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Abstract: Gitelman syndrome (GS) is an autosomal recessive salt-losing tubulopathy caused by biallelic inactivat-
ing mutations in the SLC12A3 gene. This gene encodes the thiazide-sensitive sodium-chloride cotransporter (NCC) 
which is exclusively expressed in the distal convoluted tubules (DCT). GS patients classically present with hypoka-
lemic metabolic alkalosis with hypocalciuria and hypomagnesemia. While hypokalemia and metabolic alkalosis 
are easily explained by effects of the genotypic defect in GS, the mechanisms by which hypomagnesemia and 
hypocalciuria develop in GS are poorly understood. In this review, we aim to achieve three major objectives. First, 
present a concise discussion about current understanding on physiologic calcium and magnesium handling in the 
DCT. Second, integrate expression data from studies on calciotropic and magnesiotropic proteins relevant to the GS 
disease state. Lastly, provide insights into the possible mechanisms of calcium-magnesium crosstalk relating to the 
co-occurrence of hypocalciuria and hypomagnesemia in GS models. Our analyses highlight specific areas of study 
that are valuable in elucidating possible molecular pathways of hypocalciuria and hypomagnesemia in GS.
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Introduction

In the kidney, the bulk of filtered calcium (~85%) 
and magnesium (~90%) are reabsorbed in the 
earlier segments of the nephron, namely the 
proximal convoluted (PCT) and the thick 
ascending limb (TAL), through passive paracel-
lular transport mechanisms [1]. Once the fil-
trate reaches the distal convoluted tubule 
(DCT), what remains of these divalent cations 
will be reabsorbed through a transcellular 
transport mechanism, making the DCT an 
important site that regulates calcium and mag-
nesium reabsorption. This tightly controlled 
step dictates the amount of calcium and mag-
nesium excreted into the urine. A number of 
kidney diseases including Gitelman syndrome 
(GS) are known to affect calcium and magne-
sium homeostasis.

GS is an autosomal recessive salt-losing tubu-
lopathy caused by biallelic inactivating muta-
tions in the encoding for the thiazide-sensitive 
sodium-chloride cotransporter (NCC) exclusive-

ly expressed in the DCT. The genetic defect of 
SLC12A3 gene, which causes GS, produces 
NCC that are either properly inserted in the cell 
membrane with sub-optimal performance or 
are misfolded and immediately tagged for endo-
plasmic reticulum degradation [2-4]. The low 
level or absent expression of the NCC causes 
decreased sodium reabsorption in the DCT 
which then results in increased sodium delivery 
to the more distal, aldosterone-sensitive por-
tions of the nephron [5]. In order to reabsorb 
the excess sodium in the lumen, the collecting 
tubules respond with an aldosterone-mediated 
increase in the expression of sodium pumps 
that exchange for potassium and hydrogen ions 
that are extruded from principal cells and 
α-intercalated cells, respectively. This compen-
satory potassium and hydrogen ion wasting 
leads to characteristic GS phenotype of hypoka-
lemic metabolic alkalosis. Interestingly, hypo-
magnesemia and hypocalciuria are also diag-
nostic points commonly seen in GS patients [6]. 
While hypokalemia and metabolic alkalosis can 
be easily explained by the genotypic derange-
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ment in GS, the mechanisms by which hypo-
magnesemia and hypocalciuria develop remain 
to be elucidated [1, 7, 8].

The DCT is subdivided into two segments, early 
(DCT1) and late (DCT2) segments, with the lat-
ter serving as a transition region as it closely 
resembles the downstream connecting tubules 
[9, 10]. The sodium-chloride cotransporter 
(NCC) is present in both segments and is the 
gold standard marker for the DCT [1, 11, 12]. In 
humans and mice, parvalbumin (PVALB) is high-
ly abundant in the DCT1 and serves as its exclu-
sive marker [11, 13]. On the other hand, the 
amiloride-sensitive epithelial sodium channel 
(ENaC) is expressed only in the DCT2 and later 
nephron segments and is used as a marker for 
the late DCT when it colocalizes with NCC [14]. 
This delineation is important because calciotro-
pic proteins (CaPs) and magnesiotropic pro-
teins (MaPs) are differentially expressed in 
these segments as presented in Figure 1. 
Generally, transcriptomic and proteomic data 
suggest that magnesium reabsorption involves 
the whole stretch of DCT while calcium reab-
sorption is restricted in the DCT2 and possibly 
the more distal nephron segments [15]. High-
throughput analyses of nephrons have already 
identified CaPs and MaPs that are exclusively 
expressed in the DCT [15-17]. These proteins 

are potentially involved in GS-related hypocalci-
uria and hypomagnesemia. While these pro-
teins have been identified and characterized in 
normal subjects, detailed analysis and differen-
tial expression patterns in NCC-deficient sub-
jects, in essence GS models, are still under 
investigation.

This tightly controlled step is particularly impor-
tant since it dictates certain amount of calcium 
and magnesium to excrete into the urine. Here 
we present and integrate evidence to drive 
hypothesis generation towards further experi-
mental research and better understanding of 
renal calcium and magnesium handling and 
their involvement in Gitelman syndrome and 
possibly other disease processes.

