significantly after the therapy 
[27]. Another follow-up study of EBRC patients 
(N = 133) by the same group reported miR-155 
and miR-24 as oncomiR and its association 
with EBRC relapse [29]. All miRs in the miR-23-
27-24 clusters are upregulated in BRC and act 
as oncogenes by simultaneously targeting 
HIC1. HIC1 and miR-23-27-24 regulate each 
other, creating a double-negative feedback 
loop [30]. The overexpression of miR-24 and 
miR-378 was examined in BRC patients (N = 
101) and controls (N = 40) [31]. Patients with 
increased levels of miR-24 in both plasma and 
BRC tissues showed increased metastasis and 
low survival rate compared to patients with 
lower expression of mir-24 in the TCGA cohort 
[32]. Single nucleotide polymorphisms (SNPs) 
regulate the size of the pre-miR terminal loop. 
Genetic mutations in the miR-23a-24-2-27a 

Figure 3. Schematic representation of target genes, regulatory pathways and interactive function of miR-24 in differ-
ent cancer types. Black thick arrow directed from each cancer type indicates the regulatory genes. Gray thick arrow 
indicates the regulatory cancer phenotypes. Black thin arrow pointed upward and downward indicate the upregula-
tion and downregulation of the corresponding gene’s expression, respectively. Yellow arrow pointed upward and 
downward indicate the upregulation and downregulation of the corresponding phenotypes, respectively.

Table 1. Deregulated expression of miR-24 and its regulatory genes in various cancers

Cancer Up/Down
(MiR-24)

Role
(MiR-24)

Regulatory genes/pathways
Regulatory biological functions Tissue/Sample type

Upregulated Downregulated
Bladder Down TS CARMA3, EMT - Proliferation, apoptosis, cell cycle T24, UMUC-3, J82, 5637 SV-HUC-1

Up OncomiR LC3, FOXM1 DEDD Proliferation, apoptosis, migration T24, UM-UC-3, HBC, BLU87, HCV29, 
patient

Breast Up OncomiR EGFR, Net1, MAPK, TGFβ, 
HIF1α

PTPN9, PTPRF, p38, p53, PML, H2AX, 
BIM, FIH1-HIFα

Metastasis, invasion, tumor growth, prolifera-
tion, apoptosis, drug resistance

Patient, MCF-7, MDA-MB-231, BALB/c, 
T47D, CAMA, HBL-100, MCF7, MDA-
MB-468, BT-549, BCSC

Down OncomiR ABCB9 - Drug transportation, anti-tumor effect, and 
paclitaxel resistance

paclitaxel‑resistant (PR) breast cancer 
patients, MCF‑7/PR cell

Colorectal Down TS DHFR TRIM11, p53, p21 Proliferation, apoptosis Patient, HCT116, HT29, SW480, SW620, 
DLD-1, LoVo, HCT8, RKO, CaCo2

Up - - Paxillin, IFN-γ and TNF-α - Patient, NK-cells
Cervical Up - - p16INK4a, YKL-40 or (CHI3L1 or hCGP-39) Proliferation, migration, invasion CaSki, SiHa, ME-180, HeLa, WI-38, Patient

Esophageal Up & Down TS FERMT1 - Proliferation, radiation resistance Patient
Glioma Up OncomiR - ST7L, MXI1, β-catenin/TCF-4, MT1JP Proliferation, invasion, apoptosis U87, LN229, SNB19, U251 and LN308, 

SHG‑44, U251, patient
Gastric Up - - BCL2L11, RegIV Metastasis AGS cell, patient
Head and Neck Up OncomiR - - Metastasis Patient sample, HPV positive tonsillar 

tumor samples
Down TS - XIAP Colony formation, tumor growth and apopto-

sis, radioresistance
LSCC cell line, Patient, CNE-1, CNE-2, CNE-
2R, HONE-1

Hepatocellular Up OncomiR TGFβ, SMAD, TRAIL, AFP SOX7, EMT, metallothionein 1M (MTM1), 
ARNT, CYP1A1, carbonic anhydrase IX, 
Caspase-8, p53

Metastasis, apoptosis, cell viability, invasion Patient, A549, NCI-H358, NCI-H1299, 
H460, HepG2R, Rel-7402R, HuH-7, HepG2

Down - - - - Cirrhotic liver tissues, HA22T/VGH, patient
Leukaemia Up OncomiR - AURKB, PAX5, PAR1, ETV6, IKZF1, MAPK, 

c-jun-NH2-kinase and p38 kinases
Cell growth, proliferation, granulocytic dif-
ferentiation, cell cycle, apoptosis

Patient, 697, KASUMI-2, MHH-CALL-3 
TCF3, HEP-G2

Lung Up OncomiR MMP9, ATG4A NAIF1, ZNF367, CASPASE-3, SOX7, 
Menin, SOX18, XIAP

Invasion, autophagy, Patient, A549, NCI-H358, NCI-H1299, 
H460, NCI-H1703, NCI-H522, A549

Lymphoma Up CDKN1B, SIPR1, CARD10, 
BCL2L11, CDKN1B/
p27kip1, cMyc

DEDD Migration, invasion, cell growth L136, L4, L1236, L428, KM-H2, patient

Melanoma Down TS p130Cas - Migration, invasion, and proliferation B16F10
Oral Up - - PER1, p57, FBXW7 Tumor progression, proliferation, migration, 

invasion
OC3, OECM-1, SAS, patient, 293T, NHOKs, 
UM1, UM2, Cal27, SCC1, SCC15, SCC25

Osteosarcoma Up - - BIM, SMAC/DIABLO Doxorubicin-resistance, apoptosis Patient, MG-63, HOS
Down - TUT1, PARPγ, SREBP-1c, 

ACK1
LPAATb Metastasis Patient, U2OS

Pancreatic Up - E-cadherin, Wnt, β-catenin Menin, ACVR2B, GFRA1, MTHFR, BIM, 
FZD5, TMEM92, HNF1B

Cell cycle, cell viability, proliferation, tumor 
growth, angiogenesis

Panc-1, MIA PaCa-2, BxPC-3, Hs766T, 
ASPC-1, Capan-1, Capan-2, Panc3.27, 
HPAF-II, PL45, lox-5, patient

Prostate Up - - AR, IGF1, IGFBP5, ETV1, FAF1, PAS, 
SOCS6, p27 and p16

Proliferation, migration, invasion, apoptosis, 
cell growth, clonogenic potential, cell cycle

PC3, DU145, LNCaPFG, patient

Retinoblastoma Up - cMyc, ANRIL, MAPK P1ARF, p53 Cell growth, viability, migration, invasion RB 247, 381, 1021, WERI-Rb1, Y79, B247, 
RB381

AL: Acute leukemia; AML: Acute myeloid leukemia.
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HIF1α
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BIM, FIH1-HIFα
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T47D, CAMA, HBL-100, MCF7, MDA-
MB-468, BT-549, BCSC

Down OncomiR ABCB9 - Drug transportation, anti-tumor effect, and 
paclitaxel resistance

paclitaxel‑resistant (PR) breast cancer 
patients, MCF‑7/PR cell

Colorectal Down TS DHFR TRIM11, p53, p21 Proliferation, apoptosis Patient, HCT116, HT29, SW480, SW620, 
DLD-1, LoVo, HCT8, RKO, CaCo2

Up - - Paxillin, IFN-γ and TNF-α - Patient, NK-cells
Cervical Up - - p16INK4a, YKL-40 or (CHI3L1 or hCGP-39) Proliferation, migration, invasion CaSki, SiHa, ME-180, HeLa, WI-38, Patient

Esophageal Up & Down TS FERMT1 - Proliferation, radiation resistance Patient
Glioma Up OncomiR - ST7L, MXI1, β-catenin/TCF-4, MT1JP Proliferation, invasion, apoptosis U87, LN229, SNB19, U251 and LN308, 

SHG‑44, U251, patient
Gastric Up - - BCL2L11, RegIV Metastasis AGS cell, patient
Head and Neck Up OncomiR - - Metastasis Patient sample, HPV positive tonsillar 

tumor samples
Down TS - XIAP Colony formation, tumor growth and apopto-

sis, radioresistance
LSCC cell line, Patient, CNE-1, CNE-2, CNE-
2R, HONE-1

Hepatocellular Up OncomiR TGFβ, SMAD, TRAIL, AFP SOX7, EMT, metallothionein 1M (MTM1), 
ARNT, CYP1A1, carbonic anhydrase IX, 
Caspase-8, p53

Metastasis, apoptosis, cell viability, invasion Patient, A549, NCI-H358, NCI-H1299, 
H460, HepG2R, Rel-7402R, HuH-7, HepG2

Down - - - - Cirrhotic liver tissues, HA22T/VGH, patient
Leukaemia Up OncomiR - AURKB, PAX5, PAR1, ETV6, IKZF1, MAPK, 

c-jun-NH2-kinase and p38 kinases
Cell growth, proliferation, granulocytic dif-
ferentiation, cell cycle, apoptosis

Patient, 697, KASUMI-2, MHH-CALL-3 
TCF3, HEP-G2

Lung Up OncomiR MMP9, ATG4A NAIF1, ZNF367, CASPASE-3, SOX7, 
Menin, SOX18, XIAP

Invasion, autophagy, Patient, A549, NCI-H358, NCI-H1299, 
H460, NCI-H1703, NCI-H522, A549

Lymphoma Up CDKN1B, SIPR1, CARD10, 
BCL2L11, CDKN1B/
p27kip1, cMyc

DEDD Migration, invasion, cell growth L136, L4, L1236, L428, KM-H2, patient

Melanoma Down TS p130Cas - Migration, invasion, and proliferation B16F10
Oral Up - - PER1, p57, FBXW7 Tumor progression, proliferation, migration, 

invasion
OC3, OECM-1, SAS, patient, 293T, NHOKs, 
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Osteosarcoma Up - - BIM, SMAC/DIABLO Doxorubicin-resistance, apoptosis Patient, MG-63, HOS
Down - TUT1, PARPγ, SREBP-1c, 
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LPAATb Metastasis Patient, U2OS
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FZD5, TMEM92, HNF1B

Cell cycle, cell viability, proliferation, tumor 
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Panc-1, MIA PaCa-2, BxPC-3, Hs766T, 
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HPAF-II, PL45, lox-5, patient
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SOCS6, p27 and p16

Proliferation, migration, invasion, apoptosis, 
cell growth, clonogenic potential, cell cycle
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Retinoblastoma Up - cMyc, ANRIL, MAPK P1ARF, p53 Cell growth, viability, migration, invasion RB 247, 381, 1021, WERI-Rb1, Y79, B247, 
RB381

AL: Acute leukemia; AML: Acute myeloid leukemia.
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Figure 4. Schematic representation of target genes, regulatory pathways 
and interactive functions of miR-24-1 and miR-24-2 in various cancers 
and other diseases. Black thick arrow directed the regulatory genes. Gray 
thick arrow indicates the regulatory phenotypes and biological functions. 
Black thin arrow pointed upward and downward indicate the upregulation 
and downregulation of the corresponding gene’s expression, respectively. 
Yellow arrow pointed upward and downward indicate the upregulation and 
downregulation of the corresponding phenotypes, respectively.

gene cluster of BRC patients revealed both het-
erozygous (A/G allele) and homozygous (G/G 
allele) variants in miR-27, whereas no muta-
tions were detected in miR-23a and miR24-2 
[33]. Ectopic expression of miR-24 induces 
migration and invasion of BRC cells. An in vivo 
study using BALB/c mice specified that miR-24 
expression is required for the enhancement of 
tumor growth, invasion and metastasis, along 
with diminished overall mouse survival. MiR-24 
expressing cells and tumors are associated 
with higher EGFR phosphorylation and reduced 
expression of PTPN9 (tyrosine-protein phos-
phatase non-receptor type 9) and PTPRF 
(receptor-type tyrosine-protein phosphatase F). 

