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Abstract: Heterogeneity and complexity of hepatocellular carcinoma (HCC) have been an impediment to effective 
diagnosis and treatment of HCC. Mounting evidence suggests that ferroptosis-related genes (FRGs) regulate the 
development of HCC by affecting the tumor microenvironment (TME). Herein, we explored the role of ferroptosis-
related molecular patterns in the HCC microenvironment. The transcriptome and corresponding clinicopathological 
data of HCC patients were downloaded from The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus 
(GEO) database, respectively. Molecular patterns of ferroptosis were explored using consensus clustering analy-
sis and ferroptosis-related molecular patterns in the individual patients were analyzed using principal component 
analysis (PCA). The ability of ferroptosis-related patterns to predict the biological status and survival outcomes of 
HCC patients was investigated. Based on the expression of FRGs, three molecular patterns related to ferroptosis 
were identified. Single sample gene set enrichment analysis (ssGSEA) showed that the molecular patterns associ-
ated with the worst prognosis were significantly correlated with high infiltration of immunosuppressive cells in the 
TME. Besides, we identified three ferroptosis gene clusters underlying the different biological features of the three 
ferroptosis patterns. Patients in the high-risk group had a worse biological status and survival outcomes than those 
in the low-risk group. This study demonstrates that ferroptosis-related molecular patterns lead to high heterogeneity 
in HCC. These molecular patterns can be used to assess the survival of HCC patients and guide the design of im-
munotherapy strategies for HCC patients.
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Introduction

Liver cancer is the sixth most prevalent and 
fourth leading cause of mortality [1]. He- 
patocellular carcinoma (HCC) is the most com-
mon type of liver cancer, accounting for 75- 
85% of all primary liver cancers [2]. HCC is 
mainly caused by a hepatitis virus infection, 
aflatoxin, heavy alcohol consumption, and type 
2 diabetes [3, 4]. However, due to its insidious 
onset and rapid progression, most HCC pa- 
tients are diagnosed at an advanced stage, 
making them unfit for surgical therapy [5]. 
Moreover, its complex tumor microenvironment 
(TME) causes biological heterogeneity, creating 
difficulty in the management of patients. 
Therefore, precise diagnosis and treatment of 
HCC depend on a comprehensive understand-
ing of TME complexity and heterogeneity.

Ferroptosis, a newly discovered type of pro-
grammed cell death, differs from autophagy, 

apoptosis, and necrosis, and is characterized 
by iron-dependent lipid peroxide accumulation 
[6, 7]. Ferroptosis has been implicated in mul-
tiple tumors, including HCC [8]. Redox state 
imbalance, an important event during the 
occurrence and development of tumors, is 
often accompanied by high demand for iron 
ions, suggesting that tumor cells are suscepti-
ble to ferroptosis [9]. Sun et al. reported that 
inhibition of metallothionein-1G expression 
enhanced anticancer effects of sorafenib by 
inducing ferroptosis in HCC cells [10]. Liang et 
al. constructed a prediction model using ferrop-
tosis-related genes (FRGs) and demonstrated 
that ferroptosis-related risk signature can pre-
dict survival of HCC patients and relative pro-
portion of tumor-associated cell infiltration in 
the HCC microenvironment [11]. Elsewhere, 
CD8+ T cells in the TME were found to induce 
ferroptosis of tumor cells through secreting 
IFNγ which inhibited the expression of SLC3A2 
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and SLC7A11 [12]. Overall, these studies dem-
onstrated that ferroptosis influence the TME.

In this study, we first identified three molecular 
patterns related to ferroptosis using consensus 
clustering analysis. Three molecular patterns 
associated with the survival and immune cell 
infiltration were identified. Furthermore, we 
identified three distinct ferroptosis gene clus-
ters that were responsible for the biological dif-
ferences among the three molecular patterns 
and calculated ferroptosis score for each 
patient based on distinct molecular patterns. 
This study provides reference data for improv-
ing the treatment of HCC patients.

