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Abstract: Latent class trajectory models (LCTMs) are often used to identify subgroups of patients that are clinically 
meaningful in terms of longitudinal exposure and outcome, e.g. drug response patterns. These models are increas-
ingly applied in medicine and epidemiology. However, in many published studies, it is not clear whether the chosen 
models, where subgroups of patients are identified, represent real heterogeneity in the population, or whether 
any associations with clinically meaningful characteristics are accidental. In particular, we note an apparent over-
reliance on lowest AIC or BIC values. While these are objective measures of goodness of fit, and can help identify 
the optimal number of subgroups, they are not sufficient on their own to fully evaluate a given trajectory model. 
Here we demonstrate how longitudinal latent class models can substantially change by making small modifications 
in model specification, and the impact of this on the relationship to clinical outcomes. We show that the predicted 
trajectory patterns and outcome probabilities differ when pre-specified cubic versus linear shapes are tested on 
the same data. However, both could be interpreted to be the “correct” model. We emphasise that LCTMs, like all 
unsupervised approaches, are hypotheses generating, and should not be directly implemented in clinical practice 
without significant testing and validation. 
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Introduction 

One method that can be used to identify pat-
terns of change over time in a population is 
latent class trajectory modelling. This approach, 
derived from linear mixed models, was original-
ly used in the psychology and criminology litera-
ture to identify patterns of behaviour [1, 2], and 
is now being increasingly utilised in the health 
sector to model patterns of drug response, dis-
ease progression, and other exposure variables 
over time. Latent class trajectory modelling 
(LCTM) brings together linear mixed models 
and latent growth curve modelling (LGCM). 
LGCM postulates the existence of one average 
pathway that exists for the population and can 
be modulated by each included individuals’ 
random effects. LCTMs use group-based ran-
dom effects instead to simplify a heteroge-
neous population into more homogeneous 
clusters or “classes” with respect to an unob-
served latent variable [3, 4]. 

There are several examples of LCTMs in alcohol 
use and mental health literature, as well as 
other criminology and psychology studies. For 
example Cole et al, (2012) demonstrated us- 
ing LCTM that using premorbid history could be 
clinically useful for subtyping schizophrenia pa- 
tients [5] and Stevenson et al, (1996) showed 
how 72% of underlying behavioural problems in 
children could be linked to the mother’s mental 
state [6]. Although variations of latent class 
modelling have been used since the 1960s [7], 
their use in human epidemiology is only just 
appearing in the literature. For example, Song 
et al. (2016) used these models to classify 
cohorts into latent classes using repeated BMI 
measures [8]. Other examples include BMI tra-
jectories identified in participants who were 
later diagnosed with T2D, with three main pat-
terns of change found, each linked to a different 
phenotypic profile [9]; the identification of three 
patient trajectory subgroups in Alzheimer’s dis-
ease progression based on cognitive measures 
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over time [10]; and in rheumatoid arthritis, 
where several different trajectory-based phe-
notypic subgroups were identified in response 
to biologic therapies [11].

It has been argued that LCTM is well equipped 
for future forecasting and provides better accu-
racy for patient generalisation than other mod-
els as it can recognise the reoccurrence of pat-
terns already observed in the data [12, 13]. In a 
more general sense, LCTM has advantages 
over using only one exposure measurement in 
that it can inform about at-risk populations and 
associations between covariates and may offer 
clinical benefit for identifying earlier adverse 
trajectories for intervention.

Methods for model selection and performance 
assessment are well established in prediction 
modelling, using techniques such as external 
validation and recalibration to ensure that mod-
els are not over-fitted and that they accurately 
represent the data (and disease). For latent 
class trajectory models, there is not as yet an 
established ‘good practice’. Often, models are 
chosen either due to the lowest AIC or BIC, a 
well-known objective metric detailing how well 
the model fits the data, but one that does not 
take into account over-fitting and whether the 
participants are well assigned to their classes. 
Several studies have noted that the BIC tends 
to improve as more classes were added, until 
the model would no longer converge; this sug-
gests that the BIC (or AIC) are not always the 
only instrument to use when selecting such 
models [14].

The interpretation of resulting models is prone 
to suffer from the subjectivity of the researcher 
examining the selected model, and the lack of  
a ground truth. As Ronan et al. summarised in 
their review of clustering techniques; “Biologi- 
cal systems are complex, so there are likely to 
be many relevant interactions between differ-
ent aspects of the system, as well as meaning-
less relationships due to random chance” [15].

Here, we explore and demonstrate the variabil-
ity of LCTMs and their interpretations in the 
context of BMI trajectories and obesity-related 
cancer incidence.

Methods 

Our aim is to demonstrate how longitudinal 
latent class models can substantially change 

by making small modifications in model specifi-
cation, and the impact of this on the relation-
ship to clinical outcomes. 

