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Mu opioid receptor gene variant  
modulates subjective response to smoked cannabis
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Abstract: The mu-opioid receptor (MOR) mediates the rewarding properties of many psychoactive drugs and is an 
important target in the treatment of addictions. Functional interactions between the opioid and endocannabinoid 
systems are established and have been hypothesized to contribute to the effects of cannabis. We investigated as-
sociations between three single nucleotide polymorphisms in the MOR gene OPRM1 (rs1799971, rs2281617, and 
rs510769) and subjective responses to smoked cannabis. Fifty-two regular cannabis users (1-4 days/week) were 
given a cannabis cigarette (12.5% THC) and rated their subjective responses on visual analog scales at baseline and 
at multiple time points after smoking. Blood samples were collected for THC quantification. There was a significant 
impact of the intronic variant rs510769 on subjective cannabis effects and THC blood levels. The influence of this 
gene variant may thus be mediated by pharmacodynamics and/or pharmacokinetic factors. We provide novel evi-
dence that variability in OPRM1 contributes to individual responses to cannabis and may affect risk of cannabis use 
disorder. Our findings add to the growing body of literature on the genetic basis of individual responses to cannabis 
and may have implications for targeting the endogenous opioid system in the treatment of cannabis use disorder.
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Introduction

Acute subjective effects of cannabis include 
euphoria, sedation, cognitive and psychomotor 
impairment, and sensory distortion; however 
self-reported experiences vary considerably 
between individuals [1]. Early positive reactions 
to cannabis have been associated with pro-
gression to heavier use, including cannabis use 
disorder [2-4]. There is evidence suggesting 
that individual subjective responses to canna-
bis are partially heritable and may be mediated 

by genetic factors [5]. However, further research 
is required to determine whether there is a 
genetic contribution to individual differences 
and identify which genes or genetic polymor-
phisms are involved.

Δ9-Tetrahydrocannabinol (THC) induces the su- 
bjective effects of cannabis primarily by the 
activation of CB1 receptors (CB1R) in the en- 
docannabinoid system. Endogenous opioid sig-
naling is also thought to contribute to the re- 
warding properties of cannabis, through func-
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tional interactions with the endocannabinoid 
and dopamine systems [6]. The mu opioid 
receptor (MOR), encoded by OPRM1, indirectly 
modulates the rewarding effects of many drug 
classes, including cannabinoids, through the 
mesolimbic dopamine system [6]. Early studies 
provided initial evidence of this, showing that 
cannabinoid-induced increases in dopamine 
release are blocked by MOR antagonism [7, 8]. 
Moreover, MORs and CB1Rs co-localize within 
the reward system [9, 10], and there is evi-
dence suggesting that the two receptor sub-
types form heterodimers and act synergistically 
[11].

The implication of the MOR in THC reinforce-
ment is further supported by preclinical rese- 
arch. In rodent studies, the MOR antagonist 
naloxone fully abolishes conditioned place pref-
erence (CPP) to the cannabinoid agonist CP 
55,940 [12] and reduces self-administration  
of the same compound [13]. Similarly, THC  
CPP is completely eliminated in MOR knockout 
mice [14]. MOR antagonism by naloxone also 
blocks THC-induced hyperphagia in rats [15, 
16]. In squirrel monkeys, pretreatment with the 
opioid antagonist naltrexone reduced intrave-
nous self-administration of THC on a fixed-ratio 
schedule [17]. Drug-taking responses were 
markedly attenuated, but remained significant-
ly elevated compared to those of animals self-
administering saline. Under the same experi-
mental conditions, pretreatment with the CB1 
antagonist SR141716A completely eliminated 
THC self-administration and flattened the dose-
response curve to vehicle-control levels [18]. 
The rewarding effects of THC are thus attribut-
ed to CB1 activation and are subject to modula-
tion by endogenous opioids.

Cannabinoid-opioid interactions appear to be 
more complex in humans. Low doses of naltrex-
one can reduce intoxication to low doses of 
THC in regular cannabis smokers; however, this 
effect was not found at a higher dose of THC. 
Interestingly, the opposite effects were found  
in non-cannabis smokers, suggesting that ch- 
ronic THC exposure modifies the interactions 
between cannabis and endogenous opioids 
[19]. A subsequent study found that a wide ra- 
nge of therapeutic naltrexone doses increased 
the subjective effects and self-administration 
of cannabis in heavy cannabis users [20]. In 
this population, endogenous opioids may coun-
teract cannabinoid reinforcement rather than 

mediate subjective reward. However, when 
administered repeatedly to daily cannabis 
users on a maintenance schedule, naltrexone 
reduces cannabis intoxication and self-admin-
istration [21]. Although the nature of the rela-
tionship is not fully understood, these studies 
provide evidence for the implication of MOR in 
cannabinoid reward and abuse liability in 
humans.