Material and methods

Data processing

The transcriptome, somatic mutation, and  
corresponding clinicopathological data of 371 
HCC patients were obtained from The Cancer 
Genome Atlas (TCGA) (https://portal.gdc.can-
cer.gov/). Fragments per kilobase million 
(FPKM) values were transformed into tran-
scripts per kilobase million (TPM). Data of 225 
samples were retrieved from the Gene Ex- 
pression Omnibus (GEO) database (GSE14520) 
(https://www.ncbi.nlm.nih.gov/geo/) and were 
combined with samples from TCGA cohort. The 
copy number variation (CNV) data were down-
loaded from the University of California Santa 
Cruz (UCSC) genome browser (https://xena.
ucsc.edu/). A total of 60 FRGs were obtained 
from previous literature. The study was con-
ducted in accordance with the Declaration of 
Helsinki (as revised in 2013).

Identification of differentially expressed FRGs

Differentially expressed FRGs between HCC 
and adjacent normal tissues were identified 
using R package ‘limma’ and the Wilcoxon test. 
The somatic mutation and CNV of FRGs were 
analyzed with the R software.

Ferroptosis-based consensus clustering analy-
sis

Samples from the TCGA and GEO datasets 
were merged after correcting differences 
between batches. Consensus clustering analy-
sis was conducted to determine the number of 
ferroptosis-related molecular patterns based 
on the expression of FRGs using the R package 
‘ConsensusClusterPlus’. To compare the sur-

vival time between molecular patterns, Kaplan-
Meier survival analysis was performed using R 
packages ‘survival’ and ‘survminer’, followed  
by log-rank test. The distribution of molecular 
patterns was estimated using Principal compo-
nent analysis (PCA). R package ‘GSVA’ was uti-
lized to quantify the infiltration level of immune 
cells based on ssGSEA algorithm. The Kruskal-
Wallis test was performed to compare differ-
ences among different groups.

Analysis of ferroptosis gene clusters

A Venn diagram was constructed using the R 
package ‘VennDiagram’ for identification of 
common differentially expressed genes (DEGs) 
(adjusted P<0.001). The common DEGs relat- 
ed to the overall survival (OS) of HCC patients 
were further selected using univariate Cox 
regression analysis (P<0.05). Next, consensus 
clustering analysis was conducted to deter- 
mine the number of ferroptosis gene clusters 
responsible for biological differences between 
molecular patterns based on the expression of 
independent prognostic DEGs. Differences in 
survival between ferroptosis gene clusters 
were estimated using Kaplan-Meier analysis. 
The ferroptosis gene clusters were verified 
using PCA analysis.

Quantification of ferroptosis score using PCA 
analysis

Based on independent prognostic DEGs, we 
developed a ferroptosis scoring system to 
quantify the ferroptosis-related molecular pat-
tern of each patient according to ferroptosis 
gene clusters using PCA analysis via R function 
‘prcomo’. We used PC1 and PC2 as the signa-
ture scores of ferroptosis patterns based on 
previous studies [13]. The ferroptosis score for 
each patient was calculated as follows:

Ferroptosis Score = ∑ (PC1i + PC2i)

Where i represents the expression of indepen-
dent prognostic DEGs. Kaplan-Meier analysis 
was used to determine the optimum cut-off 
value of ferroptosis scores. Then, we divided all 
patients into high- and low-risk groups based 
on the ferroptosis score.

Sankey plot was generated to show the distri-
bution of both the ferroptosis score and surviv-
al status for each patient using the R package 
‘ggalluvial’. Survival differences between the 
high- and low-risk groups were compared using 
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Kaplan-Meier analysis, followed by log-rank 
test. Besides, the differences in the distribu-
tion of ferroptosis scores among ferroptosis-
related molecular patterns or gene clusters 
were analyzed using Kruskal-Wallis test.