PTPN9 and PTPRF are direct 
targets of miR-24 [34]. Over- 
expression of miR-24 promo- 
tes proliferation and inhibits 
apoptosis in MDA-MB-468 and 
MDA-MB-435 cells. The cell 
cycle regulatory protein p27Kip 
was identified as a direct tar-
get of miR-24, and negative 
regulation of p27Kip protein ex- 
pression by miR-24 [35]. ING5, 
a suppressor of proliferation 
and invasion, was significantly 
downregulated in the BRC tis-
sues. MiR-24 is a direct up- 
stream regulator of ING5 and 
acts as an oncomiR. MiR-24 
accelerated xenograft tumor 
growth in nude mice [36]. The 
addition of O-GlcNAc to certain 
serine or threonine moieties on 
proteins was catalyzed by OGT 
(O-GlcNAc transferase) and 
correlated with BRC cell (MDA-
MB-231) invasion. OGT overex-
pression promoted cell inva-
sion, whereas silencing of OGT 
showed the opposite effects. 
OGT has been recognized as a 
target of miR-24. OGT expres-
sion was downregulated by 
miR-24, followed by the sup-
pression of cell invasion. Over-
expression of OGT significantly 
rescued miR-24-mediated re- 
pression of invasion [37]. In 
addition, miR-24 is involved in 
the drug resistance of BRC. 

Post-transcriptionally, miR-24 levels decrease 
with long-term melatonin treatment. Melatonin-
mediated downregulation of miR-24 inhibits 
cell migration and proliferation through hnRN-
PA1. MiR-24 targets several genes associated 
with DNA repair, simultaneously targets PML, 
H2AX, p38 and p53, and overcomes the effect 
of melatonin [38]. In MCF-7/PR human BRC 
cells and paclitaxel-resistant (PR) BRC patients, 
miR-24 was significantly downregulated. 
Upregulated miR-24 expression enhances the 
effect of paclitaxel on drug-resistant of BRC 
cells. The ATP binding cassette B9 (ABCB9) 
expression was downregulated by binding of 
miR-24 to its 3’-UTR, that reduced drug trans-
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Table 2. Deregulated expression of miR-24-1 and its regulatory genes in cancer and other diseases

Diseases Up/Down
(MiR-24-1)

Role 
(MiR-24-1) 

Regulatory genes/pathways
Regulatory biological functions Tissue/Sample type

Upregulated Downregulaed
Bladder Cancer Down TS FOXM1 LC3 Proliferation, Apoptosis BOY, T24, Patient
Breast Cancer Down oncomiR - lncRNA IGBP1-AS1, ZIC3 Invasion, proliferation HCC70 and UACC-812, 76 N-F2V
Colorectal Cancer Up TS - β-catenin Proliferation, migration and survival colon tissue of azoxymethane/dextran 

sulphate sodium-induced mice, HCT-116, 
Caco-2

Melanoma Down TS LC3-II/I, Berclin-1 UBD, BCL-xl, BCL-2 - A375 cell line, patient
Prostate Cancer Down - - - - patient
Syndrome Up in HSCR - - ARP2, ARP3, RAC1 and RAC2 Migration, proliferation 293T, SHSY5Y
HSCR: Hirschsprung disease.

Table 3. Deregulated expression of miR-24-2 and its regulatory genes in cancer and other diseases

Diseases Up/Down
(miR-24-2)

Role
(miR-24-2)

Regulatory genes/pathways
Regulatory biological functions Tissue/Sample type

Upregulaed Downregulated
Breast Cancer Down TS H2AX, PKCα BCL2 DNA-damage, Apoptosis, metastasis, cell cycle MCF-7
Esophageal Cancer Up - - - - patient
Hepatocellular Cancer Up - PIM1, SRC PKM1 Tumorigenic, proliferation -
ALS Up - - - - Rat tissue, patient samples
ALS: Amyotrophic lateral sclerosis.
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portation and improved the anti-tumor effect of 
paclitaxel on BRC cells [39]. MiR-24 is upregu-
lated in BRC stem cells and the expression of 
stem cell markers and the number of mammo-
spheres enhanced by overexpression of miR-
24. Through the regulation of BimL expression, 
miR-24 induces resistance to apoptosis. FIH1 
is a new target of miR-24 that promotes the 
degradation of HIFα. MiR-24 expression was 
enhanced under hypoxic conditions, causing 
FIH1 repression and enhancement of HIF1α 
expression [40]. In BRC cells, ectopic expres-
sion of miR-24 in tamoxifen-resistant MCF7 
augmented tamoxifen-induced cell viability 
inhibition, while miR-24 knockdown partly miti-
gated the cytotoxic effect of tamoxifen. MiR-24 
targets Bim in tamoxifen-resistant MCF7 cells 
[41].

In both sporadic breast tumor tissues and BRC 
cell lines (MCF7), a negative correlation bet- 
ween expression of H2AX and miR-24-2 expres-
sion was observed by in silico analysis. In addi-
tion, the hypersensitive nature of ectopic miR-
24-2 expression has been reported for DNA-
damaging drugs and endures apoptotic cell 
death. BCL-2 was recognized as a novel target 
of miR-24-2 and was confirmed by a luciferase 
assay. By regulating various apoptotic path-
ways and targeting the anti-apoptotic gene BCL-
2, mir-24-2 is capable of inducing apoptosis, 
although the study suggested that miR-24-2 is 
more implicit in controlling H2AX gene expres-
sion, regardless of the change in gene copy 
number [42]. MiR-24-2 acts as a TS in the BRC 
cell line MCF-7. Pre-miR-24-2 overexpression 
leads to the enhancement of miR-24-2 levels 
compared to miR-24 and decreases the expres-
sion of its mRNA target, PKCα and phorbol 
12-myristate 13-acetate (PMA)-mediated in 
vitro cellular survival [43]. Manvati et al. report-
ed that miR-24-2 negatively correlated with 
metastasis and validated the use of miR-24-2 
in combination with the anticancer drug 
docetaxel to reduce cell viability in sporadic 
ductal BRC tissue samples [44]. The expres-
sion of lncRNA IGBP1-AS1 decreased in BRC as 
well as in vitro and in vivo experiments. The 
study confirmed that the lncRNA IGBP1-AS1/
miR-24-1/ZIC3 loop is involved in breast cancer 
proliferation and invasion and can be regarded 
as a new therapeutic target [45].

Colorectal cancer (CRC)

In human CRC cell lines (HT29, HCT116, 
SW620, SW480, LoVo, DLD-1, RKO, HCT8, and 

CaCo2), silencing of E3 ubiquitin ligase TRIM11 
(tripartite motif-containing protein 11) sup-
pressed cell proliferation and induced apopto-
sis with increased levels of miR-24 [46]. CRC 
tumor samples had reduced levels of miR-24 
and these patients had a poorer prognosis 
compared to those with high miR-24 levels. 
Overexpression of miR-24 in SW480 and HT29 
cells suppressed CRC cell proliferation, migra-
tion and invasion [47]. Overexpression of miR-
24, independent of p53 function, suppressed 
proliferation and G2/S cell cycle arrest in six 
different cell lines. MiR-24 has anti-tumorigenic 
properties by regulating dihydrofolate reduc-
tase (DHFR), a target of methotrexate (MTX). 
Polymorphism of the miR-24 target site in the 
3’UTR of DHFR resulted in the functional priva-
tion of miR-24. High levels of DHFR transmit a 
growth advantage to immortalized cells and 
induce neoplastic transformation [48]. Cox 
regression analysis of colorectal adenocarcino-
mas confirmed that miR-24 overexpression 
was a significant indicator of poor prognosis 
[49]. In the plasma samples from 223 patients 
with colorectal related diseases [111 cancer 
carcinoma, 59 adenoma, 24 colorectal polyps 
and 29 inflammatory bowel disease (IBD)], miR-
24, miR-320a and miR-423-5p levels were 
decreased in patients with CRC and benign 
lesions (polyps and adenoma) compared with 
IBD and healthy controls. MiR-24, miR-320a, 
and miR-423-5p levels in plasma have been 
reported as potential novel biomarkers for CRC 
detection, mainly in the early stages [50, 51]. 
Contrary to the tumor-suppressive role of miR-
24 in CRC, few reports have suggested that 
miR-24 is responsible for its progression. MiR-
24 was overexpressed in the CRC patient’s NK 
cells compared to that in healthy volunteers. 
Interference of paxillin by overexpression of 
miR-24 significantly decreased paxillin expres-
sion, secretion of IFN-γ and TNF-α, and the NK 
cell’s killing effect on CRC cells [52]. Under 
hypoxic conditions, miR-23a-27a-24 was over-
expressed. Gain and loss-of-function assays, 
human glucose metabolism array and analyses 
of gene pathways confirmed that miR-23a-
27a-24 cluster induced by HIF-1α concomitantly 
regulate glucose metabolic networks by regu-
lating numerous metabolic pathways and by 
targeting multiple tricarboxylic acid cycle (TCA)-
related genes [53]. MiR-24-1 is a dominant 
regulator of β-catenin and may render a novel 
therapeutic and chemopreventive strategy for 
β-catenin signaling-driven CRC [54]. 
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Cervical cancer (CC)

Four miRs (MiR-21, -24, -27a, and -205) were 
identified as the most abundant miRs in the 
HPV16+ CC cell line CaSki [55]. MiR-24 was also 
reported to suppress p16INK4a protein expres-
sion but not p16INK4a mRNA in human diploid 
fibroblasts (WI-38) and CC cells (HeLa) [56]. 
The recursive feature elimination technique 
was used to rank the miR’s in the CC outcomes. 
Ten top-ranking miRs (miR-9, -200a, -10b, -183, 
-204, -24, -181a, -193b, -146b and -10a) were 
selected by SVM-RFE and were associated with 
CC survival [57]. The inflammatory glycoprotein 
YKL-40, known as hCGP-39 (cartilage glycopro-
tein-39) and CHI3L1 (chitinase-3-like protein 
1), plays a vital role in angiogenesis, extracel-
lular matrix degradation and tissue remodeling 
in CC using serum samples from 59 patients. 
The 3’-UTR of YKL-40 is suggested to be a for-
mal target of miR-24. MiR-24 influences the 
regulation of YKL-40 levels and facilitates the 
proliferation, migration and invasion of CaSki 
cells [58].

Esophageal (Oesophageal) cancer (EC)

As per the qRT-PCR data of oesophagal squa-
mous cell carcinoma (ESCC) patient’s serum 
samples [radio-sensitive group (CR+PR, 62 
patients), radio-resistant group (SD+PD, 43 
patients) and 30 healthy volunteers], miR-24 
level was 4.82 times higher than that in healthy 
groups (P<0.01), indicating that miR-24 is a 
potential diagnostic factor [59]. MiR-24 sup-
pressed the expression of FERMT1 by directly 
binding to the 3’-UTR, thereby suppressing cell 
growth and enhancing the radiosensitivity of EC 
cells, and re-expression of FERMT1 reversed 
these effects in vitro and in vivo [60]. Sig- 
nificantly upregulated expression of miR-27a 
and miR-24-2 was also reported in ESCC tumor 
specimens compared to that in adjacent nor-
mal tissues [61].