Data and participants

We used the female subset of the National 
Institutes of Health (NIH) - AARP cohort and 
derived trajectories for BMI change over time 
using the R lcmm package. Those with extreme 
BMI values (<15 and >60 kg/m2) and values 
taken over the age of 80 were excluded. This 
cohort has recall BMI values at 18, 35, 50 and 
a current BMI at baseline. As one of the 
strengths of LCTMs is their ability to handle 
missing data well, we included any participant 
with at least 2 BMI measures after exclusions. 
The final cohort consisted of 130,979 in- 
dividuals.

Model specification

Following our previously published framework 
for deriving these models [16], we ran a scop-
ing model testing a quadratic shape and 5 
classes (based on previous hypotheses in the 
field). By examining the residuals from this 
model, the random effect structure could be 
estimated. Here, the results suggested a cubic 
random-effect structure, which was then used 
in all tested models.

To ensure that the model had converged appro-
priately, multiple start points were run per 
model. If the same log-likelihood was reached 
for the majority of these runs, it could be 
assumed that the global maxima had been 
reached. 

Up to 7 classes were tested for a variety of 
shapes (linear, quadratic, cubic, and cubic 
splines); the best-fit model (and number of 
resulting classes) was selected for each shape 
based on the lowest BIC achieved, up to a point 
where a decrease in BIC was not thought to  
add usefulness to the model, i.e. futility was 
reached. 

As using BIC alone could overfit the model, the 
selected “best-fit” was then examined with 
other model fit statistics, such as the Average 
Posterior Probability of Assignment (APPA) and 
Odds of Correct Classification (OCC). This deter-
mined whether the model best represented the 
data, and whether participants were well 
assigned to their classes.
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Once selected, the models were plotted, and 
the trajectories examined, to determine wheth-
er the resulting shapes were plausible in the 
context of BMI change over time. Sensitivity 
analyses were conducted to determine that the 
model shapes were stable (rerunning trajecto-
ries with only participants assigned with >80% 
probability), and that the random effect struc-
ture had taken into account all variability in the 
data (Elsensohn’s envelope of residuals).

For illustrative purposes, we present the 
3-class linear model and the 4-class cubic 
model (as each were selected as the best fit-
ting for all classes tested for that shape).

Trajectory-class characterisation

To determine whether different class specifica-
tions had substantial differences in the charac-
teristics of the population assigned to each 
group, the baseline characteristics for each tra-
jectory assignment were examined. For contin-
uous variables a one-way ANOVA was used to 
determine whether the difference in assign-
ment per class was significant, and a χ2 test 
was used for categorical variables. 

To further illustrate how using different models 
can impact the final outcome, we determined 
incidence risk of 12 IARC obesity-related can-
cers (listed in Supplementary Material; multiple 
myeloma excluded due to variability within ICD 
code) based on class assignment using Cox 
regression models from time of cohort entry, 
and derived hazard ratios (HRs) and 95% confi-
dence intervals (CIs).

Results 

Model fit

Two sets of models were run on the same 
cohort with the same maximum number of 
classes, each specified with a different shape 
of trajectory. In both cases, the BIC decreased 
as the number of classes increased (Figure  
1A for the linear trajectory model; Figure 1B for 
the cubic trajectory model). Applying the “elbow 
criterion” to BIC selection, resulted in a 3-class 
model selected for the linear trajectory specifi-
cation and a 4-class for the cubic trajectory 
specification. To determine that these classes 
were the best fit for the data, other statistical 
metrics were examined, e.g. the odds of correct 

classification and the average posterior proba-
bility of assignments to each trajectory. These 
and others are presented in Table 1. 

When the model convergence was examined 
over a number of iterations (Figure 1C for the 
linear models, Figure 1D for the cubic models), 
it can be seen that most models had stably 
converged and reached the same log-likelihood 
multiple times. This is important for model 
reproducibility, and accurate presentation of 
trajectories.

Trajectories and clinical characteristics

The individual trajectory classes differed in 
terms of change in BMI over time, with one 
class demonstrating a similar trajectory in  
both models (Figure 2A, 2B). Depending on the 
number and shape of classes specified, differ-
ent patterns were observed. In the linear 
3-class model, we observed a “lean-moderate 
increase” with 63.3% of individuals, “lean-high 
increase” (31.3%) and “medium-increase” 
group (5.5%). Whereas, in the cubic 4-class 
model we observed a “lean-moderate increa- 
se” with 42.5% of individuals, “lean-high 
increase” (40.9%), “medium increase” (15.2%), 
as well as a “heavy increase” group (1.4%).