Evaluation of differences in tumor mutation 
burden (TMB) or immunotherapy response in 
the high- and low-risk groups

The visualization of the Mutation Annotation 
Format (MAF) files was conducted using pack-
age ‘Maftools’ in R. The difference in the 
expression of immune checkpoint molecules, 
including programmed cell death protein 1 (PD-
1) and cytotoxic T-lymphocyte-associated pro-
tein 4 (CTLA-4), between high- and low-risk 
groups was revealed using Wilcoxon test. The 
Cancer Immunome Atlas (TCIA) database 
(https://tcia.at/home) was used to validate 
immunotherapy score results in HCC patients 
from the TCGA cohort. R package ‘ggpubr’ was 
utilized to calculate the difference in the immu-

ences between the two groups. Kruskal-Wallis 
test was utilized to analyze differences among 
three or more groups. Kaplan-Meier method 
was used to generate survival curves for OS in 
different groups. Differences in survival time 
between groups were estimated using the log-
rank test. Univariate Cox regression analysis 
was utilized to estimate independent prognos-
tic DEGs for OS in HCC patients. P-values less 
than 0.05 (P<0.05) were considered statisti-
cally significant.

Results

FRGs landscape in HCC

Figure 1 shows a workflow of data collection 
and analysis process. Most of FRGs were dif-
ferentially expressed between HCC and adja-
cent normal tissues (Figure 2A). Further analy-
sis showed that copy number gain was more 
common than copy number loss (Figure 2B). 
Among the three FRGs, TP53 had the highest 

Figure 1. The workflow of data collection and analysis process.

notherapy score between dif-
ferent groups.

Estimation of the predictive 
ability of the ferroptosis scor-
ing system for patients with 
clinicopathological features

The information of patients 
with clinicopathological fea-
tures was retrieved from the 
TCGA database. Wilcoxon test 
was utilized to analyze the  
difference in the distribu- 
tion of ferroptosis score be- 
tween subgroups under the 
same clinicopathological fea-
ture (including Age >65 vs. 
Age ≤65, Male vs. Female, 
and Stage I-II vs. Stage III-IV). 
Besides, Kaplan-Meier analy-
sis and log-rank test were 
used to compare survival dif-
ferences in each subgroup 
(including Age >65, Age ≤65, 
Male, Female, Stage I-II, and 
Stage III-IV).

Statistical analysis

All statistical analyses were 
performed using R software 
(version 4.0.2). Wilcoxon test 
was used to compare differ-
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Figure 2. Expression of ferroptosis-related genes (FRGs) in HCC. A. Differential expression of FRGs in HCC and adjacent normal tissues. B. Copy number variation of 
FRGs in HCC patients from TCGA cohort. Asterisks represent levels of significance *P<0.05, **P<0.01, ***P<0.001.
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mutation frequency (30%), followed by KEAP1 
(4%), and NFE2L2 (3%), indicating that the 

mutation frequency of FRGs was relatively low 
(Figure 3).

Figure 3. Mutation frequency of FRGs in HCC patients from TCGA cohort. TP53 had the highest mutation frequency 
(30%), followed by KEAP1 (4%), and NFE2L2 (3%), indicating that the mutation frequency of FRGs is relatively low 
in HCC.
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Identification of ferroptosis-related molecular 
patterns

A total of 596 HCC patients were merged, 
including 371 patients from TCGA and 225 
patients from GSE14520. Subsequently, the 
expression profile of FRGs was extracted from 
the merged dataset for consensus clustering 
analysis. The cumulative distribution function 
(CDF) curve and the area under the CDF curve 
indicated that 3 was temporarily selected as 
the appropriate k-value (Figure 4A, 4B). The 
correlation within each subgroup was strong 
whereas that between each subgroup was 
weak (Figure 4C). Moreover, the samples with- 
in each subgroup were evenly distributed 
(Figure 4C). Therefore, we divided all samples 
into three ferroptosis-related molecular pat-
terns (A, B, and C).

Analysis of differences in the survival prog-
nosis and immune cells infiltration between 
ferroptosis-related molecular patterns

Figure 4D indicated that patients in molecular 
pattern C had the worst prognosis (P<0.001). 
PCA analysis showed that the three patterns 
were distinct (Figure 4E). Moreover, the heat-
map showed a correlation between the three 
patterns and clinicopathological features 
(Figure 4F). Besides, ssGSEA revealed signifi-
cant differences in the infiltration levels of 
immune cells among the three patterns, espe-
cially tumor-associated macrophages (TAMs), 
regulatory T cells (Tregs), and myeloid-derived 
suppressor cells (MDSCs) (Figure 4G).