Calcium handling in the DCT

CaPs expressed in the DCT have been well 
characterized. A simplistic depiction of the cal-
cium handling involving the known CaPs is pre-
sented in Figure 2. Calcium ions enter the DCT 
cell via the apical transient receptor potential 
vanilloid subfamily member 5 (TRPV5) channel 
[19, 20]. It is noteworthy that there is a large 
calcium concentration gradient across the cell 
membrane with the intracellular calcium level 
maintained at 0.12 mmol/L compared to both 

Figure 1. Differential expression of magnesium and calcium handling and related proteins in the distal convoluted 
tubule. NCC is expressed in both early (DCT1) and late (DCT2) segments of the DCT. Generally, calcium transport 
proteins (green) are exclusively or more abundantly expressed in DCT2 while magnesium transport proteins (red) 
are expressed throughout the whole stretch of the DCT. Expression data comparison is mainly based on the most 
recent single cell RNA sequencing study by the team of Chen [15]. Data on KIR4.1 and Na-K-ATPase (abbreviated 
as NaKA only in this figure) were from the work of McCormick and Ellison [1].
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the luminal and vascular calcium levels of 
around 2.5 mmol/L. This provides a net inward 
driving force for calcium movement and is 
important for cellular metabolism to proceed. 
To maintain this physiologic calcium gradient, a 
cytosolic calcium carrier, calbindin 1 (CALB1), 
serves as an intracellular level sensor [20]. 
When intracellular levels are abnormally low, 
nearby CALB1 associates with TRPV5 and fa- 
vors calcium influx [21]. As TRPV5 is constitu-
tively active, free CALB1 dynamically buffers 
the increasing calcium concentration by shut-
tling these ions to the basolateral side for ex- 
trusion. The exit of calcium through the ba- 
solateral membrane is facilitated by two trans-
port proteins, the Na/Ca exchanger-1 (NCX1) 
and the plasma membrane calcium ATPases 
(PMCA). Calcium extrusion into the blood 
stream is predominantly handled by NCX1 as it 
is responsible for 70% of calcium movement 
while the remaining 30% is handled by PMCA 

[22, 23]. Comparing DCT segment differential 
expressions, TRPV5 seems to be exclusively 
expressed in the DCT2 while CALB1 and NCX1 
are strongly expressed in DCT2 with minimal 
DCT1 expression [15, 24] PMCAs have a rela-
tively uniform expression all throughout the 
DCT stretch [15]. These expression data sup-
port the idea that calcium transport starts in 
the DCT2 and continues in the closely resem-
bling connecting tubules.

Dysregulation of calcium handling may happen 
at different levels [25, 26]. First, gene expres-
sion level changes which are usually hormonal 
responses and is the predominant point of  
control. Second, modifications in the activity of 
functional proteins which are frequently affect-
ed by perturbations in factors like pH and ion 
concentrations. Third, derangements in cellu- 
lar trafficking of assembled proteins. Lastly, in- 
teractions of entry channels with both intralu-

Figure 2. Calcium handling in the distal convoluted tubule. Calcium ions from the tubular lumen enter the apical 
side through the transient receptor potential vanilloid subfamily member 5 (TRPV5) channel. To maintain the low 
intracellular calcium concentration (0.12 mmol/L), calbindin 1 (CALB1) binds the calcium ions and shuttles them to 
the basolateral side where the sodium-calcium exchanger (NCX1) expels 70% of them in exchange for sodium ions 
in a 3:1 stoichiometric ratio while the remaining 30% is handled by the plasma membrane calcium ATPases 1 or 4 
(PMCA1/4). Abbreviations: CaT, Tubular lumen calcium concentration; Cai, Intracellular lumen calcium concentra-
tion; CaV, Vascular lumen calcium concentration.
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minal and extraluminal associated proteins. 
This section focuses on the known and pro-
posed calciotropic proteins at different levels  
of control that could be potentially involved in 
the development of hypocalciuria in GS.

Hypocalciuria in GS

Hypocalciuria as a prime symptom of GS was 
first reported by the team of Rodríguez-Soriano 
in 1987 [27]. In 1992, Bettinelli and colleagues 
verified this claim when they used calcium 

excretion values to differentiate Gitelman syn-
drome from the Bartter Syndrome which pres-
ents with hypercalciuria instead [28]. In 
patients clinically suspected with GS, hypocal-
ciuria is defined using spot calcium-creatinine 
ratio with a cutoff value of <0.2 mmol/mmol or 
<0.07 mg/mg in adults and an age-specific 
range of values for the pediatric population as 
they typically have lower creatinine excretion 
rates [6]. The mechanism by which these clini-
cal parameters develop is poorly understood. 
Figure 3 integrates established and hypothe-

Figure 3. Mechanism of hypocalciuria in Gitelman syndrome. Expression of TRPV5, CALB1, NCX1 and possibly 
PMCA1/4 is increased in the setting of a defective sodium-chloride cotransporter (NCC), as in Gitelman syndrome. 
(1) Increase in TRPV5 expression may be mediated by regulators common to TRPV5 and NCC like WNK4, and 
NHERF2. (2) The increased expression of TRPV5 influences the expression of the closely associated CALB1. (3) 
When CALB1 drops off the calcium cargo on the basolateral side it is possible that it interacts with NCX1. (4) Since 
NCC is defective, the intracellular sodium and chloride concentration drops. The (5) decrease in sodium ions (6) 
affects the highly electrogenic NCX1 directly while the (7) change in chloride concentration (8, 9) indirectly through 
membrane hyperpolarization. (10) Changes in the membrane potential might also have an effect to the less elec-
trogenic PMCA1/4. (11) NHERF2 is known to be sodium sensitive while (12) WNK4 is chloride sensitive. (13) Levels 
of circulating FGF23 have been shown to increase in NCC knockouts which could also (14) affect WNK4 involved in 
the downstream signaling of the FGF receptor (FGFr). (15) NCC may influence the phosphorylated form of claudin-16 
(CLD16) which is a (16) known regulator of TRPV5. Lastly, (17) secreted uromodulin (UMOD) is known to upregulate 
TRPV5.
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sized mechanisms that explain hypocalciuria 
about the background of a defective NCC, the 
main problem in GS.

TRPV5

The apical calcium channel TRPV5 is one of the 
better characterized CaPs in both normal and 
pathophysiologic states including GS. Loss of 
TRPV5 function in mouse models result in 
hypercalciuria and disruption of bone mineral-
ization making it the gatekeeper of calcium 
reabsorption [18]. In GS states, expression of 
TRPV5 significantly increases and has consis-
tently been demonstrated in mouse models 
using thiazide-induced NCC suppression, NCC 
knockouts, mutation knock-ins and inactiva-
tion of upstream NCC activity modulators [29, 
30]. Moreover, renal tissue biopsies of GS 
patients also show increased TRPV5 expres-
sion on immunofluorescent examination [30].