Glioma (GL)

MiR-24 was upregulated in GL clinical speci-
mens and cell lines (human glioblastoma cells 
U87, LN229, SNB19, U251 and LN308; low-
grade glioma H4 cells) by qRT-PCR. Inhibition of 
miR-24 in GL cells prohibited proliferation, inva-
sion and induced apoptosis. Using miRanda 
and miRvr, suppressor of tumorigenicity 7 pro-
tein-like (ST7L) [62] was pointed out as a candi-

date target of miR-24 and confirmed by lucifer-
ase-reporter assay with the 3’-UTR-ST7L, there-
by reducing the activity of β-catenin/Tcf-4 tran-
scription activity by involving ST7L targetability 
[63]. Overexpression of miR-24 along with miR-
27a promotes cell proliferation in human GL tis-
sue and cell lines (U87 and U251) by targeting 
MXI1, a TS gene that regulates cMyc. Both miRs 
promoted GL cell proliferation by acting on 
MXI1. Furthermore, the data showed that regu-
lation of MXI1 synergistically by two clusters of 
miR-23a-27a-24-2 and miR-23b-27b-24-1 [64]. 
Transient expression of long non-coding RNA 
(lncRNA) MT1JP (metallothionein 1J) inhibited 
the invasion and proliferation of GL cells. The 
interaction of MT1JP with miR-24 was also 
revealed by a dual-luciferase assay [65]. MiR-
24 was also identified as one of the top ten 
ranked miRs in terms of its interdependency 
with survival time in patients with glioblastoma 
multiforme using support vector regression 
(SVR)-based method (SVR-GBM) [66].

Gastric cancer (GC)

Investigation of miR-24 and miR-101 expres-
sion in 247 GC clinical specimens and 150 
cancer-adjacent non-tumor tissues from ad- 
vanced GC patients revealed significantly 
upregulated expression of miR-24 in GC tissues 
(t = 10.26, P<0.01) [67]. 

Hepatocellular (liver) carcinoma (HCC)

In primary HCC samples, microarray data in 
response to TGF-β showed variations in miR 
levels. In an odd case of HCC cell lines, Huh-7 
and SMMC-7721 demonstrated distinct res- 
ponses to TGF-β stimulation. The miR-23a-
27a-24 cluster was highly expressed in TGF-β 
induced SMMC-7721 and primary HCC patient 
samples in Smad-dependent manner and 
involved in intrahepatic metastasis [68]. HCC 
related to aflatoxin B1 (AFB1) I-II tumor node 
metastasis stage clinical samples and cell 
lines, miR-24 was upregulated. High miR-24 
expression leads to a poor prognosis. MiR-24 
integrates with alfatoxin-B-DNA adducts and 
both together result in poor patient survival 
[69]. In HCC patient samples and cell lines 
(HepG2, QGY-7703, MHCC-97H, and Huh7), the 
expression of miR-24 was higher than that in 
healthy tissues. Inhibition of miR-24 resulted in 
reduced proliferation and invasion by targeting 
SOX7 [70]. MiR-24 is upregulated in tumor 
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recurrence in HCC following orthotopic liver 
transplantation. GO and KEGG pathway analy-
ses showed that the MAPK and Wnt pathways 
are targets of miR-24 [71]. MiR-24 and miR-221 
were upregulated in TRAIL-resistance HCC cells 
(TRAIL-resistant HepG2R and Bel-7402R). MiR-
221 and miR-24 target Caspase 3 and Caspase 
8, respectively. In HepG2R and Rel-7402R cells, 
CASC2 (cancer susceptibility candidate 2) and 
miR-24/miR-221 were correlated with AGO2. 
CASC2 knockdown reduced the protein levels 
of caspase 8, 3 and cleaved caspase 8, 3. 
TRAIL treatment assessed tumor cell apoptosis 
with the combined effect of CASC2 knockdown 
and miR-24/221 silencing [72]. The lncRNA 
cancer susceptibility candidate 2 (CASC2) was 
reduced in HCC cell lines (HepG2 and HuH7) 
and miR-24 was upregulated in HCC cell lines. 
Upregulation of miR-24 greatly eliminated 
CASC2-induced effects in both cell lines and 
rescued the inhibition of CASC2 on tumor 
growth in mice. CASC2 represses HCC cell via-
bility and induces apoptosis by negatively regu-
lating miR-24 and miR-24 overexpression easily 
overcomes the inhibitory phenotype of CASC2 
[73]. MiR-24 was significantly upregulated in 
HCC tumor tissues, HCC cell lines (Huh7 and 
HepG2) and BALB/c nude mice injected with 
HepG2 cells. MiR-24 increased tumorigenesis 
and increased tumor volume in mice models by 
targeting TS metallothionein 1M [74]. Salvi et 
al. determined the expression of miRs in the 
human HCC cell line, HA22T/VGH. In HCC tis-
sues and their peritumoral counterparts from 
biopsy, dysregulated levels of three miRs (miR-
24, -27a and -21) were observed. In cirrhotic 
liver tissues of HCCs, miR-24 and miR-27a were 
markedly deregulated compared to those from 
non-cirrhotic liver tissues. MiR-24 and miR-27 
showed a significant decrease in HCV and  
HBV/HCV subclasses, whereas miR-21 levels 
remained unchanged [75]. In contrast to this 
study, in inpatient samples of HCC caused by 
HBV-2 serum, miR-24 levels were found to be 
remarkably higher in clinical samples than in 
normal tissue samples and chronic liver dis-
ease patient samples. High levels of miR-24 
have been reported in invasion, along with the 
overexpression of alpha-fetoprotein [76]. MiR-
24 overexpression showed translational repres-
sion in HuH-7 and HepG2 cell lines by a notable 
reduction in ARNT at the protein level but not at 
the transcript level [77]. HepG2 cells treated 
with arsenic trioxide showed upregulated 

expression of miR-24, miR-29a, miR-30a and 
miR-210 [78, 79]. Moreover, miR-24-2 is upreg-
ulated in human liver cancers. Yang et al. 
reported that miR-24-2 facilitated liver cancer 
cell progression by activating Pim1 and sug-
gested the miR-24-2 mediated alteration of 
several other genes (pHistone H3, SUZ12, 
SUV39H1, Nanog, MEKK4, pTyr) [80]. MiR-24-2 
also facilitates in vivo tumorigenic and in vitro 
cell proliferation ability of human liver cancer 
stem cells by promoting PKM1 binding and Src 
activity [81]. 

Head and neck cancer (HNC)

Few studies have implicated miRs as oncogenic 
or TS in HNC [82-84]. MiR-24 expression was 
found to be elevated in 100 clinical specimens 
[85]. LSCC (laryngeal squamous cell carcino-
ma) is a subgroup of HNC that forms in the 
squamous cells of the upper digestive tract. 
MiR-24 was found to be downregulated in LSCC 
cell lines and tissues compared to human kera-
tinocyte cell lines or adjacent normal cancer 
tissues. Functional analysis of LSCC cells indi-
cated that the enhancement in the expression 
of miR-24 inhibited growth, colony formation, 
and increased apoptosis. In addition, XIAP may 
be a target of miR-24 and is correlated with the 
aggressive progression of LSCC [86]. MiR-24 
was also reported to be differentially expressed 
in HPV-positive tonsillar tumor samples [87]. 
The miR-24 promoter was found to be hyper-
methylated in radioresistant nasopharyngeal 
carcinoma cell lines (HONE-1 and CNE-2R) com-
pared to the corresponding radiosensitive 
nasopharyngeal carcinoma cell lines (CNE-1 
and CNE-2) [88].

Oral cancer (OC)

Several miRs, along with miR-24, have the 
potential to be diagnostic and prognostic mark-
ers for improving care for OC [89-91]. MiR-24 
was relatively upregulated in oral squamous 
cell carcinoma (OSCC) tissues and in the plas-
ma levels compared to control samples. MiR-
24 expression was found to be elevated in 
OSCC cell lines (OC3, OECM-1 and SAS) com-
pared to normal oral keratinocytes (293T and 
NHOKs). MiR-24 is involved in the growth of 
OSCC cells and target p57 and has been con-
cluded as a biomarker [92]. Another study 
reported a significant elevation of miR-24 in 
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salivary exosomes from preoperative OSCC 
patients (N = 45) compared to normal controls 
(N = 10). MiR-24 has excellent diagnostic accu-
racy for OSCC, as per the ROC analysis. miR-24 
expression was higher in the tissues of OSCC 
neoplastic, indicating that circulating miR-24 
may be derived from tumor cells. Moreover, 
exogenous exosomal miR-24 enhanced the pro-
liferation of the recipient malignant cells. 
Additionally, miR-24 promotes OSCC cell prolif-
eration and regulates the expression of cell 
cycle-related genes. The dual-luciferase report-
er assay showed that miR-24 can directly inter-
fere with PER1 and can be a good diagnostic 
marker [93]. In tongue squamous cell carcino-
ma (TSCC) patient’s, elevated miR-24 levels are 
correlated with tumor progression and poor 
prognosis, and enhanced levels of miR-24 in 
vitro correlated with the migration, invasion 
and proliferation of TSCC cells (UM1, UM2, 
Cal27, SCC1, SCC15 and SCC25), at least par-
tially through modulation of its target FBXW7. 
Thus, miR-24 is a novel potential prognostic 
biomarker for the TSCC patients [94].

Leukaemia (LK)

Upregulated expression of miR-24 has been 
reported to be associated with poor prognosis 
[95] in acute myeloid leukaemia (AMLK). MiR-
24 was also reported among 63 differentially 
expressed miRs in AMLK patient’s blood sam-
ples with NPM1 mutations in comparison to 
patients with FLT3 mutations [96]. MiR-24 
expression levels were detected using qRT-PCR 
in 84 AMLK patients. The frequency of miR-24 
was higher in patients with chromosomal trans-
location t(8;21) than in others. Mir-24 may be a 
novel therapeutic target for AMLK with t(8;21) 
[97]. MiR-24 facilitates AMLK cell growth, inter-
leukin-3 independent proliferation, blocks 
granulocytic differentiation, suppresses mito-
gen-activated protein kinase (MAPK) phospha-
tase-7 and facilitates phosphorylation of c-jun-
NH2-kinase and p38 kinases [13]. MiR-24 as 
well miR-126 and miR-365 have been reported 
to modulate apoptosis and cell cycle progres-
sion in numerous tumor types. The selected 
candidate target genes identified using the 
miR-mRNA expression data of 37 children with 
BCP-ALL for miR-24 (ELL, EBF3 and IRF4), miR-
126 (PITPNC1) and miR-365 (ZAP-70), were not 
reduced by miR overexpression [98]. MiR-24 
expression analysis by RT-qPCR showed that 

the expression of miR-24 with acute leukaemia 
(ALK) patients (N = 147) was significantly high-
er than that in healthy individuals (N =100). The 
higher expression of miR-24 in ALK patients led 
to shorter overall survival, as per the Kaplan-
Meier analysis. MiR-24 has been identified as a 
prognostic marker for clinical outcomes in 
patients with ALK [99]. The effects of changes 
in the expression levels of miR-24, miR-128, 
miR-542, miR-31, and miR-708 in lymphoid 
development [early B-cell factor 1, ETS variant 
6, paired box 5, IKAROS family zinc finger 1, 
retinoblastoma 1, pseudoautosomal region 1, 
cyclin-dependent kinase inhibitor (CDKN) 2A/
CDKN2B, B-cell translocation gene 1 protein] 
were evaluated. Reduced levels of miR-24 were 
associated with the deletion. PAX5 deletion 
correlated with low miR-31, miR-24, miR-708 
and miR-128 expression. Enhanced miR-24 
and miR-542 expression was maintained with 
PAR1 deletion [100].