Identification of common DEGs among the 
three molecular patterns

Figure 5 showed that a total of 261 common 
DEGs were identified (adjusted P<0.001). After 
univariate Cox regression analysis for OS, 236 
genes with potential independent prognostic 
value were selected for further analysis.

Identification and analysis of ferroptosis gene 
clusters

According to the expression of the 236 genes, 
the number of ferroptosis gene clusters was 
determined using consensus clustering analy-
sis. Based on the CDF curve and the area un- 
der the CDF curve, 3 was temporarily selected 
as the appropriate k-value (Figure 6A, 6B). The 
correlation within each subgroup was strong 

whereas that between each subgroup was 
weak (Figure 6C). In addition, the samples with-
in each subgroup were evenly distributed 
(Figure 6C). Therefore, we divided all patients 
into three ferroptosis gene clusters (D, E, and 
F).

Figure 6D showed that patients in gene cluster 
F had the worst prognosis. PCA analysis 
revealed that patients can be divided into  
three different regions (Figure 6E). Similarly, 
the heatmap showed an association between 
the three gene clusters and clinicopathological 
features (Figure 6F). Figure 6G indicated that 
most of the FRGs were differentially expressed 
among all ferroptosis gene clusters.

Construction and assessment of the ferropto-
sis scoring system

We divided all patients into high- (n=60) and 
low-risk (n=531) groups based on the optimum 
cut-off value of the ferroptosis score. Sankey 
diagram showed the distribution changes of 
both ferroptosis molecular patterns and ferrop-
tosis gene clusters (Figure 7A). Patients in 
molecular pattern C had significantly higher fer-
roptosis scores compared to those in mo- 
lecular pattern A or B (Figure 7B). Meanwhile, 
patients in gene cluster F had significantly high-
er ferroptosis score compared with those in 
gene clusters D or E (Figure 7C). Results shown 
in Figure 7D indicated that patients in the high-
risk group had worse prognosis than those in 
the low-risk group, confirming our previous 
findings.

Correlation between ferroptosis score and 
TMB

Compared with patients with low TMB, patients 
with high TMB had worse survival outcomes 
(Figure 8A). Further, among patients with low 
TMB, those with a low ferroptosis score had 
better survival outcomes than those with a  
high ferroptosis score (Figure 8B). Besides, 
TP53 mutation frequency was higher in the 
high-risk group than in the low-risk group 
(Figure 8C, 8D).

Association of ferroptosis score with response 
to immunotherapy

The expression levels of PD-1 and CTLA-4 
showed significant differences between high- 
and low-risk groups (Figure 9A, 9B). Additional- 
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Figure 4. Identification and analysis of ferroptosis-related molecular patterns based on expression of FRGs. A. The distribution of cumulative distribution function 
(CDF) curves. B. The area under the CDF curve. C. Heatmap of clusters of merged cohorts when k=3. D. Kaplan-Meier survival curves depicting the survival out-
comes of the three ferroptosis-related molecular patterns. E. Principal component analysis (PCA) for distribution of the three ferroptosis-related molecular patterns. 
F. Heatmap showing the correlation between ferroptosis-related molecular patterns and clinicopathological features. G. Differences in the infiltration levels of im-
mune cells among the three ferroptosis-related molecular patterns.
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ly, patients in the low-risk group had better 
immunotherapy response compared to those in 
the high-risk group, including anti-PD-1 mono-
therapy, anti-CTLA-4 monotherapy, and a com-
bination of anti-PD-1 and anti-CTLA-4 (Figure 
9C-F). These findings suggest that ferroptosis 
score could assess response to anti-PD-1 and 
anti-CTLA-4 immunotherapy.

Prognostic value of ferroptosis score in HCC 
patients

We found significant differences in the distribu-
tion of ferroptosis score between subgroups of 
both age (Age >65 vs. Age ≤65) and stage 
(Stage I-II vs. Stage III-IV) (Figure 10A-C). 
Besides, Kaplan-Meier survival analysis indi-
cated that the ferroptosis score had a better 
predictive ability in survival outcomes of HCC 
subgroup patients (including Age >65, Age  
≤65, Male, Female, Stage I-II, and Stage III-IV) 
(Figure 10D-I). Therefore, the ferroptosis score 
was expected to be a predictor of prognosis in 
patients with HCC.

