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Testis-enriched Asb15 is not required  
for spermatogenesis and male fertility in mice 
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Abstract: Background: The function of Asb15, which encodes an ASB protein with ankyrin (ANK) repeats and a 
C-terminal suppressor of cytokine signaling (SOCS) box motif, in male germ cells is poorly understood. Because 
expression of Asb15 is enriched in mouse testis, it may have a role in spermatogenesis. Methods and results: We 
used a computer-assisted sperm analysis (CASA) system to analyze sperm from Asb15 gene knockout (KO) mice 
that we generated using the clustered regularly interspaced short palindromic repeats (CRISPR)-associated protein 
9 (Cas9) technique. Histological staining and immunostaining were used to evaluate spermatogenesis in Asb15-
KO mice. Asb15-KO and wild-type mice showed no differences in histology or in semen quality, fertility, or sperm 
apoptosis. Asb15- and Asb17-double KO (dKO) mice were generated to determine whether Asb17 compensated for 
the loss of Asb15. However, Asb15/17-dKO mice also showed normal fertility, except for an increase in giant cells 
in testicular tubules, suggesting a minor functional compensation between the two genes during spermatogenesis. 
Conclusions: Our study suggests that Asb15 was individually not required for spermatogenesis or for fertility in mice. 
However, further investigation might be needed to reach a firm conclusion. These findings can prevent redundant 
research by other scientists and provides new information for further studies on the genetics of fertility in humans. 
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Introduction

There are 18 proteins in the ASB family, and all 
contain N-terminal ankyrin (ANK) repeats and  
a suppressor of cytokine signaling (SOCS) box 
at the C terminus [1]. They provide the sub-
strate recognition subunit for some Elongin-
Cullin-SOCS (ECS) E3 ubiquitin ligases that 
function as cell cycle regulators, skeletal mem-
brane proteins, receptors, and transcription 
factors [2]. Several ASB family proteins, includ-
ing those encoded by the Asb3, Asb4, Asb8, 
and Asb9 genes, are expressed primarily in 
mouse testis and function during spermatogen-
esis [3-5]. Asb1-gene knockout (KO) mice lack 
spermatogenesis from some seminiferous tu- 
bules [6]. Recently, we found that Asb17 is a 
key factor for spermiation [7]. 

Asb15, a member of the ASB protein family, 
helps in regulating the differentiation of muscle 
cells [8, 9]. However, its function in male germ 
cells is not known. During spermatogenesis, 
sequential mitosis in the spermatogonial stem 
cells produces spermatocytes. This is followed 
by the transformation of spermatocytes into 
spermatids via two rounds of meiosis, and the 
spermatids undergo morphological remodeling 
[10]. Spermatogenesis involves developmen-
tally regulated, stage-specific gene expression 
in the germ cells [11-13]. Elucidating the genes 
and pathways involved in male gametogenesis 
may identify candidates for developing thera-
pies to treat male infertility. Here, we character-
ized Asb15-KO mice to determine the role of the 
Asb15 gene, which is highly expressed in mouse 
testis, in spermatogenesis. 
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Materials and methods

Animals

We produced CRISPR/Cas9 Asb15-KO mice as 
described previously [14, 15] using a single 
guide (sg) RNA that targeted exon 6 of Asb15. 
The target sequences were 5’-GGCAACGTCC- 
ACTTGAGAGACGG-3’ and 5’-CCACTGTGACGTG- 
TTAGAACATC-3’. Cas9 mRNA was made as 
described previously [16, 17]. We microinjected 
zygotes taken from a CD-1 mouse with both 
sgRNA and Cas9 mRNA, and we generated het-
erozygous mice by backcrossing the founder 
mice with CD-1 mice. We used the backcross- 
ed CD-1 Asb15-KO and wild-type (WT) mice in 
the experiments as described here. To deter-
mine the genotypes, we sequenced polymerase 
chain reaction (PCR) products made with fol-
lowing forward (5’-ATACAACACCAGCCTTGAC-3’) 
and reverse (5’-GCACGAAGATAA GACAGACT-3’) 
primers. Asb17-KO mice were obtained as pre-
viously described [7]. Asb15-KO mice and 
Asb17-KO mice were intercrossed to produce 
Asb15/17-double KO (dKO) mice. Mice were fed 
under a specific pathogen-free (SPF) condition 
at Nanjing Medical University. Our procedures 
followed with the Guide for the Care and Use  
of Laboratory Animals and were approved by 
the Animal Ethical and Welfare Committee of 
Nanjing Medical University (No. 2004020). 