Lung cancer (LC)

MiR-24 was significantly upregulated in primary 
non-small cell lung cancer (NSCLC) specimens 
and in patient serum. Elevated miR-24 expres-
sion in patient serum correlates with a 
decreased survival rate. Reduction of miR-24 
inhibits cell proliferation and anchorage-inde-
pendent survival ability of LC cell lines and 
reduces tumor formation in mice [101]. In 
NSCLC patient samples and cell lines (A549 
and H460), miR-24 was significantly overex-
pressed and promoted invasion in A549 and 
H460 cell lines by targeting ZNF367 (zinc finger 
protein 367) [102]. NSCLC patients with tumor 
node metastasis (TNM) stage I, II, III, IV and 
NSCLC cell lines (NCI-H358 and NCI-H1299) 
overexpressing miR-24 had reduced levels of 
its predicted target WWOX (WW domain-con-
taining oxidoreductase). MiR-24 and WWOX 
together deregulated activate-caspase-3 and 
increased the expression of MMP9, promoting 
invasion [103]. In LC, miR-24 was observed to 
downregulate SOX7 by a post-transcriptional 
mechanism, thus promoting cell proliferation 
and migration in A549 and H1299 cell lines, 
accelerating tumor growth in a xenograft mice 
model [104]. MiR-24 was reduced in the etopo-
side and cisplatin-resistant SCLC cell line 
(H446/EP) and increased in the VP16-DDP-
sensitive parental cell line (H446). MiR-24’s 
forced expression sensitized H446/EP cells to 
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VP16-DDP treatment by blocking autophagy, 
particularly ATG4A [105]. MiR-24, miR-22 and 
miR-34a expression was increased in NSCLC 
patient samples and can be used as biomark-
ers for patients non-responsive to pemetrexed 
[106]. MiR-24 and miR-21 can serve as bio-
markers for recurrence of LC after surgery, as 
their levels before surgery are high and 
increased levels of miR-24 lead to a low surviv-
al rate. Post-surgery, the levels of miR-24  
and miR-21 are low and increased levels  
contribute to the recurrence of LC [107]. 
Expression levels of cell-free miR-24 and miR-
30d were higher in pleural effusions than in 
benign effusions. The composite of cell-free 
miR-24 and miR-30d could distinguish malig-
nant ascites with enhanced potency in compar-
ison to single miR-30d [108]. The expression of 
the TS gene menin was reduced in the LC. MiR-
24 regulates menin via SMAD3 pathway [109]. 
Adenocarcinoma (AC) is the most common sub-
type of NSCLC. In postoperative biopsies of AC 
and non-malignant lung samples (NMLTs), 
SOX18 was suppressed and higher levels of 
miR-24 and miR-7a were observed. MiR-7a and 
miR-24 are increasingly expressed in NMLTs 
than in AC samples, and regulate the SOX18 
transcript in NSCLC cells [110]. MiR-24 targets 
the 3’-UTR-XIAP mRNA and represses its 
expression and inhibits apoptosis in LC [111].

Lymphoma (LY)

Hodgkin’s lymphoma (HL) is a malignant tumor 
derived from B cells that have high miR-24 
expression and reduced DEDD expression in 
HL tissues compared to adjacent tissues. Cells 
overexpressing miR-24 showed a notable in- 
crease in the invasion of L136 and L428 cells, 
in contrast to the control. HL cells overexpress-
ing DEDD rescued miR-24-mediated promotion 
of cell migration and invasion. Collectively, the 
study reported that DEDD reversed the partial 
function of miR-24 in HL cells [112]. Small RNA 
sequencing in HL cell lines revealed 84 differ-
entially expressed miRs compared with germi-
nal center B cells. Three of the upregulated 
miRs (miR-23a, miR-24, and miR-27a) were 
derived from the same primary miR transcript. 
Loss-of-function analyses of these miRs and 
their seed family members reduced the growth 
of miR-24 repression in three HL cell lines 
(L1236, L428, and KM-H2). The results from 
Ago2-RIP-Chromatin IP suggested that CD- 

KN1B, SIPR1, CARD10, 37 BCL2L11, cMyc, and 
INSIG1 are targets of miR-24, followed by con-
firmation by western blot analysis. In summary, 
miR-24 was upregulated in HL and its inhibition 
impaired cell growth feasibly by targeting Myc 
and CDKN1B/P27kip1 [113]. Signature circu-
lating miR-24 from patient serum was increased 
compared to that in controls and showed iden-
tical patterns in murine models. According to 
the recursive partitioning analysis, five miR sig-
natures (let-7b, -7c, miR-18a, -24, and -15a) 
were reported with a 91% classification rate for 
serum with DLBCL diffused patients vs. con-
trols. MiR-24 has also been reported as a use-
ful reference miR in DLBCL studies [114]. In 
addition, Myc rearrangement has been linked 
to higher levels of miR-27a and miR-24 [115]. 
Sandhu et al. and Sole et al. discussed miR-24 
along with other miR-based therapies for the 
diagnosis and treatment of lymphoma [116, 
117].

Melanoma (ML)

Ectopic expression of miR-24 acts as a TS and 
suppresses the migration, invasion, and prolif-
eration of mouse ML cells (B16F10) by directly 
targeting p130Cas [118]. MiR-24-1 is a candi-
date miR that is deregulated in cutaneous 
malignant melanoma (CMM) [119]. The expres-
sion levels of miR-24-1 in malignant ML sam-
ples, involving primary, metastatic malignant 
ML, and malignant ML specimens associated 
with lymph node metastasis (LNM) were lower 
than those in adjacent normal tissues. ML cells 
A375, overexpressed with miR-24-1 showed 
enhanced levels of beclin-1 and LC3-II/I ratio, 
suggesting autophagy induction. The Target- 
Scan Human database predicted UBD as a tar-
get of miR-24-1 and was validated by lucifer-
ase-reporter analysis. MiR-24-1 mediated sil- 
encing of UBD increased apoptosis and autoph-
agy in melanoma A375 cells. Overexpression of 
miR-24-1 in A375 cells leads to increased phos-
phorylation of JNK; thus, the JNK pathway can 
be involved in miR-24-1-mediated apoptosis 
and autophagy in A375 cells [120]. 

Osteosarcoma (OS)

Level’s of miR-24 were upregulated in OS cell 
lines (MG-63 and HOS), tumor tissues and OS 
patients’ serum. In OS cell lines (MG-63 and 
HOS), knockdown of miR-24 enhanced the  
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therapeutic effect of doxorubicin by increasing 
BIM, Smac/DIABLO and mitochondrial apopto-
sis [121]. Contrary to the above report, miR-24 
levels were reduced in OS tissues (N = 84), but 
the von Willebrand factor (VWF), a target of 
miR-24, was significantly increased in MG-63 
and U2OS cells. MiR-24 repressed the prolifer-
ation and migration of MG-63 and U2OS cells 
and the same effect was observed clinically. 
Low miR-24 levels in clinical OS tissues are 
involved with tumor metastasis and reduced 
survival [122]. TUT1, a nucleotidyl transferase, 
was found to be downregulated in OS. TUT1 
inhibits peroxisome proliferator-activated re- 
ceptor gamma (PPARγ) and SREBP-1c, which 
regulate lipogenesis through the upregulation 
of miR-24 and miR-29a [123]. The target of 
miR-24, Ack1 was upregulated in OS. This study 
indicated the repression of miR-24 on OS 
metastasis by targeting Ack1 through AKT/
MMP pathways, furnishing a novel diagnosis 
and treatment strategy for OS patients [124]. 
The target of miR-24, lysophosphatidic acid 
acyltransferase-β (LPAATβ) was downregulated 
in OS cells. In OS cells, overexpression of miR-
24 downregulated LPAATβ expression and 
inhibited cell proliferation; however, this effect 
was blocked when LPAATβ activity was inhibit-
ed [125]. 

Pancreatic cancer (PaC)

Elevated levels of miR-24 have been reported 
in the blood of PaC patients [126, 127]. The 
expression of miR-24 was substantially 
changed in PaC and cell lines (ASPC-1, BxPC-3, 
Hs766T, HPAF-II, Capan-1, Capan-2, Panc-1, 
MIA PaCa-2, Panc3.27, and PL45) compared 
with relatively normal pancreatic tissues and 
HPDE cells [128]. MiR-24 regulates menin in 
the endocrine pancreas, a TS. In MIN6 insulino-
ma cells and in lox5 immortalized cells, miR-24 
directly reduced the levels of menin expression 
and impacted downstream cell cycle inhibitors 
[129]. In 62 patient samples, a panel of nine 
miR signatures, including miR-24, was suggest-
ed to differentiate between high- and low-risk 
pancreatic cystic neoplasms [130]. Using 
MAGIA tool and Cytoscape 3 software, miR-
mRNA interaction data analysis revealed that 
miR-24 was the most significantly upregulated 
and target genes ACVR2B, GFRA1 and MTHFR 
were found to be downregulated [131]. The 
repressed expression of Bim was related to the 

significant upregulation of miR-24 in PaC. It 
accelerates vascular ring formation and pro-
motes the growth of cancer and vascular cells. 
In vivo (in a tumor mouse model) repression of 
Bim expression by miR-24 facilitates angiogen-
esis and tumor growth [132]. In the two groups 
of PDAC cell lines, adhesion assays indicated a 
consistent relationship between integration 
capacity and adhesive properties. MiR-24 and/
or miR-23a target TMEM92 and/or FZD5, 
HNF1B, respectively as per microarray analysis 
and they are deregulated significantly. MiR-24 
and/or miR-23a overexpression led to gene 
silencing of HNF1B and/or FZD5 and TMEM92. 
This downregulation facilitates E-cadherin and 
β-catenin degradation [133].