Discussion

Although significant progress has been ac- 
hieved in the treatment of HCC, the survival of 
HCC patients remains poor. Moreover, the cur-
rently used TNM staging system does not fully 
reflect the biological heterogeneity of HCC; 
therefore it is not effective for diagnosis and 
treatment of HCC. Molecular patterns based on 

molecular pathology can reflect deeper charac-
teristics of tumors and therefore compensate 
for the deficiencies of the TNM staging system.

Since the discovery of ferroptosis, numerous 
studies have found that ferroptosis plays a role 
in the occurrence and progression of HCC. 
Moreover, abnormal iron absorption and lipid 
metabolism disorders, two key factors that reg-
ulate ferroptosis, have been observed in pa- 
tients with HCC [14-16]. In the present study, 
we identified three ferroptosis-related molecu-
lar patterns based on the expression of FRGs. 
Then, we developed a ferroptosis scoring sys-
tem for each patient to predict the survival of 
patients and TME characteristics.

The expression of FRGs was higher in HCC tis-
sues than in adjacent normal tissues. Besides, 
CNVs of FRGs were common while mutation fre-
quencies were very low. These findings are con-
sistent with those of a previous study on 24 
FRGs in 20 cancers, including HCC [17]. Our 
results also confirmed that copy number gain of 
FRGs was positively correlated with increased 
expression of FRGs in HCC. Liu et al. found that 
the expression levels of most FRGs were signifi-
cantly associated with CNV in HCC [17].

Based on the expression of FRGs, we identified 
three ferroptosis-related molecular patterns 
using consensus clustering analysis. Kaplan-
Meier survival analysis indicated that most 
FRGs were upregulated in molecular pattern C, 
which was associated with the worst survival 
prognosis. Liang et al. found that expression 
levels of 26 FRGs in HCC tissues were higher 
than those in adjacent normal tissues, and 
these upregulated genes were risk factors for 
poor prognosis of HCC patients [11]. Inte- 
restingly, NQO1 was increased in HCC tissues, 
and its level was higher in molecular pattern  
C than in corresponding molecular pattern A or 
B, which was analogous with a previous finding 
that overexpression of NQO1 enhanced the  
proliferation of HCC cells via SIRT6/AKT/XIAP 
signaling pathway [18]. Yang et al. reported  
that patients with high NQO1 levels had a poor 
survival prognosis and that NQO1 can promote 
the growth and aggressiveness of HCC [19]. 
These results further suggested that FRGs may 
be potential biomarkers for prognostic predic-
tion and targeted treatment of HCC.

Figure 5. Venn plot showing common DEGs among 
the three ferroptosis-related molecular patterns.
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Figure 6. Identification and analysis of ferroptosis gene clusters based on the expression of common DEGs. A. The distribution of cumulative distribution function 
(CDF) curves. B. Area under the CDF curve. C. Heatmap of merged cohort clusters when k=3. D. Kaplan-Meier survival analysis of the three ferroptosis gene clusters. 
E. PCA estimating the distribution of the three ferroptosis-related molecular patterns. F. Heatmap showing correlation between the three ferroptosis gene clusters 
and clinicopathological features. G. Differences in the distribution of FRGs in ferroptosis-related gene clusters.
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Furthermore, we found that the infiltration of 
immunosuppressive cells, including TAMs, 
Tregs, and MDSCs, was higher in molecular  
pattern C compared with molecular pattern A or 
B. Previous studies demonstrated that TAMs, 
Tregs, and MDSCs, as the main components  
in the TME, can enhance HCC proliferation, 
migration, and immune escape through form-
ing immune suppressive microenvironment 
[20-23]. For example, TAM can induce angio-
genesis by producing angiogenic factors and 
attract Tregs to infiltrate the TME to inhibit the 
activity of cytotoxic T cells [24, 25]. In addition, 
previous studies have demonstrated that Tregs 
infiltrating the HCC microenvironment are asso-