There are several regulatory proteins common 
to NCC and TRPV5 which could possibly explain 
the communication mechanism between the 
two. The molecule with-no-lysine/lysine defi-
cient protein kinase 4 (WNK4) has been shown 
to modulate both NCC and TRPV5 activity in 
several model studies [31-35]. WNK4 is a chlo-
ride-responsive molecule [36]. The team of 
Hoover proposes that the decrease in intracel-
lular chloride secondary to NCC activity loss in- 
creases WNK4 activity [37]. This could explain 
the increased TRPV5 expression as WNK4 is 
known to upregulate TRPV5 plasma membrane 
expression. Another possible crosstalk mecha-
nism through the WNK4 pathway is the bone-
derived fibroblast growth factor 23 (FGF23). 
FGF23 is known to increase TRPV5 expression 
through a signaling pathway involving WNK4 
[38]. More recently, it has been shown that 
knockout of NCC in mice promotes an al- 
dosterone-mediated upregulation of circulating 
FGF23 highlighting the relevance of this signal-
ing pathway in the development of hypocalci-
uria in GS [39]. Another protein closely associ-
ated with WNK4 is the Na+/H+ exchanger  
regulating factor 2 (NHERF2) which has been 
shown to be a coregulator of TRPV5 surface 
expression [40]. Its putative involvement lies 
on the possible effects of sodium concentra-
tion changes following NCC derangements to 
NHERF2 activity, but this remains to be experi-
mentally confirmed.

Additionally, TRPV5 deficient mice showed con-
comitant decrease in expression of other cal-
ciotropic proteins like CALB1 and NCX1 [18]. 
This means that TRPV5 or the Ca influx through 
TRPV5 controls the expression of the other Ca 
transport genes like CALB1 and possibly NCX1 
which will be discussed in below sections.

CALB1

CALB1 expression levels have also been exam-
ined in several studies. When hypovolemia is 
prevented by salt supplementation, thiazide 
treatment leads to increased CALB1 trans- 
cripts and protein expression in mice DCT [28]. 
Whether or not salt supplementation causes 
exclusively or contributes to the upregulation of 
CALB1 was not verified. This was clarified by 
observations from the Ser707X knock-in GS 
mouse model and immunostained kidney sec-
tions from GS patients showing upregulation of 
CALB1 [29]. CALB1 downregulation was also 
observed in a murine model of idiopathic hy- 
percalciuria which further highlights its role in 
calcium handling derangements [41]. More- 
over, studies on CALB1-knockout mice showed 
abolishment of upregulation of calcium trans-
port molecule in the DCT secondary to thiazide 
treatment which implies that CALB1 plays an 
important role in calciotropic gene expression 
[42].

NCX1

While altered expression of NCX1 in response 
to NCC deficiency have not yet been document-
ed in hypocalciuric models, inverse interpreta-
tion could be made from its observed downreg-
ulation in a murine model of idiopathic hyper-
calciuria [41]. This implies that upregulation of 
NCX1 causes hypocalciuria. Possible mecha-
nisms have been proposed explaining the 
involvement of this calcium extrusion pump. As 
NCC function is absent, there will be decreased 
intracellular sodium, one way by which the cell 
might theoretically compensate for this through 
upregulation of NCX1 expression and activity 
[1, 24, 43]. The exchanger will bring in sodium 
in exchange for calcium leaving the cell. As pre-
viously mentioned, intracellular calcium con-
centration is maintained within a strict range. 
As a response, the cell will take in more calci- 
um through the apical TRPV5, another possible 
mechanism about its observed upregulation. 
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Additionally, intracellular chloride concentra-
tions also fall, along with sodium concentration 
drop, which have been shown to cause hyper-
polarization of the apical membrane which is 
another possible mechanism for the estab-
lished TRPV5 upregulation [24, 44]. Gesek and 
Friedman proposed that a concomitant baso-
lateral hyperpolarization could also occur, but 
this remains to be verified in DCT cells more so 
in the setting of NCC-deficiency [44]. The highly 
electrogenic NCX1 may also be upregulated 
and thus stimulate calcium extrusion across 
the basolateral membrane. Similarly, the ex- 
pected cellular response would apically replen-
ish calcium again through TRPV5. However, the 
parallel hyperpolarization of both the apical 
and basolateral membranes is more likely com-
pared to a transcellular voltage difference, this 
dilemma can be solved if there are specific 
crosstalk mechanisms between the apical and 
basolateral calcium handlers, existence of 
which are yet to be discovered [24]. Common 
regulatory proteins of TRPV5 and NCX1 are 
good candidates to facilitate the crosstalk. 
Both transporters have PKC substrates which 
may or may not be acted upon by regulatory 
mechanism or at least connected with a com-
mon molecular pathway [1]. 

It is also important to consider possible inter- 
actions between CALB1 and the basolateral 
calcium extruding proteins as the closely relat-
ed calmodulins have been shown to interact 
with NCX1 when co-expressed in human em- 
bryonic kidney cells [45]. As mentioned earlier, 
aside from the picking up of available calcium 
coming from TRPV5, CALB1 also plays a regula-
tory role in the intake pump. Current models 
describe CALB1 as a mere delivery system that 
drops off its parcel on the basolateral side, but 
it is also possible that it has regulatory interac-
tions with the basolateral proteins. Moreover, 
another protein that plays this role may yet to 
be discovered.