When these classes are compared to obesity-
related cancer incidence risk, the importance 
of class membership becomes apparent. In the 
linear 3-class model, the two heavier classes 
carry a larger risk of cancer incidence com-
pared to the lowest weight latent class (Figure 
2C). However, in the cubic 4-class model, the 
“heavy increase” class had no significant 
increase in risk, due to the large confidence 
intervals (Figure 2D). The two other classes fol-
low a stepwise progression in increased risk 
compared to the “lean-moderate increase” 
class.

The baseline characteristics for each model 
can be seen in Tables 2, 3. In both models, an 
expected stepwise increase in body measures 
can be seen from the leanest to heaviest tra-
jectories. This stepwise increase is also mim-
icked for diabetics and those with heart dis-
ease, with the highest proportion of both being 
found in the heaviest trajectories. Additionally, 
a higher number of participants with a high red 
meat consumption and high NSAID use were 
also assigned to the heaviest trajectories. 
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Figure 1. Model specification and selection. The two models are presented, with the linear model on the left and the cubic model on the right. (A and B) Detail model 
outputs from a linear and cubic specification, with BIC and class proportions illustrated. Best-fit models were selected, for each shape, based on BIC, using the “el-
bow criterion”. The convergence of each of the start points for each tested model are presented in (C and D), where the log-likelihood of each run can be observed. 
Those that converge upon the same log-likelihood multiple times are likely to be a more stable model fit. 
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Table 1. Model selection criteria

k APPA OCC Mismatch Entropy Relative 
Entropy DoSk

Linear

    1 -       -       -       - - -

    2 0.913 0.955      43.3 5.1      -0.022 0.022      18933.2 0.791 3.372

    3 0.870 0.894 0.840     4.7 123.6 9.8     0.047 -0.009 -0.037     45483.8 0.684 2.534

    4 0.804 0.897 0.790 0.866    6.7 570.5 5.2 28.7    0.033 -0.002 -0.006 -0.026    60476.2 0.667 2.185

    5 0.855 0.775 0.902 0.721 0.770   50.1 11.2 1218.9 4.6 8.0   -0.019 0.013 -0.001 0.029 -0.023   75782.7 0.641 2.094

    6 0.899 0.753 0.604 0.856 0.680 0.774  1180.5 12.3 12.4 48.3 5.8 7.7  -0.001 0.02 -0.006 -0.020 0.024 -0.018  87324.6 0.628 2.162

    7 0.627 0.902 0.638 0.851 0.674 0.754 0.764 8.3 1673.4 11.3 66.5 7.0 21.6 9.2 0.011 -0.001 0.008 -0.017 0.007 0.007 -0.016 96866.6 0.620 2.141

Quadratic

    1 -       -       -       - - -

    2 0.914 0.957      45.1 5.2      -0.021 0.021      18232.5 0.799 3.405

    3 0.895 0.869 0.843     121.8 4.8 9.8     -0.009 0.046 -0.037     45063.7 0.687 2.586

    4 0.807 0.898 0.791 0.865    6.6 544.1 5.3 29.6    0.034 -0.002 -0.007 -0.025    60179.2 0.669 2.239

    5 0.905 0.724 0.774 0.774 0.858   1204.5 4.6 11.2 8.3 52.2   -0.001 0.029 0.012 -0.022 -0.018   75130.0 0.644 2.152

    6 0.602 0.859 0.686 0.901 0.753 0.776  13.7 51.3 5.7 1181.0 11.9 7.9  -0.008 -0.019 0.025 -0.001 0.021 -0.017  86385.2 0.632 2.210

    7 *       *       *       * * *

Cubic

    1 -       -       -       - - -

    2 0.913 0.958      45.3 5.2      -0.021 0.021      18130.0 0.800 3.432

    3 0.894 0.871 0.843     120.1 4.8 9.9     -0.008 0.045 -0.037     44940.4 0.688 2.605

    4 0.790 0.897 0.809 0.864    5.3 524.5 6.6 29.4    -0.006 -0.002 0.034 -0.026    60145.7 0.669 2.261

    5 0.774 0.725 0.776 0.904 0.857   8.4 4.6 11.1 1186.6 52.4   -0.022 0.029 0.012 -0.001 -0.018   75059.3 0.644 2.165

    6 *       *       *       * * *

    7 *       *       *       * * *

Natural Splines

    1 -       -       -       - - -

    2 0.913 0.958      45.3 5.2      -0.021 0.021      18144.0 0.800 3.426

    3 0.870 0.894 0.843     4.8 120.4 9.9     0.045 -0.008 -0.037     44932.8 0.688 2.603

    4 0.808 0.791 0.899 0.864    6.6 5.3 533.7 29.3    0.034 -0.006 -0.002 -0.026    60164.0 0.669 2.259