Given the importance of the MOR in THC re- 
ward, we investigated the effect of three OP- 
RM1 single nucleotide polymorphisms (SNPs) 
on subjective responses to cannabis. The most 
extensively studied OPRM1 variant is rs179- 
9971, which is an A118G (Asn40Asp) substitu-
tion in exon 1. The G allele results in reduced 
MOR expression in vitro [22] and an increased 
affinity of the receptor for the endogenous opi-
oid substrate beta-endorphin [23]. It has been 
investigated as a candidate gene for drug 
addiction, but association studies have report-
ed inconsistent findings. The G allele has been 
associated with increased risk of alcohol, hero-
in, and general substance dependence [24- 
26], but some studies have reported the oppo-
site effect [27], or shown no effect at all [28-
30]. We also examined two intronic variants: 
rs2281617 and rs510769. Both are C/T poly-
morphisms located in intron 1 and have unclear 
effects on gene expression and protein func-
tion [31]. The rs2281617 T-allele has been 
associated with lower dietary fat preference 
and body fat mass [32], as well as reduced 
energy and stimulation in response to amphet-
amine [31]. These findings could suggest a loss 
of function of OPRM1 and reduced subjective 
reward in minor allele carriers. The rs510769 
T-allele has been associated with an increased 
risk of heroin dependence [33], increased 
smoking behavior in patients undergoing meth-
adone therapy [34], and decreased subjective 
responses to amphetamine [31].

To determine whether the rewarding properties 
of cannabis are modulated by OPRM1, we 
investigated the impact of SNPs on visual ana-
logue scale (VAS) ratings of subjective drug 
effects in healthy regular (1-4 days/week) can-
nabis users.

Methods

This study was conducted in follow-up to a  
previous study conducted at the Centre for 
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Addiction and Mental Health (CAMH) [35], dur-
ing which participants had the option of being 
included in an additional genetic investigation. 
Those who consented provided a 20 mL blood 
sample from which DNA was extracted for 
genotyping. All study procedures were conduct-
ed in accordance with the Declaration of 
Helsinki and approved by the CAMH Research 
Ethics Board (Protocol #097-2019), and the 
Health Canada Research Ethics Board (Protocol 
#2011-0024). All participants provided written 
informed consent prior to participating in any 
study procedures.

Participants

Participants included in the study were male 
and female active cannabis users (using 1-4 
days per week) between the ages of 19-25 
years. Current cannabis use was confirmed by 
a positive urine toxicology screen for THC. 
Those who met criteria for a severe psychiatric 
disorder, DSM-IV cannabis dependence or any 
current or lifetime substance dependence (with 
the exception of nicotine dependence) were 
excluded. Participants were also excluded if 
they regularly used medications affecting bra- 
in function (e.g., antidepressants, stimulants, 
benzodiazepines), were pregnant, breastfeed-
ing, or trying to become pregnant.

Out of the 99 participants enrolled in the origi-
nal study, 70 completed the trial and consent-
ed to the genetic analysis. Fifty-two of them 
were randomized to the active cannabis group 
and were included in the present analysis.

Study procedure

Participants were required to abstain from alco-
hol and recreational drugs 48 hours prior to 
and for the duration of the study. This was veri-
fied by alcohol breathalyzer tests and point-of-
care urine toxicology prior to each study ses-
sion. Participants who were randomized to the 
active cannabis group received one cannabis 
cigarette with a mass of 750 mg and a potency 

dose for each participant, the potency of the 
cannabis (0.125) was multiplied by the change 
in mass of the cigarette. Ratings of subjective 
drug effects were collected at baseline, 5, 15, 
30 minutes and 1, 2, 3, 4, 5, 6, 24, 48 hours 
after cannabis administration. Participants 
reported the intensity of drug effects at each 
time point on a seven-item visual analog scale. 
The scale assessed ratings of “I feel a drug 
effect”, “I feel this high”, “I feel the drug’s good 
effects”, “I feel the drug’s bad effects”, “I like 
the drug”, “I feel a rush”, and “It feels like can-
nabis”. A blood sample was drawn at each data 
collection time point for the measurement of 
THC concentrations. More details regarding 
procedures used for blood sample collection 
and THC quantification can be found in our pre-
vious manuscript [35]. It should be noted that 
THC was measured in whole blood (typically 
leading to lower values as compared to plasma 
measurements).