Prostate cancer (PrC)

MiRs in the miR-23b/27b/24-1 cluster were 
suppressed in PrC clinical samples. Studies on 
gain-of-function of all three mature miRs in 
clusters (miR-23b, -27b and -24) reduced migra-
tion, invasion and proliferation in PrC cell lines 
(PC3 and DU145) [134]. The incidence of PrC is 
significantly higher among African-Americans 
(AfA) than among Caucasian-Americans (CaA). 
In patients with AfA and CaA, miR-24 was dif-
ferentially expressed. The miR-24 promoter is 
methylated and therefore, miR-24 is downregu-
lated in PrC patients. In an AfA cell line (MDA-
PCa-2b), miR-24 levels were restored after 
treatment with 5Aza-CdR. However, miR-24 
level restoration was not noticed in CaA cells 
(DU-145). Transient overexpression of miR-24 
diminished cell growth and promoted apoptosis 
in AfA cell lines, although the effect was less in 
the CaA cell line [135]. MiR-24 also regulates 
apoptosis by targeting FAF1 in cancer cells (DU-
145) [136]. Decreased expression of miR-24 
was observed in both the needle core and pros-
tatectomy tumor tissues relative to normal tis-
sues. Low expression levels of miR-24 are 
associated with high prostate-specific antigen 
(PSA) levels in serum. Importantly, enhanced 
expression of miR-24 abrogated the cell cycle, 
migration, proliferation and clonogenic poten-
tial of prostate cancer cells, along with the 
induction of apoptosis. A significant inverse 
correlation between miR-24 and p27 has been 
observed in clinical prostatectomy specimens 
[137]. The diagnostic three-miR model (miR-
222-3p* miR-24-3p/miR-30c-5p) markedly dis-
tinguished prostatic hyperplasia (BPH) and PrC 
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patients predicted in different cohorts [138]. 
Lin et al. reported the tumor-enhancing role of 
miR-24 in PrC and observed upregulation of 
miR-24 in PrC cell lines (LNCaPFGC, PC3 and 
DU 145). This overexpression promoted cell 
proliferation, inhibited apoptosis, and increased 
cell migration and invasion. SOCS6 is a direct 
target of miR-24 and overexpression of SOCS6 
(suppressor of cytokine signaling 6) reverses 
the effects of miR-24 on the metastatic pheno-
type of PrC cells [139]. In recurrent prostate 
tumors, miR-24-1 was reported to be one of the 
downregulated miR [140].

Retinoblastoma (Rb)

Review papers have reported the roles of 
ncRNAs and miRNAs in Rb [141, 142]. In human 
Rb tissues and cell lines (RB 247, 381, 1021, 
WERI-Rb1, Y79, B247 and RB381), p14ARF 
was disproportionally increased at the RNA 
level and not at the protein level. Overexpression 
of p14ARF led to an increase in the expression 
levels of p53 and therefore, apoptosis. This dis-
crepancy between p14ARF mRNA and protein 
in Rb was caused by miR-24 as it represses the 
expression of p14ARF, is heavily upregulated in 
Rb cell lines and correlates with lower expres-
sion of p14ARF in various cell lines (HeLa, HEK-
T, SaOS-2 and OVCAR-3) with high p14ARF 
mRNA [143]. The antisense ncRNA in the INK4 
locus (ANRIL) was overexpressed in Rb tissues 
and cells (Y79) responsible for the viability, 
migration and invasion of Rb Y79 cells. ANRIL is 
negatively regulated by miR-24 and positively 
regulated by cMyc, which is a target of miR-24 
[144]. Microarray profiling of three Rb and con-
trol samples indicated that seven miRs (let-7b, 
-7c, -24, -125b, -191, -181a and -423) expres-
sion levels were repressed in Rb [145].

Various cell lines

MiR-24 promotes the HEKa cells proliferation. 
Both p27Kip1 (p27) and p16Ink4a (p16) had prob-
able seeding sequences for miR-24. Among 
various cell lines [CC cell lines (SiHa, CaSki, and 
ME-180), BRC cell lines (CAMA, T47D, HBL-100), 
LC cell lines (A549, H1299), GC cell line (AGS) 
and thyroid carcinoma-derived cell line (TPC-
1)], overexpression of miR-24 suppressed p27 
at various levels in almost all cell lines, except 
for T47D and A549 cells. In the other cell lines, 
a reduction in p16 protein levels with p27 
downregulation was observed, with the excep-

tion in the cell lines SiHa, TPC1, H1299, and 
T47D. MiR-24 significantly increased AGS TPC1, 
H1299, SiHa and CaSki cell proliferation. 
HBL100, CAMA and ME-180 had a smaller 
induction of miR-24-mediated proliferation 
compared to a minor reduction in p27 protein 
levels [146]. A study of miR-24 in BRC (SK-BR-3 
and MDA-MB-468), NSCLC (A549, H1437, 
CALU-1 and H292), and CC (HeLa) cell lines 
reported that miR-24 is a candidate regulator of 
XIAP expression. In various cell lines (A549, 
OE21, H292, HeLa, SK-BR-3, and MDA-
MB-468) significantly reduced XIAP protein lev-
els increase the sensitivity to TRAIL-induced 
cytotoxicity. Caspase-3 activity was significant-
ly upregulated in A549 and H292 cell lines by 
combining miR-24 overexpression and TRAIL 
[111]. By modulating different apoptotic path-
ways and targeting BCL-2, miR-24-2 is capable 
of inducing apoptosis and an anti-apoptotic 
gene. In the MCF7 and HeLa cell lines, In spite 
of change in copy number, H2AX gene expres-
sion effectively controlled by miR-24-2. This 
study further signifies that combination therapy 
using anticancer drugs, such as cisplatin, along 
with miR-24-2 [42]. HPV oncoproteins have 
been reported to alter the levels of miR-205 
and miR-24 in HFK cells. E7 and E6 expres-
sions stimulate miR-24 and is suggested to 
facilitate cell proliferation by regulating the cell 
cycle inhibitor p27 [147]; Deregulated levels of 
miR-24 suppressed the invasion and prolifera-
tion of PC-3, B16F10, MCF7 SK-Hep1, and 
Hep3B cells via the miR-24/p130Cas axis 
[118]. MiR-24 and miR-24-2 have been sug-
gested as anti-pluripotent and epigenetic stem-
ness-regulatory miRs. The interplay between 
PRMT7 (protein arginine methyltransferase 7)/
MiR-24/miR-24-2 feedback loop with Oct4, 
Nanog, Klf4 and cMyc has been reported to 
control the stemness of mouse embryonic 
stem cells (ESCs) [148]. MiR-24 targets the pro-
lyl hydroxylase domain (PHD1). Thrombin-
mediated upregulation of miR-24-1 reduces 
HIF-1α degradation and initiates angiogenesis 
in intracerebral hemorrhagic rats [149]. MiR-24 
is reported as a p53-independent G2/S cell 
cycle inhibitor and possesses anti-proliferative 
activity in human OS (U-2 OS, MG63, RKO and 
HT-29), human colon cancer [HCT 116 (null-
p53) and HCT 116 (wt-p53)] cell lines [48]. 
During differentiation into megakaryocytes, 
erythrocytes, macrophages, monocytes, and 
granulocytes, a 2- to 8-fold increase in miR-24 
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transcript level was observed. MiR-24 was fur-
ther reported to inhibits cell cycle progression, 
facilitates the proliferation of fibroblasts and 
regulates E2F2, Myc, AURKB, CCNA2, CDC2, 
CDK4, and FEN1 in K562 and HepG2 cells 
[150]. 

MiR-24 and other diseases

Similar to cancer, miR-24 is deregulated in sev-
eral other human diseases. Herein, we summa-
rized the deregulated expression of miR-24 
(Figure 5 and Table 4), miR-24-1 (Figure 4 and 
Table 2) and miR-24-2 (Figure 4 and Table 3) 
and its association with different human 
diseases.

Arthritis

The combination of three miRs (miR-24, -26a, 
and -125a-5p), named as “estimated probabili-

ty of Rheumatoid arthritis (RA) by plasma miRs” 
(e-PRAM), was recommended for use as a 
potential biomarker for the recognition of RA 
patients [151]. Employing miR-24, -30a-5p and 
-125a-5p provided a formula for ePRAM, which 
has shown increased diagnostic accuracy. 
Compared to RA patients, the levels of miR-24, 
-125a-5p, and ePRAM in systemic lupus ery- 
thematosus (SLE) and osteoarthritis (OA) 
patients were lower [152]. MiR-24 is a negative 
regulator of p16INK4a. Overexpression of p16Ink4a 
in chondrocytes induced the generation of  
two matrix remodeling enzymes (MMP1 and 
MMP13), linking senescence with bone devel-
opment and OA pathogenesis [153]. Li et al. 
reported in ATDC5 cell depletion of one IncRNA, 
plasmacytoma variant translocation 1 (PVT1), 
protects the cartilage against LPS-induced 
inflammatory injury through the miR-24/
ADAMTS5 axis, opening up a novel avenue for 

Figure 5. Schematic representation of target genes, regulatory pathways and interactive functions of miR-24 in 
different diseases. Black thick arrow directed the regulatory genes. Gray thick arrow indicates the regulatory phe-
notypes and biological functions. Black thin arrow pointed upward and downward indicate the upregulation and 
downregulation of the corresponding gene’s expression, respectively. Yellow arrow pointed upward and downward 
indicate the upregulation and downregulation of the corresponding biological functions, respectively.
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Table 4. Deregulated expression of miR-24 and its regulatory genes in other diseases

Diseases Up/Down 
(MiR-24)

Regulatory genes/pathways Regulatory biological  
functions

Tissue/Sample 
typeUpregulated Downregulated

Arthritis Up in RA IL-1β
PVT1, LPS

MMP1, MMP1, p16INK4a Senescence, Cartilage, chondrogen-
esis cell viability, apoptosis, secretion 
of inflammatory cytokines

Patient, ATDC5

Bone Disorders Down in osteomyelitis TGFβ, CHI3L1 TCF-1, SMAD2, TGFBR2 Bone formation or differentiation 
osteoporosis pathogenesis or bone 
remodeling, skeletal muscle fibrosis

Patient, MC3T3-E1

Cardiovascular Disorders Up in ischemia, RIPC and heart 
failure 
down in thrombotic cardiovascular 
events, myocardial infraction; 
Down in I/R injury

Aldose reductase, reactive oxygen 
species, cMyc.
Keap1-Nrf2

GATA2, PAK4, BIM, PDGFRB, 
CHI3l1, SCN5A,
PKC-delta,
JP2, BIM, ESCA, ADL, LVEF and 
SF-36, Chi3l1

Smooth muscle cells (SMC) migration, 
Fibrosis, vascular inflammation and 
abdominal aortic aneurysm (AAA) 
pathology, heart failure mortality, 
proliferation ability of cardiomyocytes 
Apoptosis, proliferation, hydroxypro-
line synthesis, angiotensin II

Mice model, H9C2, 
Rat cardiac fibroblasts 
(CFs), PDGFRB

Eye Disorders Up in cataract, AMD, TM TGFβ p53, subtilisin-like proprotein Age‑associated cataractogenesis, 
glaucoma

Patient and 
SRA01/04 cells

Diabetes Up in early onset of T1D, 
down in T2D

Willebrand factor, aldose reduc-
tase reactive oxygen species, and 
cMyc

CHI3l1, insulin promoter, 
Hnf1a, SFRP4 and Neurod1

Diabetic myocardial I/R and increased 
infarct size post-I/R, diabetic foot 
ulcer, diabetic foot osteomyelitis

Patient

Gastrointestinal & Liver Diseases Up in IBS, ulcerative colitis Menin and TGFβ Cingulin, BIM, STING Trans-epithelial electrical resis-
tance and increased dextran flux, 
hepatocyte apoptosis, hepatic lipid 
accumulation and reduced plasma 
triglycerides, cellular apoptosis in 
hepatic I/R process