    5 0.774 0.903 0.775 0.725 0.857   8.4 1170.4 11.1 4.6 52.5   -0.022 -0.001 0.012 0.029 -0.018   75036.4 0.644 2.162

    6 0.731 0.775 0.769 0.924 0.835 0.817  4.4 10.2 8.9 2842.5 106.1 104.5  0.022 -0.029 0.020 0.000 -0.007 -0.006  76197.2 0.675 2.974

    7 *       *       *       * * *
*indicates that the model did not converge, models highlighted were selected for further analysis. APPA, Average posterior probability of assignment; OCC, Odds of correct classification; DoSk, Degrees of freedom. A model is considered to 
have a good fit with APPA ≥0.7, OCC ≥5, Mismatch close to 0, Relative Entropy close to 1.
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Figure 2. Selected trajectory models and class specific ORC risk. A and B. Show the trajectories within the selected model from each shape specification. C and D. 
Show the hazard ratios with a 95% confidence interval, for the relative obesity related cancer risk compared to the leanest class within each model. For the time-to-
event analysis, both models were adjusted for smoking status (current, former, never) and stratified by age category at baseline (5-year age groups).
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Table 2. Baseline characteristics per class for 3-class Linear model

3-class Linear Lean-Moderate 
Increase 

Lean-Heavy 
Increase 

Medium  
Increase P-value

No of participants 82907 40932 7140  
Mean entry age, years 62.6 (5.29) 61.46 (5.34) 59.49 (5.04) <0.001
Body Measures
    Mean BMI at baseline, kg/m2 23.97 (3.4) 30.64 (5.17) 36.31 (9) <0.001
    Mean BMI at 18, kg/m2 19.69 (2.03) 22.11 (3.05) 26.06 (6.15) <0.001
    Mean BMI at 35, kg/m2 21.07 (2.27) 24.53 (3.57) 30.15 (8.21) <0.001
    Mean BMI at 50, kg/m2 22.52 (2.84) 27.92 (4.54) 34.37 (8.93) <0.001
    Mean maximum BMI, kg/m2 25.21 (3.7) 32.73 (5.49) 41.22 (9.01) <0.001
    Mean minimum BMI, kg/m2 19.27 (2.25) 21.4 (3.16) 23.61 (5) <0.001
    Mean absolute difference of maximum and minimum BMI, kg/m2 6.07 (3.75) 11.45 (5.62) 17.87 (8.53) <0.001
    Mean waist circumference, cm 80.12 (10.03) 93.47 (13.52) 101.56 (18.27) <0.001
    Mean hip circumference, cm 99.95 (8.03) 111.4 (12.17) 121.08 (18.69) <0.001
    Mean waist to hip ratio 0.80 (0.08) 0.84 (0.09) 0.84 (0.09) <0.001
Comorbidities
    Diabetes 2665 (3%) 4765 (12%) 1577 (22%) <0.001
    Heart disease 5876 (7%) 4189 (10%) 922 (13%) <0.001
Smoking Status  
    Never 36460 (44%) 18150 (44%) 2914 (41%) <0.001
    Former 32446 (39%) 16575 (40%) 3107 (44%) 
    Current 11589 (14%) 4966 (12%) 874 (12%) 
    Missing 2412 (3%) 1241 (3%) 245 (3%) 
Ethnicity
    Non-Hispanic White 76986 (93%) 36570 (89%) 6340 (89%) <0.001
    Black 2643 (3%) 2705 (7%) 525 (7%) 
    Hispanic 1242 (1%) 691 (2%) 102 (1%) 
    Asian 896 (1%) 220 (1%) 17 (<1%) 
    Other 276 (<1%) 171 (<1%) 31 (<1%) 
    Missing 864 (1%) 575 (1%) 125 (2%) 
Highest Educational level achieved, %
    <8 years 3400 (4%) 2553 (6%) 460 (6%) <0.001
    8-11 years 19259 (23%) 10545 (26%) 1749 (24%) 
    Completed high school 8612 (10%) 4605 (11%) 861 (12%) 
    Post high school or college 21216 (26%) 10118 (25%) 1864 (26%) 
    College/Postgraduate 28325 (34%) 11876 (29%) 1979 (28%) 