Genotyping

Approximately 650,000 polymorphic sites were 
genotyped using the Infinium Global Screen- 
ing Array (Illumina, Inc., San Diego, CA, USA) at 
the CAMH Biobank and Molecular Core Fa- 
cility. The array data underwent standard qual-
ity control procedures as described previously 
[36], and genotypes were extracted for the 
three OPRM1 polymorphisms. The cluster plots 
for these three polymorphisms are shown in 
Supplementary Figure 1. As verified in the qual-
ity control steps, SNP genotypes did not devi-
ate significantly from Hardy-Weinberg Equilibri- 
um (P>5e-8). For each polymorphism, only two 
individuals in our sample were homozygous for 
the minor allele. Therefore, they were pooled 
with the heterozygous genotype as one group 
and compared against the homozygous wild 
type (WT) genotype. Allele frequencies are pre-
sented in Table 1.

Data analysis

All data were analyzed using SPSS version 25. 
Differences in demographic characteristics 

Table 1. Allelic frequencies of OPRM1 polymorphisms

Polymorphism Location Alleles
(WT/SNP)

Frequency (N)
WT/WT WT/SNP SNP/SNP

rs1799971 154,360,797 A/G 29 21 2
rs2281617 154,529,113 C/T 30 20 2
rs510769 154,362,019 C/T 38 12 2

of 12.5% THC. They were in- 
structed to smoke ad libitum, in 
an externally ventilated reverse 
airflow room over a duration  
of 10 minutes. Total smoking 
duration was timed, and can-
nabis cigarettes were weighed 
before and after smoking. To 
obtain an estimate of total THC 
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and cannabis use between genotype groups 
were analyzed by independent-sample T-tests 
and Chi square tests. Maximum ratings and 
area under the curve (AUC) for each VAS item 

T-allele carriers compared to C allele homozy-
gotes t(43) = -2.25, P = 0.029. AUC of all other 
VAS items did not differ significantly between 
groups (Figure 1B).

Table 2. Participant characteristics by genotype (Mean (SD))
rs1799971 rs2281617 rs510769

AA  
(N = 29)

AG + GG  
(N = 23)

CC  
(N = 30)

CT + TT  
(N = 22)

CC  
(N = 38)

CT + TT  
(N = 14)

Age 22.55 (1.70) 22.13 (2.14) 22.43 (1.72) 22.27 (2.16) 22.21 (2.00) 22.79 (1.58)

Sex (% female) 24.14 39.13 36.67 22.72 34.21 21.43
BMI 25.33 (5.50) 23.63 (2.89) 25.54 (5.30) 23.25 (2.99) 25.02 (4.98) 23.48 (3.31)
Cannabis use (times per week) 2.55 (0.93) 2.52 (0.83) 2.65 (0.97) 2.39 (0.74) 2.57 (0.89) 2.46 (0.89)

Figure 1. Effects of rs510769 genotype on subjective responses to cannabis 
measured by visual analog scales. Data expressed as mean ± SEM of (A) 
maximum VAS ratings by rs510769 genotype (C/C: N = 38; C/T and T/T: N = 
13) and (B) area under the curve of VAS ratings over time (C/C: N = 34; C/T 
and T/T: N = 11). C/C genotype compared to C/T and T/T genotypes using 
independent sample t-tests. *P<0.05.

were determined, and differ-
ences between groups were 
compared using independent-
sample t-tests.

Results

Participant characteristics

Fifty-two healthy regular can-
nabis users were included in 
the study. Demographic char-
acteristics and cannabis use 
frequency did not differ be- 
tween genotype groups (Table 
2).

rs510769 and subjective 
drug effects

rs510769 C/T and T/T ge- 
notypes reported significant- 
ly higher maximum VAS  
ratings of “Effect” t(48.44) = 
-2.15, P = 0.037, “Good” 
t(47.59) = -3.28, P = 0.002, 
“Liking” t(48.11) = -2.17, P =  
0.035, “Rush” t(36.98) =  
-2.85, P = 0.007 and “Feels 
like cannabis” t(48.99) =  
-3.55, P = 0.001, compared to 
the C/C genotype. Maximum 
ratings of “High” and “Bad” 
drug effects were not statisti-
cally different between the 
groups (Figure 1A).