Mice model, mucosal 
epithelial cell line, 
patient

Hair Up-regulated TCF-3 Anti-proliferative, hair morphogenesis Mice model

Muscular dystrophy Up after exercise,
down during relaxation

TGFβ, MHC, MEF2, Myogenin PDGFRB, p38, SMAD2 and 
TGFBR2

Myoblast differentiation, SMC migra-
tion and proliferation

Murine model, patient

Neurological Disorders Down in early Alzheimer stage, 
ADHD and Schizophrenia
up in Parkinson’s diseases

- XIAP, HPCA Alzheimer disease (AD), Parkinson, 
neuron cell apoptosis, neurona, HPCA 
expression l differentiation

CSF and blood from, 
SH-SY5Y cells

Renal and Urinary System 
Disorders

Up - H2A histone family, member X, 
and heme oxygenase 1

Apoptosis, hypoxic conditions, renal 
ischemic injury

Mice model, patient,

Sclerosis Up - SMAD4-IRAK-M, SR-B1 Disability progression index, inflam-
mation and atherosclerosis

Patient

Syndrome Down in PCOS - - 293T, SHSY5Y cell 
lines and Patient

Viral related Diseases Down in Dengue, RSV, PRRSV, 
Influenza

KLF6, TGFβ, NS1 PCSK9 PRRSV replication, activation of HA0 
glycoproteins and production of infec-
tious virions, HBV replication, lipid 
homeostasis

Patient

RA: Rheumatoid arthritis; RIPC: Remote ischaemic preconditioning; I/R: Ischemia/Reperfusion; AMD: Age-related macular degeneration; TM: Trabecular Meshwork; T1D: Type 1 diabetes mellitus; T2D: Type 2 diabetes mellitus; IBS: Irritable 
Bowel Syndrome; ADHD: Attention-deficit/hyperactivity disorder; PCOS: Polycystic ovary syndrome; RSV: Human respiratory syncytial virus; PRRSV: Porcine Reproductive and Respiratory Syndrome Virus.
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OA therapeutics [154]. Wang et al. reported 40 
miRs (22 downregulated and 18 upregulated) 
that were differentially expressed in the RA 
samples compared to the healthy controls 
(HCs) and miR-24 is one of 18 upregulated 
miRs (fold change ~2.0679) [155]. Significantly 
increased expression of miR-24, along with six 
other miRs were observed in IL-1β-stimulation 
OA synovial explants [156].

Bone disorders

Osteomyelitis is an infectious disease of the 
bone that is mainly induced by Staphylococcus 
aureus. Analysis of the entire blood of patients 
with bacterial osteomyelitis, healthy controls 
and S. aureus infected MC3T3-E1 cells showed 
downregulation of miR-24 compared to the 
healthy controls or untreated control cells. 
However, the effects of S. aureus could be 
reduced by overexpression of miR-24, while 
inhibition of miR-24 intensified the effect [157]. 
MiR-24 was among one of the up-regulated 
miRs in osteoporotic fracture patients [158-
161]. Zhao et al. reported that miR-24 signifi-
cantly inhibits osteogenic differentiation and 
regulates T-cell factor-1 (Tcf-1) expression by 
targeting the 3’-UTR of Tcf-1 mRNA in bone 
mesenchymal stem cells and murine osteopro-
genitor cells [162, 163]. Kelch et al. reported a 
correlation between miR-24, miR-21-5p, miR-
100-5p, miR125b-5p and miR-93-5p, with 
bone mineral density (BMD) [164]. Yavropoulou 
et al. studied the expression of 14 miRs (miR-
21-5p, 23a-3p, 24-2-5p, 26a-5p, 29a-3p, 33a-
5p, 124-3p, 135b-5p, 214-3p, 218-5p, 335-
5p, 2861, 1331-3p, 422a) in osteoporotic/
osteopenic patients with low bone mass and 
vertebral fractures (VFs) and compared them 
with patients without VFs [165]. Sansoni et al. 
studied the effects of an eight-week repeated 
sprint training on circulating miRs. MiR-23a and 
miR-24 expressions were observed to decreas-
es significantly after 4- and 8-weeks compared 
to age-matched inactive controls [166]. In skel-
etal muscle fibrosis, the TGF-β/Smad signaling 
pathway was identified as a pathologically posi-
tive feedback loop and two miRs (miR-24 and 
-122) act as fibrogenic inhibitors that downreg-
ulate Smad2 and Tgfbr2 levels, respectively 
[167]. In addition, the effect of miRs on osteo-
genic differentiation was studied by analysing 
Runx2, osteocalcin, osteonectin and alkaline 
phosphatase (ALP) expression. Studies per-

formed on the 7th day after induction of osteo-
genic differentiation and Alizarin Red staining 
mediated calcium deposition after 21 days. 
The data revealed that the effects of let-7g, 
miR-21 and miR-24 were donor-dependent 
[168, 169]. SATB2 is a key regulator of skeletal 
development. Hassan et al. reported a regula-
tory network of SATB2 and miR-23a-27a-24-2 
cluster as regulators of the progression and 
maintenance of the osteocyte phenotype [170].

Cardiovascular diseases

MiR-24 induces cardiac endothelial cell apopto-
sis, abolishes endothelial capillary network for-
mation on Matrigel and inhibits cell sprouting 
from endothelial spheroids by targeting GATA2 
and PAK4. Inhibition of endothelial miR-24  
limits myocardial infarction in mice [171]. 
Hyperglycemia-induced reduction of miR-24 
increases levels of VWF and secretion in  
diabetes mellitus and increases the risk of 
thrombotic cardiovascular events [172]. MiR-24 
suppresses apoptosis in cardiomyocytes by 
repressing the BH3-only domain-containing 
protein Bim, which activates apoptosis. In the 
MI model, the in vivo expression of miR-24 
inhibited apoptosis, diminished cardiac dys-
function and mitigated infarct size [173]. The 
Myh6-miR-24 transgenic mice under normal 
physiological conditions did not show an appar-
ent difference from their wild-type littermates. 
However, when subjected to myocardial infarc-
tion (MI), the transgenic mice indicated reduc-
tion in cardiomyocyte apoptosis with enhanced 
cardiac function and decreased scar size post-
MI compared to their wild-type littermates 
[174]. MiR-24 regulates JP2 expression by bind-
ing to at least one of the two sites within the 
3’-UTR of JP2 mRNA. MiR-24 overexpression 
leads to ultrastructural remodeling of TT-SR 
and defective E-C (excitation-contraction) cou-
pling, reproducing those found in failing heart 
cells [175]. MiR-24 and miR-155 levels in serum 
are inversely related to the ADL, ESCA, LVEF 
and SF-36 scores, and affect the quality of life. 
Tai Chi treatment improved CHD prognosis by 
regulating miR-24 and miR-155 in the serum 
[176]. MiR-24 inhibits apoptosis initiation by 
suppressing the release of cytochrome C and 
translocation of Bax to mitochondria from the 
cytosol [177]. MiR-24 was present in RIPC 
(remote ischaemic preconditioning)-induced 
exosomes and helped to reduce oxidative 
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stress-mediated injury. In H2O2-treated H9c2 
cells, apoptosis was reduced by repressing  
Bim expression in vitro. In vivo, miR-24 in RIPC-
induced exosomes inhibited cardiomyocyte 
apoptosis, reduced infarct size and improved 
heart function [178]. Myocardin-induced miR-
24 and miR-29a expressions were reported to 
regulate PDGFRB, and antagonizing these miRs 
restored the migration of SMCs. MiR-24 has an 
indirect effect on PDGFRB levels [179]. In addi-
tion, hypoxamir-24 has been elucidated as  
an inhibitor of SMC proliferation and is associ-
ated with loss of vascularization [180]. After 2 
and 4 weeks of cardiac infarction, miR-24 
expression was significantly repressed (P< 
0.05). The mRNA levels of Furin and TGF-β1 
were elevated after infarction. The miR-24 level 
was correlated positively with left ventricular 
systolic diameter, left ventricular end-diastolic 
diameter and left ventricular ejection fraction 
[181]. Mir-24 also negatively regulates fibrosis 
after infarction [182]. Sayed et al. reported that 
miR-24 is a progressively deregulated miR dur-
ing pressure-overload cardiac hypertrophy and 
is downregulated during the later stage of 
hypertrophy (14 days post-transverse aortic 
constriction) [183]. MiR-24 has also been 
reported as a potential circulating biomarker 
for myocardial infarction and a key regulator of 
vascular inflammation and abdominal aortic 
aneurysm (AAA) pathology in two murine mod-
els. The study also revealed that chitinase 
3-like 1 (Chi3l1) is a known target and inducer 
under the control of miR-24 [184]. A recent 
report showed that miR24 suppresses SCN5A 
expression and synonymous SNPs (rs1805126) 
near the miR-24 site within the coding sequenc-
es of SCN5A alters SCN5A-miR-24 interaction 
and increases heart failure mortality [185]. A 
review paper also reported novel therapeutic 
applications of the miR-23-27-24 cluster in 
ischemic heart disease and vascular disorders 
[186]. Mir-24 has been also reported to be 
associated with type 2 diabetes mellitus (T2D) 
associated with coronary heart disease (CHD) 
[187]. Upregulated miR-24 expression disrupts 
the function of smooth muscle cells. H9c2  
cells transfected with anti-miR-24 significantly 
decreased the proliferation ability of cardiomy-
ocytes and increased the expression of target 
gene TGF-β [188]. Downregulated expression 
of miR-24 in a myocardial ischemia/reperfu-
sion (I/R) injury mouse model diminished I/R 
injury by targeting RIPK1 expression in mice 

[189]. Another study also reported downregu-
lated expression of mir-24 associated with I/R 
injury in mice hearts and was associated with 
apoptosis of cardiomyocytes by targeting the 
Keap1-Nrf2 pathway [190]. MiR-24 induces 
apoptosis and inhibits proliferation, hydroxy-
proline synthesis and myocardial fibrosis 
induced by angiotensin II by negatively regulat-
ing PKC-delta through the AGTR1-Gq-PKC sig-
naling pathway [191].