    Missing 2095 (3%) 1235 (3%) 227 (3%) 
Nutrition and Diet
    Mean alcohol consumption, g/day 7.09 (17.99) 4.79 (16.8) 3.82 (20.59) <0.001
    Mean red meat consumption, g/day 43.24 (37.99) 52.76 (50.28) 60.4 (62.55) <0.001
    Mean calorie consumption, kcal/day 1551.63 (671.36) 1623.62 (828.06) 1739.32 (982.23) <0.001
    At least 3 fruit servings a day, % 64382 (78%) 30900 (75%) 5302 (74%) <0.001
    At least 3 vegetable servings a day, % 57702 (70%) 27230 (67%) 4786 (67%) <0.001
    Mean total number of fruit servings a day 2.98 (2.37) 2.94 (2.49) 3.11 (2.91) 0.020
    Mean total number of vegetable servings a day 3.8 (2.51) 3.91 (2.77) 4.24 (3.12) <0.001
Drug Use
    Ibuprofen use 3+ times a week 14698 (18%) 10228 (25%) 2192 (31%) <0.001
    Missing 34800 (42%) 15595 (38%) 2608 (37%) 
    Aspirin use 3+ times a week 21085 (25%) 11155 (27%) 2072 (29%) <0.001
    Missing 28049 (34%) 14983 (37%) 2873 (40%) 
    HRT use ever, % 48505 (59%) 20312 (50%) 3140 (44%) <0.001
    Never 34402 (41%) 20620 (50%) 4000 (56%) 
Outcomes
    Number of cancer diagnoses, % 17446 (21%) 8808 (22%) 1471 (21%) 0.076
    Number of obesity related cancer diagnoses, % 9698 (12%) 5177 (13%) 858 (12%) <0.001
    Number of non-obesity related cancer diagnoses, % 7748 (9%) 3631 (9%) 613 (9%) 0.006
    Mean age of cancer diagnosis, y 70.29 (6.6) 69.33 (6.58) 66.95 (6.37) <0.001
    Mean age of obesity related cancer diagnosis, y 69.72 (6.56) 68.74 (6.5) 66.53 (6.44) <0.001
    Mean age of non-obesity related cancer diagnosis, y 70.99 (6.59) 70.17 (6.61) 67.54 (6.22) <0.001
P value <0.05 considered statistically significant and were calculated using a one-way ANOVA for continous variables and χ2 test for categorical. Data are given as mean 
± s.d unless stated otherwise.
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Table 3. Baseline characteristics per class for 4-class cubic model
4-class Cubic Lean-Moderate Increase Lean-High Increase Medium Increase Heavy Increase P-value
No of participants 55645 53522 19932 1880  
Mean entry age, years 62.71 (5.27) 62.1 (5.34) 60.63 (5.26) 57.84 (4.48) <0.001
Body Measures  
    Mean BMI at baseline, kg/m2 22.68 (2.93) 28.04 (3.67) 33.57 (7.25) 36.4 (9.9) <0.001
    Mean BMI at 18, kg/m2 19.28 (1.82) 21.03 (2.4) 23.83 (4.43) 26.36 (7.61) <0.001
    Mean BMI at 35, kg/m2 20.47 (1.99) 23.01 (2.62) 26.69 (5.34) 33.7 (10.46) <0.001
    Mean BMI at 50, kg/m2 21.54 (2.38) 25.64 (3.26) 30.95 (6.61) 35.71 (10.53) <0.001
    Mean maximum BMI, kg/m2 23.88 (3.07) 29.57 (4.19) 36.67 (7.31) 43.48 (10.29) <0.001
    Mean minimum BMI, kg/m2 18.83 (2.11) 20.56 (2.58) 22.42 (3.99) 24.07 (5.82) 0.295
    Mean absolute difference of maximum and minimum BMI, kg/m2 5.14 (3.34) 9.06 (4.54) 14.49 (6.93) 19.76 (9.84) <0.001
    Mean waist circumference, cm 77.42 (8.83) 88.96 (11.26) 97.77 (16.42) 101.31 (18.7) <0.001
    Mean hip circumference, cm 97.8 (7.04) 107.15 (9.47) 116.27 (15.82) 121.34 (19.48) <0.001
    Mean waist to hip ratio 0.79 (0.08) 0.83 (0.08) 0.84 (0.1) 0.84 (0.1) <0.001
Comorbidities  
    Diabetes 1290 (2%) 3841 (7%) 3437 (17%) 439 (23%) <0.001
    Heart disease 3675 (7%) 4750 (9%) 2318 (12%) 244 (13%) <0.001