Mean area under the curve 
(AUC) of “Liking” was signifi-
cantly elevated in rs510769 
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Mean ratings over time of significant VAS items 
are presented in Figure 2.

rs510769 and THC pharmacokinetics

The mean estimated THC dose was 81.64 mg 
(SD = 23.06) in the C/C group and 85.18 mg 
(SD = 17.70) in the C/T and T/T group. This was 
not a statistically significant difference (t(46) = 
-0.50, P = 0.619).

Blood THC pharmacokinetics for both groups 
over time are presented in Figure 3. Repeated 

rs2281617 and rs1799971

No significant associations were found between 
rs2281617 or rs1799971 and any VAS mea-
sures (Table 3).

Discussion

We provide preliminary evidence that OPRM1 
contributes to the variability in subjective re- 
sponses to smoked cannabis. Out of the three 
investigated SNPs, the rs510769 T-allele was 
associated with increased positive responses 

Figure 2. Effects of rs510769 geno-
type on subjective responses to can-
nabis over time (minutes or hours)  
for individual VAS items “Effect”, 
“Rush”, “Liking”, “Good”, and “Like 
Cannabis”. Data expressed as mean 
± SEM (C/C: n = 38; C/T and T/T: n 
= 13).

Figure 3. Effect of rs510769 genotype on THC pharmacokinetics. Mean ± 
SEM of (A) blood THC concentration (ng/ml) over time (minutes or hours) an-
alyzed across genotypes by repeated measures ANOVA, (B) blood THC area 
under the curve using independent sample t-test, (C) maximum blood THC 
concentration (ng/ml) using independent sample t-test. C/C genotype com-
pared to C/T and T/T genotypes (C/C: N = 34, C/T and T/T N = 12). *P<0.05.

measures ANOVA of blood 
concentration over time re- 
vealed no statistically sig- 
nificant effect of genotype 
(F(1,42) = 2.35, P = 0.133),  
or time by genotype interac-
tion (F(1.07,44.96) = 2.59  
P = 0.113). THC concentra-
tions peaked at five minutes 
and decreased over time in 
both groups. There was no  
significant difference in the 
area under the THC concen-
tration/time curve between 
groups (C/C: M = 22.55, SD = 
21.52, C/T and T/T: M = 
36.05, SD = 27.99); (t(44) = 
-1.73, P = 0.091). The maxi-
mum blood THC concentra-
tion was significantly elevated 
in T-allele carriers (M = 56.17, 
SD = 34.46) compared to C/C 
individuals (M = 34.04, SD = 
28.83); t(44) = -2.17, P = 
0.035.
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to cannabis and higher blood THC levels com-
pared to C-allele homozygotes. Genotypes at 
rs1799971 and rs2281617 had no significant 
effect on subjective ratings. Variation in OPRM1 
has previously been shown to affect responses 
to alcohol, opioids, and amphetamine [31-33], 
and may also affect substance dependence 
liability [25-27]. Our results show an effect of 
the intronic variant rs510769. T- allele carriers 
reported significantly higher maximum VAS rat-
ings of “Effect”, “Good”, “Liking”, “Rush”, and 
“Feels like cannabis”, suggesting increased 
sensitivity to the drug’s positive effects. This 
SNP may have a regulatory effect on receptor 
expression in the brain [37] and has previously 
been associated with reduced OPRM1 expres-
sion in the cerebellum [38]. The C/T and T/T 
group also had significantly higher maximum 
levels of blood THC concentrations, indicating 
that the increased drug effects may be due to 
pharmacokinetic differences between geno-
types. This SNP was previously shown to have 
the opposite effect on subjective responses to 
amphetamine, to which T-allele carriers report-
ed reduced euphoria and stimulation [31]. 
Further research is required to determine how 
this SNP affects opioid receptor function and 
expression, THC pharmacokinetics, and the 
mechanisms by which it affects subjective 
responses to different drugs.

We found no association between rs1799971 
and ratings of subjective effects. This function-
al polymorphism leads to a change in MOR 
function, which has unclear effects on intoxica-
tion and risk of addiction to different substanc-
es. The G allele has been associated with 
increased alcohol intoxication [39] and found 
to have no effect on responses to amphet-
amine [31]. One study that associated the G 

“Good” over 25% higher than those reported by 
A/A individuals. Previous studies have associ-
ated the G/G genotype with dosage and 
response to opioid analgesics compared to A/A 
and A/G genotypes [40-42].

rs2281617 did not affect subjective respons- 
es to cannabis. It has been investigated by  
very few studies which have indicated possible 
reduced subjective reward in minor allele carri-
ers [31, 32]. It is a non-coding SNP with un- 
known consequences on gene or protein ex- 
pression. Further research is required to char-
acterize its function and determine its effects 
on reward processing.