Diabetes

Deregulated expression of miR-24 has been 
reported in both type 1 diabetes mellitus (T1D) 
and type 2 diabetes mellitus (T2D) [192-194]. 
Thirty-five miRs were significantly different in 
the sera of children with T1D compared to age-
matched controls and among these, 27 miRs 
were elevated. Good distinctive power was 
obtained for six miRs, including miR-24, in a 
larger cohort (beyond 90 days after diagnosis) 
[195]. Global miR sequencing analyses identi-
fied 12 enhanced miRs, including miR-24, in 
T1D patients. Several of these are connected 
to apoptosis and beta-cell networks [196]. MiR-
24 and miR-29b expression was distinguish-
able in type 2 diabetes mellitus patients and 
controls after adjustment for sex, age, family 
history of T2D, waist circumference, and a sed-
entary lifestyle [197]. Plasma samples from 47 
T2D patients who received no anti-diabetic 
treatments and 47 T2D patients who received 
three months of metformin treatment were 
screened for the expression of thirteen poten-
tial miRs. MiR-24 was found to be significantly 
reduced after metformin treatment in patients 
with T2D [198]. In the diabetic heart, miR-24 
reduction and O-GlcNAcylation induced by 
hyperglycemia and hyperinsulinemia lead to 
poor survival in diabetic myocardial I/R and 
enhanced infarct size post-I/R. MiR-24 has also 
been suggested as a potential therapeutic tar-
get for post-infarct healing in T2D patients 
[199, 200]. In diabetic patients, acute myocar-
dial infarction (MI) is correlated with subse-
quent increased heart failure, mortality and 
myocardial dysfunction after acute myocardial 
infarction (MI) in T2D was reported due to the 
deregulation of miR-24 [201]. Significantly 
downregulated expression of circulating miR-
24 was reported in the peripheral blood of T2D 
associated coronary heart diseases (T2D-CHD) 
patients in comparison to controls. They also 
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reported that miR-24 mediates the regulation 
of YKL-40 [chitinase 3-like 1 (Chi3l1)] in T2D-
CHD and may serve as a biomarker for predict-
ing T2D-CHO patients [187]. Plasma levels  
of miR-24 in diabetes are notably lower than 
those in healthy controls [172]. MiR-24 tightly 
regulates VWF (von Willebrand factor) levels 
through pleiotropic effects (e.g., binding to the 
3’-UTR of VWF to target FURIN and the hista-
mine H1 receptor). Xiang et al. reported miR-24 
as a novel therapeutic target for the prevention 
of adverse thrombotic events in patients with 
diabetes mellitus in VWF-induced pathology 
[172]. Melkman-Zehavi et al. reported knock-
down of miR-24 along with other three miRs 
(miR-26, miR-182 and miR-148), downregulate 
insulin promoter activity and insulin mRNA lev-
els in β-cells or in isolated primary islets using 
adult mice [202]. Increased expression of miR-
24 was reported to stop insulin secretion and 
β-cell proliferation and identified the miR-24/
MODY gene regulatory pathway as a novel net-
work for the study of T2D [203]. Elevated 
expression of miR-24 along with two other miRs 
(miR-30d and miR-146a) and antiangiogenic 
factor secreted frizzled-related protein 4 
(SFRP4) were reported to be correlated with 
obesity and insulin resistance in T2D reported 
in human abdominal adipose tissue [204]. A 
study conducted at Florida Hospital reported 
that miRs, including miR-24 and miR-375 were 
linked to β-cell injury [205]. A recent study 
reported that in T2D patients, expression of 
miR-24 in the peripheral plasma is correlated 
with the onset of diabetic foot osteomyelitis 
(DFO) and diabetic foot ulcer (DFU) [206].

Eye disorders

Oxidative stress in cataract patient samples 
and the human lens epithelial cell line 
(SRA01/04 cells) upregulates miR‑24 and facil-
itates LEC death by directly binding to p53 
[207]. Age-related macular degeneration (AMD) 
is a late-onset, progressive, multifactorial neu-
rodegenerative disease of the human retina. A 
pioneering clinical study on the expression pro-
filing of 384 miRs in the plasma of 33 patients 
(22 males, 11 females) between AMD and 
healthy controls reported that miR-24 is one of 
five upregulated miRs in AMD patients [208, 
209]. CMS mediated the expression of miR-24, 
which led to the repression of the subtilisin-like 
proprotein convertase FURIN, a key player in 
the processing of TGFβ1. Luna et al. reported 
that miR-24 plays an important role in the flow 

pathway by regulating TGFβ1 induction mediat-
ed by CMS via direct binding of FURIN [208, 
210].

Gastrointestinal & liver diseases

In the proximal colon of IBS (irritable bowel syn-
drome), studies using mice confirmed that 
treatment with the miR-24 inhibitor elevated 
the threshold of pain and nociception, dimin-
ished activity of MPO, and upregulated expres-
sion levels of SERT mRNA and protein in intesti-
nal mucosa epithelial cells [211]. Upregulated 
expression of miR-24 has been reported in 
ulcerative colitis (UC) patient’s colonic biopsies 
and blood samples than in healthy controls. 
MiR-24 is localized to intestinal epithelial cells 
in the colon of UC patients. Overexpression of 
miR-24 in both Caco-2 and T84 cell lines led to 
enhanced dextran flux and reduced transepi-
thelial electrical resistance. Overexpression  
of miR-24 did not affect apoptosis or cell prolif-
eration. This also suggests that the miR-24’s 
effect on barrier function might be due to its 
effect on cell-to-cell junctions [212]. MiR-24 
indirectly reduced D-GalN/LPS challenge in 
vivo and D-galactosamine/tumor necrosis fac-
tor (D-GalN/TNF) challenge in vitro. In D-GalN/
TNF-treated BNLCL2 cells, miR-24 overexpres-
sion inhibited apoptosis and attenuated BIM 
mRNA and protein levels in vitro. Taken togeth-
er, the study demonstrated that during ALF 
development via BIM, miR-24 regulates hepato-
cyte apoptosis [213]. The expression of miR-24 
was notably upregulated in the livers of mice 
treated with a high-fat diet and incubated with 
isolated human hepatocytes with fatty acids. 
MiR-24 knockdown in these mice diminished 
hepatic lipid accretion and plasma triglyceride 
levels [214]. Silencing of miR-24 enhances 
menin a histone modifier and TGFβ expression. 
Subsequently, in FVB/NJ WT and Mdr2-/- mice, 
hepatic fibrosis was increased [215]. STING 
mRNA levels were inversely correlated with 
miR-24 levels in the livers of I/R-treated mice. 
By targeting STING, miR-24 may boost cellular 
apoptosis and inflammatory response in the 
hepatic I/R process, indicating its potential as 
a therapeutic agent for the treatment of liver 
I/R development and progression [216].

Hair

Transgenic mice transiently expressing miR-24 
under the K5 promoter displayed a defect in 
hair follicle (HF) morphogenesis, with thinning 
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of the hair coat and altered HF morphology. 
MiR-24 directly reduces the regulator of hair 
keratinocyte stemness by targeting Tcf-3 [217]. 
Comprehensive analysis of ten miRs (miR-31, 
24, 106a, 22, 125b, 137, 205, 214, 221 and 
410) in human HF identified their target genes. 
Furthermore, a significant correlation between 
miR-24 and six collagen genes (in descend- 
ing order of significance: COL5A2, COL17A1, 
COL4A6, COL4A5, COL18A1 and COL4A1) sug-
gested an important regulatory role of miR-24 
in hair morphogenesis and maintenance via 
the control of integrin and collagen signaling 
[218].

Muscular dystrophy

Several studies have reported the regulatory 
role of miR-24 in muscular dystrophy [219-
223]. Circulatory miR-181a-5p, miR-27a-5p 
and miR-24-2 were upregulated shortly after 
exercise, followed by downregulation during 
relaxation [222, 223]. Sun et al. revealed miR-
24 mediated modulation of TGF-β-dependent 
inhibition of myoblast differentiation as a novel 
molecular mechanism underlying skeletal mus-
cle differentiation. They also reported the 
importance of Smad3 and a Smad binding site 
in the miR-24 promoter region for the repres-
sion of miR-24 transcription by TGF-β1 [224]. 
MiR-24 is one of the upregulated miRs during 
cardiac hypertrophy, capable of inducing hyper-
trophic growth in vitro and embryonic lethality 
[225, 226]. Talasila et al. reported it as a key 
regulator of the neointimal response that 
impedes the vascular injury response in murine 
carotid arteries and reduces smooth muscle 
cell (SMC) migration and proliferation via a 
novel mechanism that involves induction of 
miR-24 and miR-29a and repression of the 
PDGFRB pathway [179]. MiR-24 also contrib-
utes to the loss of vascularization by inhibiting 
SMC proliferation [180]. The miR-23a-27a-24-2 
cluster has also been reported to be a regulator 
of cardiac hypertrophy and skeletal muscles 
[227]. Local mIGF1 expression regulates miR-
24 and miR-206, which confers robustness to 
dystrophic muscle in mdx dystrophic mice 
[228]. MiR-24 is downregulated in human arter-
ies with arteriosclerosis obliterans (ASO) and 
modulates the human arterial smooth muscle 
cell’s (HASMC’s) proliferation and migration 
through PDGF-BB/miR-24/PDGFRB and PDGF-
BB/miR-24/cMyc pathways by upregulating tar-

get genes platelet-derived growth factor  
receptor B (PDGFRB) and cMyc [229]. MiR-24 
downregulation significantly reduced myogenic 
markers such as myogenin, MHC and MEF2, 
and thereafter inhibited the formation of myo-
tubes [224]. Downregulated expression of miR-
24 in the skeletal muscle of diabetic rats was 
associated with an increased expression of 
p38 MAPK [231]. MiR-24 and miR-122 down-
regulate the TGF-β/Smad signaling pathway in 
skeletal muscle fibrosis and act as fibrogenic 
inhibitors. MiR-24 and miR-122 reduced the 
levels of Smad2 and Tgfbr2, respectively. 
However, Smad4 repressed the expression of 
both miRs [167]. A recent report demonstrated 
the precise effect of miR-23-27-24 clusters on 
endurance-exercise-induced muscle adapta-
tion and skeletal muscle development [224].

Neurological disorders

Deregulated expression of miR-24 is associat-
ed with several neurological disorders, such as 
Alzheimer, Parkinson, schizophrenia and spino-
cerebellar ataxia [233]. Increased miR-24 lev-
els in the cerebrospinal fluid (CSF) are nega-
tively correlated with cell number. In CSF, the 
addition of blood miR-16, miR-24, and miR-
146a expression was vigorously influenced 
[234]. MiR-24 is downregulated in the white 
matter of patients with early Alzheimer [235]. 
AD-associated SNPs present in the amyloid 
precursor protein (APP) 3’-UTR could also 
directly influence miR function and Aβ peptide 
production. MiR-24, along with miR-186, and 
miR-455 have been identified as regulators  
of the expression of nicastrin variants (NSCTN; 
comprising SNPs rs113810300 and rs- 
141849450), both under physiological condi-
tions in human cells and in vitro, leading to 
altered Aβ secretion [236]. MiR-24 was also 
reported to be significantly upregulated among 
20 differentially expressed miRs in patients 
with Alzheimer disease [237]. Serum samples 
from 109 patients with Parkinson’s disease 
(PD) and aged 40 years and sex-matched 
healthy controls for RNAs encapsulated in exo-
some-like microvesicles revealed that miR-24, 
miR-19b and miR-195 in serum are important 
for the diagnosis of PD [238]. In another study, 
ten miRs expression was analyzed in CSF for 
PD and multiple system atrophy (MSA). Among 
these, the expression of two miRs (miR-24 and 
miR-205) in PD and four miRs (miR-19a, -19b, 
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-24, and -34c) in MSA were different from those 
in controls [239]. The expression levels of miR-
19b-3p and miR-24 are positively associated 
with the progression of PD pathogenesis com-
pared to related multiple system atrophy [240, 
241]. In PD, miR-24 was observed to be upregu-
lated in blood and exosomes and downregulat-
ed in CSF [242] and has the potential to ser- 
ve as a biomarker [243]. Four differentially 
expressed miRs (downregulated: miR-339-5p 
and upregulated: miR-223*, miR-324-3p, and 
mir-24) were reported in PD and multiple sys-
tem atrophy (MSA) patients vs. controls. Further 
comparison between MSA and PD identified 
miR-24, miR-34b, and miR-148b upregulation 
in MSA serum [244, 245]. Lower levels of pri-
miR transcripts [miR-24, -26b, -9*, -30e and -7] 
were observed in patients with schizophrenia 
[246]. MiR-24 is differentially expressed in 
plasma-derived exosomal miRs in spinocere-
bellar ataxia type 3 (SCA3) [247]. Another study 
reported that miR-24 is one of the significantly 
deregulated miRs in Friedreich’s ataxia (FRDA) 
compared to healthy controls [248]. Among the 
52 ADHD (attention-deficit/hyperactivity disor-
der) research samples and 52 healthy volun-
teer controls, there was no significant differ-
ence in age or sex. Statistically, significantly 
decreased levels of miR-24 have been reported 
[249]. Small RNA-sequencing of paired sam-
ples from patients with major depressive disor-
der (MDD) enrolled in a large, randomized pla-
cebo-controlled trial of duloxetine discriminat-
ed the expression of four miRs (miR-24, -146a-
5p, -146b-5p and miR-425-3p) according to 
treatment response. These miRs were observed 
to deregulate the MAPK/Wnt signaling pathway 
[250]. For ischemic brain disease neurocan 
and miR-24 have been reported to be potential 
therapeutic targets. Overexpression of miR-24 
or neurocan silencing in SH-SY5Y cells showed 
an anti-hypoxic effect and played crucial roles 
in neuronal apoptosis [251]. Using mouse N2A 
neuroblastoma cells, an oxygen-glucose depri-
vation (OGD) model was developed. It showed 
lower levels of plasma miR-21 and miR-24 in 
patients with acute cerebral infarction (ACI) 
compared to controls. Gain of miR-24 function 
in N2A cells led to downregulation of X-linked 
inhibitor of apoptosis protein (XIAP) [252]. MiR-
24 binds to the 3’-UTR of HPCA and regulates 
neuronal differentiation by controlling Hippo- 
calcin (HPCA) expression [253]. A recent study 
in rat models of chronic constriction injury (CCI) 