Smoking Status  
    Never 24343 (44%) 23904 (45%) 8540 (43%) 737 (39%) <0.001
    Former 21456 (39%) 21577 (40%) 8262 (41%) 833 (44%) 
    Current 8249 (15%) 6431 (12%) 2512 (13%) 237 (13%) 
    Missing 1597 (3%) 1610 (3%) 618 (3%) 73 (4%) 
Ethnicity  
    Non-Hispanic White 52126 (94%) 48410 (90%) 17677 (89%) 1683 (90%) <0.001
    Black 1381 (2%) 2882 (5%) 1476 (7%) 134 (7%) 
    Hispanic 725 (1%) 980 (2%) 303 (2%) 27 (1%) 
    Asian 704 (1%) 361 (1%) 67 (<1%) 1 (<1%) 
    Other 173 (<1%) 203 (<1%) 99 (<1%) 3 (<1%) 
    Missing 536 (1%) 686 (1%) 310 (2%) 32 (2%) 
Highest Educational level achieved, %  
    <8 years 2075 (4%) 2909 (5%) 1318 (7%) 111 (6%) <0.001
    8-11 years 12365 (22%) 13689 (26%) 5073 (25%) 426 (23%) 
    Completed high school 5681 (10%) 5857 (11%) 2325 (12%) 215 (11%) 
    Post high school or college 14423 (26%) 13242 (25%) 4998 (25%) 535 (28%) 
    College/Postgraduate 19748 (35%) 16298 (30%) 5610 (28%) 524 (28%) 
    Missing 1353 (2%) 1527 (3%) 608 (3%) 69 (4%) 
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Nutrition and Diet  
    Mean alcohol consumption, g/day 7.56 (18.35) 5.64 (17.15) 4.11 (17.55) 3.99 (20.19) 0.003
    Mean red meat consumption, g/day 41.61 (36.74) 48.92 (44.53) 56.46 (55.06) 61.79 (70.1) 0.087
    Mean calorie consumption, kcal/day 1548.08 (665.71) 1581.32 (748.22) 1672.89 (883.73) 1806.17 (1065.58) <0.001
    At least 3 fruit servings a day, % 43324 (78%) 40984 (77%) 14865 (75%) 1411 (75%) <0.001
    At least 3 vegetable servings a day, % 38916 (70%) 36377 (68%) 13153 (66%) 1272 (68%) <0.001
    Mean total number of fruit servings a day 3 (2.36) 2.92 (2.4) 2.99 (2.67) 3.25 (3.16) <0.001
    Mean total number of vegetable servings a day 3.8 (2.51) 3.84 (2.6) 4.01 (2.88) 4.62 (3.81) <0.001
Drug Use  
    Ibuprofen use 3+ times a week 9101 (16%) 11755 (22%) 5660 (28%) 602 (32%) <0.001
    Missing 23979 (43%) 20971 (39%) 7378 (37%) 675 (36%) 
    Aspirin use 3+ times a week 13776 (25%) 14387 (27%) 5604 (28%) 545 (29%) <0.001
    Missing 18763 (34%) 18690 (35%) 7672 (38%) 780 (41%) 
    HRT use ever, % 33461 (60%) 28489 (53%) 9148 (46%) 859 (46%) <0.001
    Never 22184 (40%) 25033 (47%) 10784 (54%) 1021 (54%) 
Outcomes  
    Number of cancer diagnoses, % 11742 (21%) 11385 (21%) 4246 (21%) 352 (19%) 0.059
    Number of obesity related cancer diagnoses, % 6467 (12%) 6559 (12%) 2502 (13%) 205 (11%) <0.001
    Number of non-obesity related cancer diagnoses, % 5275 (9%) 4826 (9%) 1744 (9%) 147 (8%) 0.001
    Mean age of cancer diagnosis, y 70.37 (6.59) 69.91 (6.62) 68.31 (6.48) 65.68 (6.14) <0.001
    Mean age of obesity related cancer diagnosis, y 69.78 (6.55) 69.33 (6.59) 67.81 (6.38) 65.5 (6.21) <0.001
    Mean age of non-obesity related cancer diagnosis, y 71.09 (6.58) 70.68 (6.58) 69.03 (6.56) 65.93 (6.06) <0.001
P value <0.05 considered statistically significant and were calculated using a one-way ANOVA for continous variables and χ2 test for categorical. Data are given as mean ± s.d unless stated otherwise.
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However, the proportion of overall cancers, and 
obesity-related cancers, were similar across all 
classes. 