PMCA1/4

Plasma membrane calcium ATPases have long 
been accepted to take charge of 30% of the cal-
cium extrusion workload and the rest handled 
by NCX1. However, the specific isoform is still 
debatable until today. PMCA1 and PMCA4 are 
known to be expressed in the distal convoluted 
tubule [23, 46]. PMCA1 has long been identi-

fied as the predominant ATPase in this nephron 
segment and has been well studied in terms of 
its responses to calciotropic hormones and cal-
cium handling experiments [1, 47]. Researches 
in the recent years have also presented some 
data on the role of PMCA4. The team of 
Alexander confirmed that it had highest expres-
sion in the distal convolution with minimal 
response to calcium level perturbations [48]. In 
a study on TRPV5-knockout mice, high expres-
sion level of PMCA4 was shown, but not PMCA1 
[49]. This is particularly important as expres-
sion levels of NCX1 and CALB1 are known to be 
affected by TRPV5 knockout [18]. These find-
ings suggest that both PMCA1 and PMCA4 
might be involved in calcium handling in the 
DCT. Changes in PMCA levels on the back-
ground of NCC dysregulation have not been 
documented to date but it should be cautious 
to consider that their expression and activity 
might be deranged in GS states. Players in pos-
sible crosstalk areas are yet to be isolated. Like 
NCX1, although PMCA is not electrogenic, 
membrane hyperpolarization could potentially 
cause changes in its activity or expression as 
its structural domains and regulatory mecha-
nisms have not yet been fully characterized.

Claudin-16

Claudin-16 (CLD16), previously known as para-
cellin-1, was initially thought to be exclusively 
expressed in the TAL where it plays a major  
role in paracellular magnesium transport [50]. 
Recent evidence showed that the phosphory-
lated form, untargeted by then available stain-
ing antibodies, is localized in the DCT [51]. Hou 
A et al established the role of CLD16, specifi-
cally the phosphorylated form, as an apical 
membrane player in transcellular calcium path-
way in the DCT [please add reference]. Their 
results showed that CLD16 increases TRPV5 
membrane abundance and channel conduc-
tance. Though CLD16 expression levels in  
the context of a defective NCC have not been 
documented, associations can be derived  
from observations of a cisplatin-treated mouse 
model. Cisplatins are DNA alkylating agents 
known to cause the so-called Gitelman-like  
syndrome by disrupting DCT integrity and NCC 
expression [52, 53]. Interestingly, cisplatin-
treated mice also show CLD16 upregulation. 
Since the phosphorylated form of CLD16 local-
izing in the DCT is a relatively new information, 
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its functional role of in the DCT is largely 
unknown. So, whether claudin function and 
expression is directly affected by cisplatin or 
indirectly through an NCC-related pathway 
needs further investigation.

Uromodulin

UMOD, also known as Tamm-Horsfall Protein, is 
the most abundant secretory protein in the kid-
ney. It has been shown to increase TRPV5 cell-
surface abundance [54]. This upregulation is 
carried out from the extracellular side as uro-
modulin is secreted into the urine. It was ini-
tially thought that UMOD was exclusively syn-
thesized in the TAL segment of the nephron 
until recently when the team of Tokonami con-
firmed its presence in microdissected DCT 
through RNA profiling, in situ hybridization, and 
immunofluorescence studies [55]. Their study 
also elucidated a regulatory role of UMOD in the 
NCC pathway. The triggers for UMOD release 
from DCT cells are currently unknown but are 
hypothesized to be NCC-related as well [55, 
56]. The Tokonami study also induced distal 
salt loading through furosemide which is paral-
lel to the high concentration of sodium accumu-
lating in the DCT in GS states due to the defec-
tive NCC. It is possible that the response to 
increased urinary sodium content in this neph-
ron segment is uromodulin release which 
intended to promote NCC maturation as 
observed in the same study. However, whether 
the regulation is through intracellular communi-
cation or extracellular binding needs further 
investigation. Connecting these findings, in the 
setting of high luminal sodium concentration in 
GS states, UMOD may be released with the 
intention to activate NCC to increase sodium 
uptake. Since there is defective NCC in GS, 
these luminally available UMOD can preferen-
tially bind to TRPV5, upregulate its expression 
and therefore increase calcium uptake. This 
hypothesis, however, still needs experimental 
evidence but is a potential mechanism for the 
occurrence of hypocalciuria in GS.

Lastly, the mechanism by which hypocalciuria 
occurs is thought to be dependent on volume 
status [24]. When there is low ECF volume, the 
proximal convoluted tubule calcium recovery 
system is likely to be the dominant segment 
inducing hypocalciuria. On the other hand, 
when ECF volume is normal, the distal convo-

luted tubule’s active transcellular calcium reab-
sorption is thought to be the site for hypocalci-
uria induction. This concept is particularly 
important since there are equivocal findings as 
to whether the GS clinical picture is normovole-
mic, hypovolemic, or even hypervolemic [6]. 
While studies have proven the expected lower 
blood pressure in GS patients due to salt-wast-
ing, a huge portion of patients still show normal 
blood pressure at the time of presentation [57, 
58]. In relation to these, the latest KDIGO 
guidelines for suspecting a diagnosis of GS 
include low or normal blood pressure as one of 
the clinical criteria. The observed compensa-
tion might be attributed to salt compensation 
in the diet as majority of GS patients are known 
to have salt-craving behaviors [59]. It is note-
worthy that a prescribed blood pressure cutoff 
for proposed volume-dependent dichotomy 
presented by Reilly & Huang has not been 
defined to date [24]. Furthermore, GS patients 
having lower blood pressure measurements 
compared to the general population does not 
mean significant ECF volume reduction nor an 
abnormally low blood pressure based on cur-
rent definitions [60, 61].

Magnesium handling in the DCT

The molecular mechanisms involved in DCT 
transcellular magnesium transport has been a 
growing field in the past years. Ellison, Maeoka 
and McCormick recently presented a compre-
hensive update on magnesium handling in the 
different nephron segments including the DCT 
[62]. Franken and colleagues z further dis-
cussed current knowledge and questions espe-
cially on sodium and magnesium in the DCT 
[64]. This review, specifically the succeeding 
sections, aims to add on to these available 
data and aid in the generation and answering 
of more hypotheses. Here, we aimed to inte-
grate current evidence for guidance of future 
studies specifically on GS-related hypomagne-
semia. Briefly, the section will reiterate known 
physiologic pathways and then zero into mag-
nesiotropic proteins which the authors deemed 
to have particular relevance to GS. Additionally, 
a discussion on calcium-magnesium crosstalk 
follows.