reported the role of the ZRANB1/miR-24/
LPAR3/Wnt5a/β-Catenin signaling axis in the 
progression of neuropathic pain [254]. Mir-24-2 

was reported as one of twelve deregulated 
miRs in end-stage amyotrophic lateral sclerosis 
(ALS) mouse and rat spinal cords in comparison 
to age-matched non-transgenic (non-TG) con-
trols [255].

Renal and urinary system disorders

Post kidney transplantation in mice and 
patients after I/R injury, elevated expression of 
miR-24 was observed. After I/R induction 
revealed, anoxia/hypoxia-induced miR-24 en- 
richment in tubular epithelial and renal endo-
thelial cells in vitro. Transient miR-24 expres-
sion facilitates apoptosis and also amended 
functional parameters of these cell’s. In con-
trast, miR-24 silencing improved the response 
towards apoptotic and retrieved the hypoxia-
related functional parameters. MiR-24’s effects 
were imparted through the modulation of the 
H2A histone family, member X, and heme oxy-
genase 1 as direct miR-24 targets. MiR-24 
mediated stimulation of apoptosis in endothe-
lial and tubular epithelial cells promotes renal 
ischemic injury by stimulating apoptosis in 
endothelial and tubular epithelial cells. Hence, 
for the treatment of patients with ischemic AKI, 
miR-24 inhibition could be a promising thera-
peutic approach in the future [256]. MiR-24 
was also upregulated in patients with focal seg-
mental glomerulosclerosis (FSGS) than in 
patients with diabetic nephropathy (DN) [257].

Sclerosis

Expression profiling of 84 circulating miRs 
detected upregulated expression of miR-128-
3p and miR-24 in primary progressive multiple 
sclerosis (PPMS) compared to controls and sec-
ondary progressive multiple sclerosis SPMS 
[258]. Another study reported, miR-191-5p and 
miR-24 were overexpressed in relapsing-remit-
ting multiple sclerosis (RRMS) and PPMS [53 
RRMS and 20 PPMS]. MiR-24 was positively 
correlated with the disability progression index 
in the combined group of all patients with mul-
tiple sclerosis (MS) [259]. Genetic variations in 
miR coding genes can alter the expression lev-
els of miR. The predicted target genes of miR-
23a, miR-24, miR-27a and miR-223 are involved 
in the pathology and immunity of MS [260]. 
MiR-24 and miR-137 were significantly deregu-
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lated in MS patients compared to the controls 
and were considered as candidate biomarkers 
for MS [261]. Induced miR-24 expression by 
endotoxin regulates Smad4-IRAK-M, a negative 
feedback modulator of inflammation and down-
regulates the lipid-processing molecule SR-B1, 
which contributes to non-resolving low-grade 
inflammation and atherosclerosis [262].

Syndrome

Hirschsprung disease (HSCR) is a congenital 
disorder. This is caused by defective activity of 
the embryonic enteric neural crest. The target 
genes, ARP2 and ARP3 were downregulated by 
upregulated miR-24-1 and let-7a*, respectively, 
in HSCR samples (N = 70) compared to normal 
controls (N = 74). This study demonstrates a 
new pathogenic mechanism of HSCR that is 
associated with the miR-24-1/let-7a*-ARP2/3 
complex-RAC isoform pathway [263]. MiR-24, 
29a, 151-3p and 574-3p expression is down-
regulated in women with polycystic ovary syn-
drome (PCOS), both normoandrogenic and 
hyperandrogenic [264]. The SNPs of the Rab-
5B (RAB5B) genes (rs1045435, rs11550558, 
rs705700, and rs11171718) were associated 
with PCOS risk. The study also speculated that 
the rs1045435 locus is likely to be a miR-24 
binding site and rs11550558, rs705700 and 
rs11171718 may be binding sites for miR-320 
[265].

Viral related diseases

MiR-24-1, miR-512-5p and miR-4640-3p ex- 
pression levels were able to differentiate mild 
dengue from those displaying liver complica-
tions [266]. Pong et al. reported miR-24 as one 
of the significantly downregulated (1.3 fold) 
miR in the livers of DENV-1-infected mice com-
pared to uninfected controls [267]. RSV (human 
respiratory syncytial virus) non-structural pro-
tein (NS1) represses miR-24 levels during infec-
tion. Lack of NS1 was able to induce the expres-
sion of miR-24, while overexpression of NS1 
suppressed miR-24 expression. Altogether, 
these findings suggest that the interaction 
between RSV NS1 and KLF6 modulates the 
expression of miR-24 and TGF-β, facilitating 
RSV replication [268]. Overexpression of miR-
24 reversed PRRSV (porcine reproductive and 
respiratory syndrome virus) replication in 
MARC-145 cells and primary porcine alveolar 
macrophages [269]. During the life cycle of HP 

influenza A viruses, viral-specific repression of 
FURIN-directed miRs (e.g., miR-24) may express 
a new regulatory mechanism that dictates pro-
teolytic stimulation of HA0 glycoproteins and 
the generation of infectious virions mediated by 
furin [270]. In A549 cells it has been demon-
strated that RSV infection deregulates miR 
expression including miR-24 [271]. In infected 
epithelial cells or infected infant’s nasal muco-
sa, miR-24, let-7f, let-7i, miR-31 and miR-221 
are upregulated [272]. MiR-24 and miR-638 
have also been reported as candidate antiviral 
host-encoded miRs that inhibit HBV replication 
[273]. The decrease in cellular miR-24 and miR-
93 levels, which blocks VSV protein expression, 
is hyper susceptible to vesicular stomatitis 
virus (VSV)-mediated infection [274]. Human 
proprotein convertase subtilisin/kexin type 9 
(PCSK9) is a predicted miR-24 target gene. The 
intricate interplay between circulating miR-24 
and PCSK9 is an important player in lipid 
homeostasis and its regulation is affected by 
HCV infection and treatment-based viral cure 
[275].

Conclusion

Depending on the cell context, each miR regu-
lates a plethora of biological processes and the 
pathophysiology of numerous diseases. Des- 
pite the availability of experimental data, we 
are still far from unravelling the biological path-
ways that are cross-regulated by miR-24. Based 
on the current knowledge, we systematically 
reviewed the distinct and context-dependent 
activities of both guide and passenger strands 
of miR-24 (miR-24, -24-1 and -24-2), highlight-
ing its molecular targets, regulatory pheno-
types and biological functions in various types 
of cancer and other human diseases to provide 
a theoretical understanding of miR-24 as a 
molecular target for diagnosis, prognosis and 
therapy. As described above, miR-24 contrib-
utes to several biological processes of carcino-
genesis and the pathophysiology of several 
other diseases, drug resistance and so on. MiR-
24 controls several key gene targets, including 
those are challenging in terms of druggability, 
which can further influence pleiotropic intracel-
lular effects on multiple signal transduction 
pathways in a context-dependent manner. 
Currently, miR-based/targeted therapies are 
still in their infancy. Accumulating data strongly 
support the significance of miR-24 as an excel-
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lent target for therapeutic usefulness; however 
to date, no miR-24-directed therapeutic strate-
gy has been reported. This review will establish 
a molecular basis to lay the foundation for miR-
24 in clinical applications in the future, high-
lighting its significance for targeted therapy. It 
is anticipated that future detailed research will 
provide more convincing support for further 
miR-24 directed diagnostic and prognostic 
tools and a brand-new insight to develop tar-
geted therapeutics directed by miR-24. 
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croRNAs modulated by local mIGF-1 expres-



MiR-24/24-1*/24-2* and diseases

52	 Am J Transl Res 2022;14(1):20-54

sion in mdx dystrophic mice. Front Aging Neu-
rosci 2015; 7: 69.

[229]	Zhu XF, Shan Z, Ma JY, Wang M, Zhang CX, Liu 
RM, Wu WB, Shi YW, Li W and Wang SM. Inves-
tigating the role of the post- transcriptional 
gene regulator miR-24-3p in the proliferation, 
migration and apoptosis of human arterial 
smooth muscle cells in arteriosclerosis obliter-
ans. Cell Physiol Biochem 2015; 36: 1359-
1370.

[230]	Zhang Y, Yu B, He J and Chen D. From nutrient 
to microRNA: a novel insight into cell signaling 
involved in skeletal muscle development and 
disease. Int J Biol Sci 2016; 12: 1247-1261.

[231]	Kirby TJ, Chaillou T and McCarthy JJ. The role of 
microRNAs in skeletal muscle health and dis-
ease. Front Biosci 2016; 20: 37-77.

[232]	Lee M, Wada S, Oikawa S, Suzuki K, Ushida T 
and Akimoto T. Loss of microRNA-23-27-24 
clusters in skeletal muscle is not influential in 
skeletal muscle development and exercise-in-
duced muscle adaptation. Sci Rep 2019; 9: 
1092.

[233]	Roshan R, Ghosh T, Scaria V and Pillai B. Mi-
croRNAs: novel therapeutic targets in neurode-
generative diseases. Drug Discov Today 2009; 
14: 1123-1129. 

[234]	Müller M, Kuiperij HB, Claassen JA, Küsters B 
and Verbeek MM. Neurobiology of aging mi-
croRNAs in Alzheimer’s disease: differential 
expression in hippocampus and cell-free cere-
brospinal fluid. Neurobiol Aging 2014; 35: 
152-158. 

[235]	Wang WX, Huang Q, Hu Y, Stromberg AJ and 
Nelson PT. Patterns of microRNA expression in 
normal and early Alzheimer’s disease human 
temporal cortex: white matter versus gray mat-
ter. Acta Neuropathol 2011; 121: 193-205. 

[236]	Delay C, Dorval V, Fok A, Grenier-Boley B, Lam-
bert JC, Hsiung GY and Hébert SS. MicroRNAs 
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