As the sample size is quite large, most of the 
differences in characteristics between classes 
appear significant. However, differences can be 
seen in the reported significance of some char-
acteristics depending on model assignment. 
For example, in the 3-class linear model, red 
meat consumption is considered statistically 
significant, however in the 4-class cubic model, 
this characteristic is not reported as significant-
ly different. This could impact further analyses 
depending on model choice, as a researcher 
using the 4-class cubic model would discount 
this variable from further analyses, whereas it 
would be included if using the 3-class linear 
model.

Overlap in resulting classes

Mapping the overlap in class membership 
between the two models demonstrates that  
the “lean-moderate increase” group in the lin-
ear model directly maps to and forms the 
entirety of the “lean moderate” group from the 
cubic model (Figure 3). The “lean-high increa- 
se” group in the cubic model seems to be made 
up of a split of participants from the “lean- 
moderate increase” and “lean-high increase” 
groups in the linear model. Finally, the “high 
increase” group in the cubic model appear to 
be a small subset of the “medium increase” 
group in the linear model and the “medium 
increase” group from the cubic model is mostly 
made up of the “lean-high increase” group and 
a small percentage of the “medium increase” 
group from the linear model. These results 
show that, moving from a 3-class model to a 
4-class model, doesn’t just add a new class (by 
splitting a previous group of individuals), but 
rather generates a number of very different 
classes in terms of individuals’ composition.

Discussion

Summary

LCTMs are increasing in popularity as a tool to 
explore subgroups of patients with differing 
patterns of change in some disease measure 
over time. However, the extent to which any 
resulting model truly represents a population’s 
heterogeneity is sometimes over-relied upon. 
Here we show that depending on the model 

specification different patterns and propor-
tions of the trajectory assigned to each trajec-
tory can change. For example, patients that 
form the “heavy increase” curve in the cubic 
model were included in the “medium increase” 
group in the linear model. When related to can-
cer incidence risk, only the linear “medium 
increase” group shows a significant effect of 
increased weight.

When applying the results of latent class mod-
elling to a biological exposure, a clinically rele-
vant explanation can often be applied to any 
pattern that occurs because of the enormous 
heterogeneity in a given disease’s population. 
The results presented here demonstrate that 
care is needed when interpreting such models 
in a clinical setting. This could have clinical 
implications when implementing intervention 
strategies and cut-off values for intervention. 
To counter this, if using these models in a 
health setting, we advise clear presentation of 
results to include the caveats of using a model 
based on probability assignment and showing 
alternative models that have been tested 
before deciding on the “best” one. 

Strengths and limitations

The strengths of the model development pro-
cess shown above were the comprehensive 
selection and validation steps taken to ensure 
that the model best represented the data and 
presented plausible changes in BMI over time. 
This built on the current framework, developed 
previously within our research team [16], by the 
incorporation of multiple start points to ensure 
a reproducible final model and the extension of 
current code to include missing data at differ-
ent time points for the Elsensohn’s residual 
plots (Supplementary Figure 1).

There was one key limitation. Due to computa-
tional power (using a high performing computer 
cluster, these models generally took 7 days to 
run), a maximum of 7 classes only could be fit-
ted to the data before convergence failed. 
However, as the models selected above 
appeared to have reached the best fitting 
model at 3/4 classes, this is unlikely to have 
overly impacted the results presented.

Context

The creation of the GRoLTs publishing checklist 
highlights the lack of reporting of model selec-
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Figure 3. Chord plot showing population mapping between the linear and cubic models. The width of the bands between models denotes the proportion of individu-
als that are shared between the two corresponding classes. The bands in the top half relate to the 4 classes in the cubic model, while the bottom bands relate to 
the three classes in the linear model.
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tion in current latent class publications. Al- 
though a useful guide for improving transpar-
ency in the development of these models, this 
serves merely as a reporting guideline, rather 
than a good practice handbook. This 16-item 
checklist focuses on the importance of includ-
ing model selection, although more detail 
should be included to aid researchers [17]. In 
the guidance, BIC is suggested but there is no 
mention of other metrics such as the APPA, 
OCC or mismatch, as additional model checks, 
as has been suggested previously [18]. APPA 
measures how well individuals are assigned to 
their respective classes, and the overall aver-
age probability of being assigned to a class, 
whereas OCC examines the usefulness of the 
fitted model by comparing the odds ratio of the 
class assignment compared to a random 
assignment. Finally, mismatch describes the 
difference between originally estimated class 
proportions and the final model class propor-
tions, therefore indicating how “certain” the 
assignment of individuals to each class are. All 
of this is important to consider when trying to 
generalise the outcome of these models onto a 
larger population.

BIC selection using the “elbow criterion” is 
equally subjective as it is up to the researcher 
to decide when the “bend” is and when a 
decrease in BIC does not necessarily mean a 
significantly better model. There is currently an 
R package (available at https://github.com/
hlennon/LCTMtools) which calculates these 
statistics and compare the outputs of different 
models developed through the lcmm software. 
This gives a better indication of how well indi-
viduals are assigned to their respective classes 
and how well the overall model performs, in 
conjunction with the BIC statistic.

Despite the publication of these guidelines, 
latent class reporting still has a long way to go. 
For example, many journals have published 
studies on latent classes that simply choose 
the “best” model using BIC alone without extra 
statistical tests [19]. When used alone this 
could lead to overfitting the model to the data-
set used and creating a model which is too spe-
cific to the cohort and does not generalise. 
Similar to overfitting in prediction models, this 
has a knock-on effect when class membership 
is applied to time to event data and produces a 
larger positive effect than would be observed in 
a general population.