Figure 4 presents a proposed pathway for mag-
nesium handling in DCT synthesized from a 
number of studies discussed in this section. So 
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far, it is known that apical magnesium entry is 
facilitated by the transient receptor potential 
melastatin subfamily member 6 (TRPM6) chan-
nel which forms a tetramer with its homologue 
TRPM7 together functioning as the apical mag-
nesium channel, referred to as the TRPM6/7 
transporter complex hereafter [64]. Regulation 
of apical magnesium entry is primarily driven by 
the membrane voltage because unlike the 
thousand-fold steep calcium concentration gra-
dient across the apical membrane, the intracel-
lular magnesium concentration is almost simi-
lar to that of the luminal concentration [1, 65, 
66]. This voltage is hypothesized to be provided 
by the luminal potassium voltage-gated chan-
nel subfamily A member 1 (KV1.1) [67]. Follow 
up studies elaborating on this relationship have 
not been done to date. A dedicated cytosolic 
carrier that transports magnesium ions from 

the apical to the basolateral side has not been 
identified to date [1, 68]. The cytosolic protein 
PVALB has been shown to have both calcium- 
and magnesium-binding domains. PVALB has 
higher affinity to calcium but in the resting state 
its cation-binding sites are predominantly occu-
pied by magnesium [13]. This can most likely 
be explained by the higher intracellular magne-
sium concentration compared to intracellular 
calcium concentration. Intriguingly, the differ-
ence in intracellular concentration between 
magnesium and calcium and their molecular 
gradients with respect to the tubular lumen 
dampens the need for an intracellular magne-
sium buffering protein serving a parallel role of 
CALB1 for calcium represented in Figure 2 as 
the hypothetical cytosolic magnesium carrier 
(CMC) [68]. Therefore, the need for a CMC pro-
tein is still debatable to date.

Figure 4. Magnesium handling in the distal convoluted tubule. Magnesium ions enter the apical side via the tran-
sient receptor potential melastatin subfamily member 6 (TRPM6) channel forming a tetramer with its homologue 
TRPM7 together functioning as the apical magnesium channel, known as the TRPM6/7 transporter complex. Since 
the magnesium concentration is almost uniform across the membrane, this movement of magnesium depends on 
the voltage gradient provided by the luminal potassium voltage-gated channel subfamily A member 1 (KV1.1). A 
hypothetical cytosolic magnesium carrier (CMC) moves around the magnesium from the apical to the basolateral 
side where putative extrusion mechanisms are carried out by a sodium-magnesium exchanger (NMX), a magnesium 
ATPase transporter (MgATPase), or a plain basolateral magnesium transporter (BMT). Proteins labelled with a ques-
tion mark (?) have candidate proteins but have not been fully characterized for the specified function.
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Similarly, there is no basolateral magnesium 
gradient which poses a mechanistic challenge 
for magnesium extrusion to the blood stream. 
Theoretically, this could be achieved if an NCX1-
like magnesium counterpart, referred to a sodi-
um-magnesium exchanger (NMX) hereafter, 
would function to take in sodium ions in 
exchange for magnesium ions [69]. The baso-
lateral solute carrier family 41 member 1 
(SLC41A1) has been shown to have NMX char-
acteristics and is thought to be the predomi-
nant magnesium extrusion mechanism in the 
DCT [70]. However, more recent studies have 
demonstrated that its extrusion mechanism is 
Na-independent, therefore a basolateral DCT 
NMX is yet to be discovered [71]. Similar to cal-
cium handling, an Mg-ATPase could also be a 
putative basolateral efflux mechanism.

The Cyclin and CBS domain divalent metal cat-
ion transport mediator-2 (CNNM2) is known to 
localize in the basolateral membrane of distal 
tubules [72, 73]. CNNM2 transcripts have also 
been shown to be responsive to magnesium 
fluctuations as shown in the DCT magnesium-
sensitive transcriptomic study by the team of 
de Baaij [74]. It was also shown to be an impor-
tant regulator of urinary magnesium reabsorp-
tion in a zebrafish model [75]. Finally, it has 
been shown that CNNM2-deficient mice have 
impaired magnesium homeostasis further sub-
stantiating its putative role in renal magne- 
sium handling [73]. The specific mechanism by 
which CNNM2 carries out this role is still under 
debate and for further probing. It has been de- 
monstrated to have an ATP binding site which 
gives the possibility of an Mg-ATPase function 
like the PMCA for calcium transport [72, 76]. It 
has also been shown to be exhibit potential 
magnesium sensing characteristics based on 
topological studies [72]. An NMX functionality 
has also been speculated but its genuineness 
as an exchanger remains to be proven by fur-
ther experimental studies [77-79]. Lastly, a 
plain magnesium transport across the basolat-
eral membrane is also possible without an 
exchange mechanism or ATPase function whi- 
ch could be carried out by these candidate 
magnesium efflux proteins or a separate baso-
lateral magnesium transporter (BMT) yet to be 
discovered.

It is generally thought that transcellular magne-
sium reabsorption happens in both early and 
late DCT. The primary basis of this is the expres-

sion of TRPM6 (Figure 1) [79]. CNNM2 is ex- 
pressed in both DCT1 and DCT2 while PVALB is 
exclusively expressed in DCT1 [15, 79]. The dif-
ferential expression of SLC41A1 in the DCT 
segments has not yet been evaluated to date.