Fertility test

Adult WT(+/+), Asb15(-/-)-KO, Asb17(-/-)-KO, and 
Asb15/17-dKO males were mated with WT 
females (ratio of 1:2) continuously for three 
months with numerical counts of all litters. 

RNA extraction and reverse-transcriptase (RT)-
quantitative PCR (RT-qPCR)

We used TRIzol™ Reagent (Invitrogen, Carlsbad, 
CA, USA) to extract RNA from testicular tissues 
according to the manufacturer’s instructions. 
The RNA was reverse-transcribed into cDNA 
that was quantitated by quantitative real-time 
PCR (Applied Biosystems, Foster City, CA, USA) 
using 18S rRNA as the internal control. Asb15 
and 18S rRNA primers were described previ-
ously [14]. 

Histological analysis

We fixed the testes and epididymides from 
Asb15-KO, Asb15/17-dKO, and WT adults for 

48 h using modified Davidson’s fluid. We dehy-
drated the specimens in successively higher 
concentrations of ethanol and then embedded 
the samples in paraffin. The specimens were 
sectioned to four microns, then rehydrated,  
and stained with either periodic acid Schiff 
(PAS) or hematoxylin and eosin (H&E). Spe- 
rm collected from the cauda epididymis of 
8-12-week-old WT and Asb15-KO mice were 
suspended in a culture medium to assess the 
semen quality using the Ceros™ II Sperm 
Analysis System (Hamilton Thorne, Beverly, MA, 
USA). We analyzed the ultrastructure of sperm 
from 8-12-week-old WT and Asb15-KO mice 
after they were fixed in 2% (v/v) glutaraldehyde 
overnight and then placed in OsO4 (2%, w/v)  
for 2 h. The specimens were embedded in 
Araldite and sectioned to 80 nm. Specimens 
were examined using a JEM-1410 transmission 
electron microscope (JEOL, Tokyo, Japan). 

Immunofluorescence

Deparaffinized, rehydrated sections were block- 
ed using 5% (w/v) bovine serum albumin (BSA) 
(Sunshine, Nanjing, China) after antigen retriev-
al treatment and were then incubated with pri-
mary antibodies at 4°C overnight (Table S1). 
Slides were washed with phosphate-buffered 
saline (PBS) twice and incubated with Alexa-
Fluor secondary antibodies (Thermo Scientific, 
Waltham, USA). We used a confocal laser scan-
ning microscope (Zeiss LSM710, Carl Zeiss, 
Oberkochen, Germany) to collect immunofluo-
rescent images. 

TUNEL assay

Apoptotic cells were assessed using a terminal 
deoxynucleotidyl transferase dUTP nick-end 
labeling (TUNEL) assay [18, 19]. We treated tis-
sue sections with proteinase K at 20 μg/mL for 
10 min at room temperature prior to incubation 
in an equilibration buffer for 30 min. Sections 
were then incubated in BrightRed Labeling 
Buffer for 60 min at 37°C, washed three times 
in PBS, and stained with 4’,6-diamidino-2-phe-
nylindole (DAPI). We used a confocal laser scan-
ning microscope (Zeiss LSM710, Carl Zeiss, 
Oberkochen, Germany) to collect images. 

Chromosome spread

Chromosome spreads were made as described 
previously [20]. We digested testicular tissue 
from Asb15-KO and WT mice with trypsin and 
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collagenase for 15 min at 37°C, immersed  
the tissue in an extraction buffer that was hypo-
tonic, and resuspended the cell pellets in 100 
mM sucrose before spreading the tissue on 
slides coated with a fixative. We washed the 
fixed specimens using PBS and immunostained 
them using the appropriate primary antibodies 
(Table S1). 