ciated with poor prognosis [26, 27]. Further, 
Zhou et al. confirmed that tumor-associated 
neutrophils (TANs) attract Tregs to infiltrate the 
HCC microenvironment by secreting CCL17, 
which promoted the progression of HCC, angio-
genesis, and resistance to sorafenib [28]. 
Regarding MDSCs, Hoechst et al. found that 
MDSCs inhibited autologous natural killer cells 
(NK cells), further facilitating the suppression 
of the immune response [29]. Xu et al. further 
demonstrated that activated hepatic stellate 
cells (HSCs) recruited the MDSCs into the HCC 
microenvironment via SDF/CXCR4 axis, pro-
moting HCC progression and immune evasion 
[30]. These results suggest that increased infil-

Figure 7. Distribution of ferroptosis scores for HCC patients. A. Sankey diagram showing the distribution of ferropto-
sis molecular patterns and ferroptosis gene clusters. B. The differences in distribution of ferroptosis scores among 
the three ferroptosis-related molecular patterns. C. Differences in distribution of ferroptosis scores among the three 
ferroptosis gene clusters. D. Survival outcomes between high- and low-risk groups.
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tration of immunosuppressive cells in the HCC 
microenvironment is related to poor prognosis. 
In addition, our molecular patterns based on 
FRGs can better reflect the biological status of 
the HCC microenvironment.

Further analyses revealed that expression lev-
els of immune checkpoint molecules were high-
er in high-risk group than in low-risk group. This 
was consistent with previous findings that  
PD-1 and CTLA-4 promoted the tumor immune 
evasion by negatively mediating T-cell immune 
function [31]. Furthermore, PD-1 and CTLA-4 
are thought to affect T cell-mediated immune 
response at different stages. CTLA-4 regulates 
T cell-mediated immune response primarily in 
lymph nodes in the early phase, whereas PD-1 
negatively regulates T cell-mediated immune 
response mainly in peripheral tissues in the 
later phase [31, 32]. Shi et al. found that upreg-

ulated peripheral and intratumoral PD-1 ex- 
pression promoted CD8+ T cells apoptosis. 
They suggested that PD-1 can serve as a prog-
nostic indicator for HCC patients after surgical 
resections [33]. For CTLA-4, Wang et al. found 
that regulatory T cells inhibited dendritic cells-
mediated immune function in a CTLA-4-de- 
pendent manner [34]. These results indicated 
that immune checkpoint molecules can be 
used as prognostic indicators in HCC patients 
and are potential targets for improving the effi-
cacy of immunotherapy.

In summary, this study reveals how FRGs aff- 
ect the prognosis of HCC patients. The devel-
oped ferroptosis score showed good perfor-
mance in predicting the survival and assessing 
the biological status of HCC. However, this 
study has some limitations. First, this was a ret-
rospective analysis; hence the results should 

Figure 8. Correlation between ferroptosis score and tumor mutation burden (TMB). (A) Survival outcomes be-
tween high- and low-TMB groups. (B) Kaplan-Meier survival curves comparing survival differences for HCC patients 
grouped by tumor mutation burden and ferroptosis score. (C, D) Mutation frequency differences between high- (C) 
and low-risk (D) groups.
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be validated in prospective studies. Second, 
the mechanism by which FRGs affect the pro-
gression of HCC was not uncovered. Therefore, 
it should be further investigated through well-
designed experiments.

Conclusion

In conclusion, this study demonstrates that 
FRGs participates in the pathogenesis and pro-
gression of HCC. Moreover, ferroptosis-related 

Figure 9. Association between ferroptosis score and response to immunotherapy. (A, B) Expression levels of PD-1 
(A) and CTLA-4 (B) were higher in the high-risk group than in the low-risk group. (C-F) Immunotherapy scores were 
higher in the low-risk group than in the high-risk group.
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molecular patterns may influence disease pro-
gression and survival outcomes of individual 
patients by inducing changes in the TME. 
Importantly, ferroptosis-related molecular pat-
terns can not only help to predict the survival of 
patients but also provide new perspectives for 
application of immunotherapy.
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