Hypomagnesemia in GS

Hypomagnesemia is one of the clinical criteria 
of GS during its discovery by Gitelman and col-
leagues in 1966. Current guidelines define 
hypomagnesemia as serum levels of <0.7 
mmol/l or <1.70 mg/dl with inappropriate renal 
magnesium wasting indicated by a fractional 
excretion value of >4% [6]. Additionally, chronic 
thiazide treatment, NCC null mice, and other 
GS models all present with hypomagnesemia 
[5, 30, 80-82]. While it is known that magne-
sium reabsorption is affected by sodium reab-
sorption, the specific molecular mechanism 
underlying this relationship remains poorly 
characterized [1, 63, 81]. Magnesium derange-
ments in Gitelman syndrome may result from 
membrane potential changes, differential 
expression of magnesium handling proteins, 
atrophy of the DCT or a combination of these. 
The succeeding sections present potential 
magnesiotropic proteins that may directly or 
indirectly play a role in the development of hy- 
pomagnesemia as a result of the NCC defect in 
Gitelman syndrome supplemented by a visual 
integration in Figure 5.

TRPM6

The apical magnesium channel, TRPM6 is the 
most characterized magnesium-handling pro-
tein to date. It has been shown that TRPM6 
transcript and protein expression decreases in 
GS states [81, 83]. TRPM6 is expressed on 
both early and late DCT. Since there is atrophy 
and extensive early DCT remodeling in NCC-null 
mice, TRPM6 expression declines proportion-
ately [5, 83]. However, an extensive signaling 
mechanism as a response to tissue remodeling 
would need more time and cannot explain the 
acute magnesium leakage in patients treated 
with thiazide diuretics [81]. Mediators for a 
direct NCC-TRPM6 crosstalk have not been 
defined to date. Players in this putative commu-
nication may be inferred from TRPM6 many 
interacting regions. Furthermore, Franken and 
colleagues speculates that common regulatory 
pathways involving the two ion transporters 
might give us an idea on how one affects the 
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Figure 5. Mechanism of hypomagnesemia in Gitelman syndrome. The expression of TRPM6/7 decreases in NCC-
defective states like Gitelman syndrome. The signaling mechanism is thought to involve two major TRPM6/7-reg-
ulating pathways, the (1) ACE-cAMP-PKA pathway and the (2) Akt-PI3K-RACK1 pathway. NCC inactivation (3, 4) 
downregulates Na-K ATPase activity through the resulting decrease in intracellular sodium. The decreased ATPase 
activity might signal (5) TRPM6 downregulation thus causing hypomagnesemia. Similarly, this may have an effect 
on (6, 7) the apical KV1.1 and therefore TRPM6 and/or on (8) the putative basolateral NMX protein, CNNM2. (9) 
A KIR4.1-NCC crosstalk facilitated by NEDD4-2 might also exist which could further have an effect on (10) Na-K 
ATPase as the ATPase’ activity is coupled with that of KIR4.1. The proposed decrease in KIR4.1 is attributed to the 
attributed to a possible compensation mechanism to decreased intracellular chloride levels. As KIR4.1 provides the 
necessary voltage gradient for the activity of CLC-kb, lowering KIR4.1 activity will (11) reduce ClCkb function. Lastly, 
(12) secreted UMOD is known to affect TRPM6/7 cell surface expression by arresting the channel’s endocytosis.

other one [63]. One possible pathway may AKT-
P13K-RACK1 pathway which is hormonally con-
trolled. It is proposed that aside from being an 
upstream regulator of TRPM6 it could also be 
potentially affected by NCC dysregulation due 
to systemic hormonal imbalances (for a more 
detailed review, see reference [63]). Another 
major control pathway of TRPM6 activation and 
expression is through the AC3-cAMP-PKA sig-
naling mechanism which is hypothesized to 
facilitate a compromised TRPM6 activation 
secondary to a reduced NCC activity [84]. It 
would be interesting to see the expression pro-

file of these proteins in an NCC-deficient state. 
Information about their sensitivity to sodium 
concentration changes might also give us an 
idea on the effects of an NCC defect and pro-
vide a more immediate response mechanism 
apart from hormonal alteration. However, these 
remain as speculation at the moment. Another 
way by which TRPM6 can be directly regulated 
is through phosphatidylinositol 4,5-bisphos-
phate (PIP2). PIP2 has been shown to be an 
activator of TRPM6 by direct binding to the 
channel [85]. Blockage and deletion of PIP2 
causes TRPM6 inactivation and abolishes api-
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cal magnesium influx. Furthermore, upregula-
tion of phospholipase C which hydrolyses PIP2 
into diacylglycerol and inositol 1,4,5-trisphos-
phate effectively inactivates TRPM6 in electro-
physiology studies. Whether changes in PIP2 or 
phospholipase C happens occur as a result of 
NCC abrogation is also an interesting pathway 
to look at.

Earlier it was discussed that unlike the thou-
sand-fold calcium gradient driving its inward 
rectification, apical membrane potential differ-
ence is the sole driver of magnesium entry into 
the DCT. Theoretically, the observed change in 
the apical membrane potential as a result of 
the chloride concentration drop secondary to 
an NCC defect can also cause TRPM6 down-
regulation in the same way that TRPV5 upregu-
lation happens. Demonstration of this has not 
yet been documented in any studies at the 
moment.

Na/K-ATPase

Thiazide treatment causes reduction in the 
activity of this basolateral sodium-potassium 
ATPase (Na/K-ATPase) pump [86]. Furthermore, 
pharmacologic inhibition and inactivating muta-
tions of the Na/K-ATPase have been shown to 
cause hypomagnesemia [63]. In the context of 
decreased NCC expression, the decrease in 
intracellular sodium concentration is expected 
to affect the Na/K-ATPase. How this induces 
hypomagnesemia has not yet been defined but 
may involve a direct or indirect signaling path-
way to TRPM6. One explanation is that the 
reduced ATPase activity decreases intracellular 
potassium which could affect the apical KV1.1 
which provides the voltage gradient for TRPM6-
mediated magnesium entry. Apical membrane 
depolarization secondary to the ATPase deacti-
vation has also been suggested in previous 
reports [1, 63]. Furthermore, the activity of the 
Na/K-ATPase pump is coupled with and 
enhanced by the potassium inward rectifying 
channel 4.1 (KIR4.1) [63, 68]. Briefly, KIR4.1 is 
closely associated with NCC. Several studies 
have identified KIR4.1-mediated NCC modula-
tion [87, 88]. Whether the NCC defect in GS 
reduces KIR4.1 expression or activity has not 
yet been demonstrated in studies but maybe a 
plausible explanation to the observed reduc-
tion in Na/K-ATPase activity. The role of KIR4.1 
will be discussed in detail in the succeeding 
section.