Statistical analyses

Data are presented as the mean ± standard 
deviation. Statistical significance was deter-
mined by an unpaired Student’s t-test or analy-
sis of variance with P<0.05 considered to be 
statistically significant. 

Results

Asb15 was expressed primarily in mouse tes-
tes

ASB15 is conserved among species that have 
proteins with the classic ANK repeats com-
bined with the SOCS motif (Figure S1). In- 
formation from the BioGPS database (http://
biogps.org) showed that ASB15 was expressed 
primarily in the testis (Figure S2A). Further, 
Asb15 transcripts from multiple murine tissues 
analyzed by RT-PCR (Figure S2B) gave results 
similar to the data in the BioGPS database 
(Figure S2A). 

Generation of Asb15-KO mice

We constructed the first reported Asb15 global 
KO mouse strain by creating a 14-bp deletion  
in exon 6 using CRISPR/Cas9 genome editing 
(Figure 1A) that we confirmed by sequencing 
PCR products made from WT and mutant mice 
(Figure 1B). The deletion resulted in a frame-
shift mutation that predicted a truncated 210 
amino-acid protein (Figure 1C). Moreover, 
Asb15 transcripts decreased dramatically in 
Asb15-KO testes vs. WT (Figure 1D), indicating 
that the Asb15 mutation led to the rapid decay 
of the Asb15 mRNA. 

Asb15-KO mice are fertile

Asb15-KO mice were viable with normal fertili-
ty, and they produced litter sizes similar to 
those of WT mice (Figure 2A). WT and Asb15-
KO mice also had testes of similar size and 
weight (Figure 2B and 2C). An analysis of sperm 
from Asb15-KO mice using CASA revealed that 

sperm concentration, sperm motility, and the 
progressive ratio of sperm were similar to the 
controls (Figure 2D-F). Sperm morphology by 
optical microscopy (Figure 2G and 2H) or trans-
mission electron microscopy (TEM) (Figure 2I) 
was also similar in Asb15-KO and WT mice. 
Therefore, loss of Asb15 did not affect sperm 
quantity or quality and, hence, had no effect on 
fertility in mice. 

Asb15-KO mice showed normal spermatogen-
esis

We examined germ cell development within the 
seminiferous epithelium using PAS staining. 
Similar to WT mice, testes from Asb15-KO mice 
exhibited complete spermatogenesis, display-
ing all stages of the spermatogenetic cycle 
(Figure 3A). Further, the epididymis in Asb15-
KO mice showed no histological changes com-
pared to WT mice (Figure 3B and 3C). Thus, 
loss of Asb15 had no adverse effects on 
spermatogenesis.

To better visualize spermatogenesis, Lin28, 
SOX9, PNA, HSD-3β, and TUNEL proteins were 
fluorescently labeled to quantify spermatogo-
nial stem cells, Sertoli cells, acrosomes, Leydig 
cells, and apoptotic cells in testes, respectively. 
We found no difference in the number of these 
cell types when comparing Asb15-KO and WT 
mice (Figure 4A-K). To evaluate meiotic pro-
gression, we performed a chromosome spread 
experiment. We immunostained specimens 
using both SCP3 (a protein that identifies the 
lateral element of the synaptonemal complex) 
and γH2AX (a protein that identifies double-
stranded DNA breaks). Using the distribution of 
SCP3 and γH2AX [21, 22], we identified the 
substages of meiotic prophase, including le- 
ptotene, zygotene, pachytene, and diplotene. 
These experiments revealed no morphological 
changes for SCP3 and γH2AX in Asb15-KO 
spermatocytes compared with the controls 
(Figure 4L). Therefore, Asb15 was not required 
for mouse spermatogenesis. 