Our findings may have implications for the ther-
apeutic use of naltrexone in cannabis use dis-
order (CUD). MOR antagonism by naltrexone 
results in the blunting of rewarding drug effects 
and a reduction in cravings, thereby reducing 
drug use and rates of relapse [43]. It is one of 
the most effective pharmacologic treatments 
for alcohol use disorder. Polymorphisms in 
OPRM1 affect subjective alcohol intoxication, 
the effectiveness of naltrexone in blocking sub-
jective effects of alcohol, and rates of relapse 
after treatment [43-45]. Our findings may sug-
gest a similar implication of the gene in the 
treatment of CUD. In addition to affecting th- 
erapeutic outcomes, OPRM1 may contribute to 
the initial development of cannabis depen-
dence. An increased risk of problematic canna-
bis use has been reported in users with stron-
ger positive reactions to the drug [2-4]. Based 
on our findings, it is possible that rs510769 
T-allele carriers are more susceptible to devel-
oping CUD. The association between this SNP 
and CUD as well as potential prevention strate-
gies require further study.

Table 3. Maximum VAS scores over time by rs2281617 and 
rs1799971 genotype groups (Mean (SEM))

rs1799971 rs2281617
AA

(N = 28)
AG + GG
(N = 23)

CC
(N = 29)

CT + TT
(N = 22)

Effect 74.79 (3.89) 69.61 (6.67) 75.17 (4.19) 68.86 (6.51)
High 70.07 (3.68) 67.04 (6.65) 71.24 (4.18) 65.36 (6.27)
Good 76.75 (3.94) 68.78 (6.78) 77.00 (4.35) 68.09 (6.49)
Bad 28.71 (4.57) 28.30 (5.79) 27.03 (4.77) 30.50 (5.53)
Liking 79.11 (4.35) 70.74 (6.36) 79.69 (4.28) 69.59 (6.49)
Rush 54.18 (5.37) 52.13 (6.59) 53.79 (5.46) 52.55 (6.51)
Like Cannabis 79.78 (5.11) 71.43 (7.11) 77.59 (5.38) 73.95 (6.99)

allele with increased risk of 
dependence to four pooled 
substances found no effect  
on cannabis dependence alo- 
ne; however, this may have 
resulted from limited sample 
size [26]. Due to the small 
number of G allele homozy-
gotes in our study (N = 2), A/G 
and G/G genotypes were com-
bined into one group and com-
pared to A allele homozygot- 
es. Interestingly, both G/G 
individuals in our sample had 
peak ratings of “Effect” and 
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The results of this study should be interpreted 
in light of certain limitations. Although demo-
graphic characteristics and cannabis use fre-
quency did not vary between genotype gro- 
ups, our findings should be confirmed in a larg-
er sample, using an adjusted statistical model 
to control for potential confounding variabl- 
es. Participant ancestry would be an important 
variable to control for, as minor allele fre- 
quencies for rs1799971 and rs2281617 differ 
considerably between ethnic groups [46-48]. 
Importantly, this limitation may have led to 
false negative results, especially for rs1799971 
[48]. In addition, we did not correct for multiple 
comparisons in our statistical analyses and 
cannot exclude the possibility of type I error. A 
larger sample would allow the detection of 
potential effects with greater statistical power 
and an adjusted significance level. Despite limi-
tations related to small sample size, our results 
provide novel, preliminary evidence for the pos-
sibility that variation in OPRM1 contributes to 
differences in subjective responses to smoked 
cannabis.
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Supplementary Figure 1. The cluster plots for OPRM1 single-nucleotide polymorphisms (SNPs) (A) rs1799971, (B) 
rs2281617, and (C) rs510769 extracted from the Genome Studio. The x-axis (theta) indicates frequencies of the 
assigned alleles and the y-axis (R) represents the fluorescence intensity for the allele-specific probes. For each plot, 
each data point represents a research participant. The color clusters indicate the three genotypes, with the number 
of each genotype shown below each cluster. The genotype calls for rs1799971 from left to right are AA, AG, and GG. 
The genotype calls for rs2281617 from left to right are TT, CT, and CC. The genotype calls for rs510769 from left to 
right are TT, CT, and CC.