The output of a latent class model is extremely 
dependent on the cohort it is derived from. 
More research is needed to make these mod-
els generalisable to the larger population. 
Therefore, reported results might only illustrate 
changes in modelling assumptions rather than 
true population changes. An example of this is 
a latent class analysis study by Ferreira et al. 
(2018) that clearly states the results are 
hypothesis generating only and need validation 
to assess the clinical implication.

Validation and verification of subgroup discov-
ery is equally important. One way to validate 
any results would be to mimic the approach 
commonly taken in prediction modelling and 
use a new cohort to “test” the final model 
“learnt” from original cohort. As yet, there is no 
specific framework for conducting such valida-
tion in LCTMs, but it would give clear results  
as to whether the classes are “true” to a popu-
lation rather than being cohort specific. 
Similarly to this idea, Seymour et al. (2019) 
derived latent classes in one cohort and then 
re-derived their groups in an external cohort 
and assessed the similarity.

Despite some limitations, latent classes can be 
a very useful tool for identifying subgroups that 
have not been previously categorised. Many 
studies have showed the added benefit of this 
analysis. For example, through clustering analy-
sis, Sørlie et al. (2001) were able to differenti-
ate different clinical outcomes between tumour 
subclasses and Geifman et al. (2018) identified 
3 distinct subgroups of Alzheimer’s patients 
with varying rates of cognitive decline and dis-
ease progression which could inform better 
patient selection for clinical trials.

Conclusions

Here, we showed that the predicted trajectory 
patterns and outcome probabilities differ when 
pre-specified cubic versus linear shapes are 
tested on the same data. Furthermore, such 
model specification differences could lead to 
differences in the time-to-event outcome haz-
ard ratios if using class membership as a vari-
able in a Cox model. Inevitably, this can have an 
impact on the reported relationship between 
variables and outcomes, as well as the signifi-
cance of particular groupings; hence, great 
care should be taken when it comes to model 
selection. 
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Overall we show that there is evidence to sug-
gest that there is a need for more robust meth-
ods to be implemented when fitting and report-
ing latent class trajectory models. We recom-
mend that stringent guidelines should be 
enforced for the reporting of model develop-
ment and testing, to ensure that results are 
reproducible and transparent.
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Supplementary material

Obesity-related cancers

The International Agency for Research on Cancer (IARC) identified 13 obesity-related cancers - these 
are (with ICD-10 codes) as follows: Oesophagus - lower third (C15.5, C15.8); Colorectal (C18.0-18.9, 
C19.9, C20.0); Liver (C22.0); Gallbladder (C23.9); Pancreas (C25.0-25.9); Breast (C50.0-50.9); Corpus 
Uteri/Endometrial (C54.0-54.9, C55.9); Ovary (C56.9); Kidney (C64.9); Gastric cardia (C16.0); Malignant 
meningioma (C70.0, C70.1, C70.9); Thyroid (C73.0, C73.9); and Multiple myeloma (C90.0). We did not 
stratify breast cancer by menopausal status. 

Lauby-Secretan B, Scoccianti C, Loomis D, Grosse Y, Bianchini F, Straif K. Body Fatness and Cancer-
Viewpoint of the IARC Working Group. Colditz G, Anderson AS, Herbert RA, Kaaks R, Thompson HJ, 
Baker JL, Breda J, Byers T, Cleary MP, DiCesare M, Gapstur SM, Gunter M, Hursting SD, Leitzmann M, 
Ligibel J, Renehan A, Romieu I, Shimokawa I, Ulrich CM, Wade K, Weiderpass E. N Engl J Med 2016; 375: 
794-8.

Random effect selection

To determine the random effects of the model, a 5-class quadratic model with no random effects was 
run, in line with other results in the literature. If the residuals were a horizontal line, then a random 
intercept could be considered, but no extra random effects needed to be incorporated in the model. If 
a diagonal line was observed then a linear random effect structure was suggested, and if a curve was 
observed then a quadratic random effect structure could be assumed. If an S-shaped curve was 
observed, then a cubic structure was chosen. 

The figure below indicates the random effects for the AARP cohort in both men and women. In both 
panels, in at least 2 of the classes an ‘S-shaped’ curve is observed, therefore, a cubic random effect 
structure was chosen.



Life-course BMI, weight gain, obesity related cancer

2 

(A) shows the residuals for men, (B) for women. The age at entry was used, categorised into 5-year groups.
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Supplementary Figure 1. Elsensohn’s residual plots for each model. Residuals shown as a coloured “envelope” 
around the mean of each trajectory. Dashed lines indicate the border of each residual envelope. (A) shows the 
residuals the cubic 4 class model, (B) for the linear 3 class model. Similar-sized envelopes and parallel boundaries 
indicate a better fit.