Asb15/17-dKO mice showed normal sper-
matogenesis

We observed previously that several ASB fa- 
mily proteins could compensate for the loss of 
Asb12 in mouse testes [14]. To determine 
whether other ASB protein(s) could compen-
sate for the loss of Asb15, we analyzed the 
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expression pattern of ASB genes in human and 
mouse testes based on the single-cell RNA 
sequencing (scRNA-seq) data for human and 
mouse testes available in public databases 
[23-25]. In human and mouse testes, Asb15 
and Asb17 were co-expressed in spermatids 
(Figures 5 and 6), suggesting that Asb17 could 
compensate for the loss of Asb15. To deter-
mine the effects of Asb15/17 deficiency on 
spermatogenesis, we generated Asb15/17-
dKO mice. 

Testicular morphology, assessed by PAS stain-
ing, revealed intact seminiferous tubules show-
ing normal spermatogenesis in WT, Asb15-KO, 

Asb17-KO, and Asb15/17-dKO mice (Figure 7A). 
However, the number of multinuclear giant cells 
increased significantly in Asb15/17-dKO mice 
compared to the other three genotypes (Figure 
7A and 7B, black arrows). The fertility test 
showed that Asb15/17-dKO males produced a 
similar number of pups per litter compared to 
the WT group (Figure 7C), suggesting that loss 
of Asb15/17 had a minor effect on mouse 
spermatogenesis.

Discussion

Spermatogenesis, which produces haploid 
sperm, is an important process in sexual repro-

Figure 1. Asb15-KO mice. A. Diagram of CRIS-
PR/Cas9-mediated Asb15 genome editing. 
B. Sanger sequencing of Asb15-KO and WT 
mice. C. The predicted truncated Asb15-KO 
protein in mice. D. Asb15 mRNA expression 
in Asb15-KO and WT mice by RT-qPCR. n=3; 
*, P<0.05. WT, Wild Type; Mut, Mutation. 
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Figure 2. Fertility of Asb15-KO mice. (A) Fertility test for Asb15-KO and WT male mice. (B) Testes from Asb15-KO and 
WT mice. Scale bar =5 mm. (C) Testis/body weight ratio, (D) sperm counts, (E) sperm motility, and (F) progressive 
ratio for Asb15-KO and WT mice using CASA. M, million. (G) Sperm in the cauda epididymis and (H) quantification 
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duction; hence, it has been conserved in evolu-
tion [26], and genes that are differentially 
expressed in the testes appear to be essential 
for spermatogenesis [27-29]. However, other 
studies have demonstrated that some testis-

enriched genes have no effect on male fertility 
[30, 31]. 

In this study, we found that Asb15 was 
expressed primarily in mouse testis, suggest-

of sperm in Asb15-KO and WT mice using H&E staining. Scale bar =20 μm. (I) Sperm in the cauda epididymis of 
Asb15-KO and WT mice shown by TEM. Arrows show the axonemes that have a 9+2 microtubule arrangement. Scale 
bar =500 nm. Ac, Acrosome; Nu, Nucleus; ns, not significant. For (A, C, D, E, F, H) n=3, P>0.05.

Figure 3. Histology of the testes and epididymides. A. Staining of sections of the testis from Asb15-KO and WT mice 
using PAS. B. Stained sections of the caput epididymides from Asb15-KO and WT mice using H&E. C. Stained sec-
tions of the cauda epididymides from Asb15-KO mice and WT using H&E. Scale bar =50 μm.
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Figure 4. Spermatogenesis in Asb15-KO mice. (A) Immunostaining and (B) quantification of Lin28 in the testes from Asb15-KO and WT mice. (C) Immunostaining and 
(D) quantification of SOX9 in the testes from Asb15-KO and WT mice. (E) Immunostaining of PNA, (F) quantification of round spermatids (Rs), and (G) quantification 
of elongating/elongated (Es) spermatids in testes from Asb15-KO and WT mice. (H) Immunostaining and (I) quantification of HSD-3β in the testes from Asb15-KO 
and WT mice. (J) Apoptotic cells and (K) quantification of apoptotic cells in the testes from Asb15-KO and WT mice by TUNEL assay. (L) Co-immunostaining for γH2AX 
and SCP3 in the chromosome spread for spermatocytes from Asb15-KO and WT mice. (M) Quantification of (L). For (A, C, E, H, and J), scale bar =50 μm; For (L), 
scale bar =5 μm, For (B, D, F, G, I, and K), n=3, P>0.05. DAPI, 4’,6-Diamidino-2-Phenylindole; γH2AX, H2A.X Variant Histone; HSD-3β, Hydroxy-Delta-5-Steroid Dehy-
drogenase, 3 Beta; Lin28, Lin-28 Homolog; PNA, Peanut Agglutinin; SCP3, Synaptonemal Complex Protein 3; SOX9, SRY-Box 9; TUNEL, Terminal Deoxynucleotidyl 
Transferase-dUTP Nick-End Labeling. ns, not significant.
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Figure 5. ScRNA-seq of human 
testes for 18 ASB genes suggest-
ed that ASB15 and ASB17 were 
co-expressed in spermatids.
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ing that it plays an important role in spermato-
genesis and male fertility. Therefore, we gener-
ated an Asb15-KO mouse line using CRISPR/
Cas9 technology to determine the role of Asb15 
in mice. However, the mutant revealed no histo-
logical changes nor any effects on fertility, indi-