KIR4.1

Mutations in KCNJ10 which codes for the baso-
lateral potassium (K+) inward rectifying chan-
nel KIR4.1 cause EAST syndrome which pres-
ents with epilepsy, ataxia, and sensorineural 
deafness, on top of a salt-wasting tubulopathy 
resembling the GS phenotype [89, 90]. Total 
and phosphorylated NCC expressions are  
markedly decreased in a kidney-selective, dox-
ycycline-dependent CRE-recombinase KIR4.1-
knockout mouse model [91]. Similar effects on 
NCC were also demonstrated in a kidney-spe-
cific KIR4.1 knockdown model [92]. As expect-
ed, these model mice exhibited hypokalemic 
metabolic alkalosis with hypomagnesemia and 
hypocalciuria. Although KIR4.1 expression lev-
els in other NCC-deficient systems have not 
been characterized, it is theoretically possible 
that KIR4.1 is also functionally obliterated as a 
compensation mechanism to decreased intra-
cellular chloride levels. Blockade of KIR4.1 
using barium has been shown to increase chlo-
ride concentration in DCT cells through its regu-
latory role on CLC-kb which facilitates basolat-
eral chloride exit [93]. KIR4.1 provides the nec-
essary voltage gradient for the activity of CLC-
kb. A direct crosstalk might also be speculated 
from common regulatory proteins like Nedd4-2. 
It is a ubiquitin ligase that has been shown  
to regulate both NCC and KIR4.1 [94-96]. 
However, these hypotheses remain to be prov-
en until now.

Uromodulin

Aside from the previously discussed roles of 
UMOD in sodium and calcium reabsorption, it 
has also been shown to affect magnesium han-
dling in the DCT. In a transcriptomic study 
searching for magnesium-sensitive genes, 
UMOD yielded one of the highest reads imply-
ing a regulatory role for the divalent cation [74]. 
Secreted UMOD in the urine physically interacts 
with TRPM6 through another urinary protein 
galectin-1 [97]. This leads to impaired endocy-
tosis, therefore, increased TRPM6 cell surface 
abundance. Similar to the dilemma in UMOD’s 
calciotropic role, the trigger for its release that 
could possibly affect TRPM6 is yet to be eluci-
dated. Following the train of thought in the cal-
cium handling hypothesis in the previous sec-
tions, high urine sodium concentration in GS 
states could trigger release of UMOD with the 
intention to activate NCC and increase sodium 
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uptake and affect TRPM6 as well. The paradoxi-
cal increased calcium uptake but decreased 
magnesium uptake is discussed in the cross-
talk section of this paper.

Calcium and magnesium crosstalk

The conundrum on GS-related hypocalciuria 
and hypomagnesemia may not just be a clinical 
coexistence but may also imply a mechanistic 
crosstalk between calcium and magnesium 
pathways in normal and pathophysiologic 
states. Lee and colleagues were able to dem-
onstrate TRPV5 upregulation and increased 
calcium uptake in the apical side as a result of 
decreased intracellular magnesium concentra-

tion and vice versa [98]. Furthermore, changes 
in available dietary magnesium have been 
shown to alter the transcriptomic profile of cal-
ciotropic genes [74].

There are several mechanistic hypotheses 
explaining the crosstalk mechanism integrated 
in Figure 6. TRPV5 has a selectivity filter at the 
aspartate-542 residue which happens to be a 
magnesium binding site. During high magne-
sium states, the selectivity filter site is occu-
pied by magnesium effectively occluding the 
channel pore preventing calcium entry in the 
cell [98]. The second mechanism happens with 
slow reversibility in that magnesium unbinding 
from the site does not immediately cause influx 

Figure 6. Calcium and magnesium crosstalk mechanism. (1) A direct crosstalk between TRPV5 and TRPM6 is pro-
posed. However, putative players are yet to be identified. The (2) decrease in intracellular sodium secondary to a 
defective NCC (3) alters the activity of the basolateral Na/K-ATPase. This activity change affects both magnesio-
tropic and calciotropic proteins (4) KV1.1 and therefore indirectly the (5) TRPM6/7 complex, as well as the sodium 
exchangers, (6) NCX1 and the (7) putative NMX proteins. (8) A direct ATPase-TRPM6/7 is also possible. The (9) 
calcium-sensing receptor (CaSR) is known to modulate KIR4.1 activity which in turn (10) affect the activity of Na/K-
ATPase. Furthermore, (11) CaSR is also proposed to regulate UMOD release in the DCT similar to their relationship in 
thick ascending limb cells. Lastly, secreted UMOD may paradoxically (12) increase TRPV5 activity and (13) decrease 
TRPM6 activity in the setting of a defective NCC.
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of calcium ions but instead a 30- to 40-second 
lag time is observed. In states of magnesium 
wasting as in GS, this mechanism of TRPV5 
regulation is hampered thereby increasing cal-
cium influx thus the characteristic hypocalci-
uria coexisting with hypomagnesemia. The 
mechanism might also be a feasible explana-
tion to the rather later presentation of hypocal-
ciuria compared to hypomagnesemia in GS 
patients. This, however, is yet to be verified in 
future studies. Aside from innate properties of 
the major apical calcium and magnesium trans-
porters, other DCT proteins may also play a role 
in the calcium-magnesium signaling.

Na/K-ATPase

The primacy of the role of sodium in the DCT 
precludes the central role of the Na/K-ATPase 
in this nephron segment. Although its part in 
the reabsorption of divalent cations has only 
been widely accepted for the purpose of mag-
nesium handling, it could potentially affect cal-
cium as well. While the effect of Na/K-ATPase 
on magnesium possibly lies on the mainte-
nance of the membrane potential driving the 
reabsorption through KV1.1, and possibly the 
candidate NMX proteins as well, its effect on 
calcium may be related to NCX1 as calcium exit 
is determined by sodium concentration. This 
theoretical physiologic response further sup-
ports the proposed crosstalk.