cating that Asb15 was dispensable for sper-
matogenesis. Data on scRNA-seq in human 
and mouse testes showed that Asb15 and 
Asb17 were co-expressed in spermatids, sug-
gesting that expression of these two genes 
could result in compensation for the loss of the 

Figure 6. ScRNA-seq of mouse testes for 16 Asb genes suggested that Asb15 and Asb17 were co-expressed in 
spermatids. Asb16 and Asb18 were not detected. 

Figure 7. Fertility of Asb15/17-dKO mice. (A) Staining of sections of the testis from Asb15-KO, Asb17-KO, Asb15/17-
dKO, and WT mice using PAS. Scale bar =50 μm. (B) Quantification of giant cells in (A). n=3, P<0.05 (*). (C) Fertility 
test for Asb15/17-dKO and WT mice. n=3, P>0.05. dKO, Double Knockout; ns, not significant. 
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other gene in the testes. We created a double 
mutant mouse lacking both genes to deter- 
mine whether Asb17 compensated for Asb15. 
However, adult Asb15/17-dKO mice had normal 
fertility, indicating that Asb15 and Asb17 are 
dispensable for male reproduction. Interes- 
tingly, the number of multinuclear giant cells 
was significantly greater in Asb15/17-dKO mi- 
ce, indicating that the double KO strain might 
have a minor effect on spermatogenesis with 
no effect on male fertility. Our study provides 
genetic and phenotypic information that can 
prevent redundant research by other scientists, 
as well as information for further studies on the 
genetics of fertility in humans.

In summary, we identified Asb15 as a gene with 
high levels of expression in the testis and gen-
erated Asb15-KO and Asb15/17-dKO mice. 
These mutants had normal spermatogenesis 
and normal fertility, indicating that Asb15 and 
Asb17 are not necessary for male fertility. 
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Table S1. Antibodies used in the study
Antigen Source Company Application Dilution RRID
Lin28 Rabbit Abcam IF 1:400 AB_776033
SOX9 Rabbit Millipore IF 1:200 AB_2239761
HSD-3β Mouse Santa Cruz IF 1:500 AB_2721058
SCP3 Rabbit Abcam IF 1:200 AB_301639
γH2AX Mouse Abcam IF 1:500 AB_470861
Lin28, Lin-28 Homolog; SOX9, SRY-Box 9; HSD-3β, Hydroxy-Delta-5-Steroid Dehydrogenase, 3 Beta; SCP3, Synaptonemal Com-
plex Protein 3; γH2AX, H2A.X Variant Histone. 

Figure S1. The result of sequence alignment of Asb15 proteins among species suggested that Asb15 is an evolu-
tionarily conserved gene among species. 
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Figure S2. Expression profiling of Asb15 in mice. A. Bioinformatic analysis of Asb15 expression in multiple tissues 
and cells of mice. The data are acquired from the BioGPS database based on microarray analysis (http://biogps.
org). B. Reverse transcription PCR analysis of Asb15 in multiple murine tissues. Asb15, ankyrin repeat and SOCS 
box protein 15.  