CaSR

The calcium sensing receptor expressed on the 
basolateral side of the DCT is not only sensitive 
to calcium but is also responsive to magnesium 
therefore changes in magnesium concentra-
tion trigger calcium regulatory cascades [74]. 
Moreover, CaSR has been shown to modulate 
KIR4.1 by altering both its cell surface expres-
sion and its activity [99, 100]. In this regard, a 
fluctuation in calcium concentration may be 
able to affect magnesium handling as KIR4.1 
plays an important role in its homeostasis. 
Aside from physiologic sensing of calcium lev-
els known to be abrogated in GS, the effect of a 
defective NCC to CaSR protein expression is 
also interesting to look at.

Uromodulin

As presented in this review, UMOD is a putative 
player in both calcium and magnesium homeo-

stasis. It has been shown to interact with TRPV5 
and TRPM6, the major calcium and magnesium 
channel, respectively, from the urinary lumen 
[54, 97]. Continuing on the proposed interac-
tions of UMOD with these ion channels men-
tioned in the previous sections, the paradoxical 
increase in TRPV5 activity and decrease in 
TRPM6 as a possible response to a deactivated 
NCC remains a question. This poses the need 
for structural analysis of uromodulin’s binding 
sites facilitating such interactions. This can pro-
vide us with information on possible preferen-
tial binding which could explain why it favors 
upregulation of one channel over the other one. 
The idea of uromodulin polymerization produc-
ing a macromolecular structure in the DCT has 
also been proposed. It is possible that varying 
lattice formations, involvement of different 
binding domains, or protein cleavage at differ-
ent sites could provide permutations of many 
interactions with transporters expressed in the 
apical surface [54, 97]. Additionally, the effect 
of non-secreted UMOD to TRPV5 and TRPM6 
packaging and cellular trafficking has not been 
defined to date. Interestingly, the team of 
Tokonami also observed that the release of 
UMOD in the thick ascending limb is modulated 
by CaSR [101]. Since UMOD and CaSR are also 
present in the DCT, this interaction is also 
potentially present. Therefore, it is interesting 
to observe uromodulin concentrations, both 
the transcript and protein level, in response to 
a defective NCC as in GS.

Conclusions and perspectives

The general flow of calcium transport in the 
DCT is relatively established and is fueled 
mainly by the maintenance of a low intracellular 
level of the ion. They key players in the apical 
and basolateral sides as well as the cytosolic 
carriers have been identified. However, the spe-
cific interactions between them are incomplete 
and unstudied. Further characterization of the 
binding domains of each CaP could facilitate 
establishing the connection points. For in- 
stance, calbindins and other possible similarly 
functioning molecules may communicate with 
extrusion proteins on the basolateral side 
through putative binding sites similar to its 
sensing and regulatory association with TRPV5. 
To connect these dots, pathway players have to 
be identified as well and may be inferred from 
common regulators. The arrows depicted in 
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Figure 6 are potential pathways waiting to be 
expanded and populated with intermediate 
molecules facilitating the cross talks amongst 
CaPs and related proteins. As calcium is volt-
age dependent, studies on the effect of chang-
es in membrane potential secondary to 
decreased sodium and chloride concentration 
is also important as the basolateral CaPs are 
potentially electrogenic. Signaling cascades in 
response to membrane polarity changes are 
equally valuable.

A lot of work is yet to done for magnesium han-
dling. Characterization of structural domains of 
not only MaPs but also of transporters of relat-
ed ions providing the voltage gradient needed 
for magnesium movement are lacking to date. 
The importance of potassium handling proteins 
like the Na-K ATPase and KIR4.1 in relation to 
magnesium transport is a growing field. Cross 
talks between them and MaPs, them and NCC, 
and them and other potassium handlers are 
pathways that need to be characterized. While 
the necessity of having a magnesium cargo car-
rier across the cell is still questionable, identify-
ing a dedicated cytosolic protein performing 
such function would be a game changer. This 
will also open up potential signaling mecha-
nisms between apical and basolateral MaPs. 
The direct and indirect effects of membrane 
potential changes to MaPs are also largely 
unknown.

Efforts have been made to characterize devel-
opment of calcium and magnesium derange-
ments separately but not a lot of work has con-
sidered the possibility of communications or 
common regulatory pathways existing between 
their key players. Characterizing CaPs and 
MaPs and their potential interactions and inte-
grations into common regulatory pathways is 
equally important. Upstream, they might have 
domains controlled by common proteins while 
downstream, they might have both calcium and 
magnesium domains as frequently identified in 
cytosolic ion carrier proteins.

On a cellular level, studies employing separa-
tion of DCT1 and DCT2 have only been done in 
silico using single cell RNA sequencing. Though 
challenging, in vitro separation will revolution-
ize modelling of not only physiologic calcium 
and magnesium handling but of the pathophys-
iology behind derangements in these electro-
lytes as well. Methods like immunofluores-

cence-guided microdissection and fluores-
cence-associated cell sorting are developed for 
studies in normal physiology. However, proto-
cols for studies involving pathologic states like 
GS are yet to be optimized as expression of 
canonical markers for the DCT are greatly 
affected. Lastly, most of the expression studies 
used in this review involved immunohistochem-
istry, Western blots, and PCR-based detec-
tions. High throughput sequencing studies 
have focused on normal subjects, but none  
has been involved in pathologic subjects. 
Differential expression studies on GS models 
using next generation transcriptomic and pro-
teomic technologies will make available a wide 
array of CaPs and MaPs which can be good 
candidates in the molecular pathways for expla-
nation of hypercalciuria and hypomagnesemia 
in GS. This review has, in part, provided a short-
list of possible proteins that are calciotropic or 
magnesiotropic or both which worth further 
investigation.
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