Review Article Clinical effectiveness and reliability of linezolid in the treatment of pulmonary tuberculosis complicated with severe pneumonia: a meta-analysis

Wanfeng Wu¹, Li Li², Shaojun Duan³, Yunyun Wang³

¹Department of Infectious Diseases, Jincheng People's Hospital, Jincheng 048026, Shanxi, China; ²Department of Science and Education, Central Laboratory, Wuhan Pulmonary Hospital (Wuhan Institute of Tuberculosis Control), Wuhan 430030, Hubei, China; ³Department of Pharmacy, Jincheng People's Hospital, Jincheng 048026, Shanxi, China

Received April 6, 2022; Accepted September 9, 2022; Epub November 15, 2022; Published November 30, 2022

Abstract: Objective: To systematically evaluate the clinical effect and reliability of linezolid in the treatment of pulmonary tuberculosis complicated with severe pneumonia. Methods: A comprehensive search was conducted to screen the published literature on linezolid therapy in pulmonary tuberculosis complicated with severe pneumonia in PubMed, Embase, Web of Science, Cochrane Library, and published databases of China National Knowledge Infrastructure. After screening the internal data of the literature, the quality of the literature was assessed uniformly. RevMan5.3 was used for meta-analysis. Results: The search identified 1202 clinical patients in 24 articles. Metaanalysis results revealed that linezolid treatment was associated with better bacterial clearance rate (OR=3.66 [2.41, 5.58], P<0.001) and superior total clinical effective rate (OR=5.80 [3.92, 8.58], P<0.001) in patients. The linezolid treatment resulted in lower levels of serum inflammatory factors TNF- α (WMD=-10.75 [-13.63, -7.87], P<0.001), IL6 (WMD=-10.16 [-13.50, -6.82], P<0.001), and IL8 (WMD=-8.31 [-10.41, -6.21], P<0.001). There was no obvious distinction in the occurrence of adverse reactions between the linezolid group and the control group (OR=1.34 [0.86, 2.08], P=0.19). Conclusion: Linezolid combined with conventional anti-tuberculosis treatment has a better bacterial clearance rate and clinical total effective rate than conventional anti-tuberculosis programs with reliable safety.

Keywords: Linezolid, pulmonary tuberculosis complicated with severe pneumonia, effectiveness, reliability, metaanalysis

Introduction

Pulmonary tuberculosis (PT) is an infectious disease caused by Mycobacterium tuberculosis. PT damages multiple organs of the patients, with the most common in lung [1]. Patients with pulmonary tuberculosis show typical clinical symptoms including cough, low-grade fever, and expectoration. PT patients commonly suffer declined immunity and are prone to infections by other bacteria, resulting in severe pneumonia. The overall difficulty of the treatment and fatality rate is high [2].

Linezolid is an antibiotic of the oxazolidinone family. The specific mechanism of action is the inhibition of protein synthesis in bacteria. It reduces bacterial growth and controls infection. In recent years, many scholars have studied the clinical effectiveness of linezolid in pulmonary tuberculosis complicated with severe pneumonia. The clinical effectiveness and reliability of linezolid in the therapy of pulmonary tuberculosis complicated with severe pneumonia have not been systematically assessed in evidence-based medicine [3]. This study aimed to verify the effectiveness and reliability of linezolid in the treatment of pulmonary tuberculosis complicated with severe pneumonia by a meta-analysis.

Materials and methods

Literature search

A comprehensive search was conducted to screen the published literature on linezolid therapy in pulmonary tuberculosis complicated with severe pneumonia. The literature searched included PubMed, Embase, Web of Science, Cochrane Library, China Biomedical Documentation, and CNKI, up to March 2022. The search strategy was joint theme keywords and free words: (((pulmonary tuberculosis) OR (pulmonary tuberculosis complicated with severe pneumonia)) OR (pulmonary tuberculosis)) AND (linezolid). The search languages were Chinese and English.

Inclusion and exclusion criteria

Inclusion criteria: RCT studies that investigated the patients with clinically diagnosed pulmonary tuberculosis and severe pneumonia, provided relevant clinical data in terms of overall clinical effectiveness, bacteria clearance rate, inflammatory factors, and adverse reactions. The therapy regimen of the experimental group used linezolid.

Exclusion criteria: Repeated literature; reviews; conference reports, books, case reports, or letters; failure to extract data in a timely manner or insufficient data.

Literature screening and data extraction

For the retrieved literature, Wanfeng Wu and Li Li initially read the titles and abstracts. They preliminarily screened out 366 articles in accordance with the established relevant inclusion and exclusion criteria. After reading the full text, the researchers screened out 24 articles that were included in the meta-analysis. Ambiguities or disagreements were solved by consulting a third person. Li Li and Shaojun Duan were responsible for data extraction and cross-checking. A third researcher reviewed the results. The extracted data from the included studies included publication year, author, country, patient sample size, study site, intervention measures, and outcome variables.

Literature quality assessment

Shaojun Duan and Yunyun Wang analyzed the quality of the included studies based on the Newcastle-Ottawa Scale (NOS). Articles with a score \geq 6 were included in this study.

Statistical analysis

RevMan was used for the meta-analysis. For enumeration data, odds ratio (OR) and 95% confidence intervals were used to describe the effect of linezolid on various observing indicators. For the measured data, weighted mean distinction (WMD) and 95% confidence interval were used. I^2 test and P value were used to analyze the heterogeneity among multiple studies. If l^2 >50 or P<0.1, it implied that the included studies had an obvious heterogeneity. A random effect model was selected to analyze the results. If an obvious heterogeneity was not concluded, a fixed effect model was used. The funnel plot was used for the evaluation of publication bias with a test level of α=0.05.

Results

Literature retrieval and screening

A total of 576 studies were identified after a literature search. There were 148 studies removed for duplicate literature. After the check of the title and abstract, 366 articles met the inclusion criteria. There were 217 articles unavailable for clinical data. These included 149 reviews, case reports, conference abstracts, or monographs. We reviewed the full text of the remaining 62 articles. These included 15 articles that were excluded for no study endpoint, 18 articles that were excluded due to insufficient data, and 5 articles that were excluded for NOS scores below 6. After these exclusions, 24 articles involving 1202 clinical patients were eligible for this study. The flow chart of the literature screening process was shown in Figure 1. The basic characteristics of the included literature was shown in Table 1.

Bacterial clearance rate

Seven studies analyzed the effect of linezolid on bacterial clearance. The meta-analysis found that there was no obvious heterogeneity among the included studies ($l^2=16\%$, P=0.31). A fixed-effects model was used for analysis. The results revealed that the bacterial clearance rate in the linezolid experimental group was obviously higher than that in the control

group (OR=3.66 [2.41, 5.58], P<0.001) (**Figure** 2).

Serum inflammatory factors

Ten studies analyzed the effect of linezolid on the serum levels of TNF- α . There was no obvious heterogeneity among the included studies (I²=0%, P=0.52). A fixed-effect model was selected for data analysis. The results showed that the bacterial clearance rate in the linezolid experimental group was obviously higher than that in the control group (WMD=-7.84 [-10.41, -5.27], P<0.001) (**Figure 3**).

Six studies investigated the effect of linezolid on the serum level of IL6. There was an obvious heterogeneity among the included studies ($I^2=98\%$, P<0.01). A random effect model was carried out for data analysis. The results revealed that serum IL6 in the linezolid experimental group was significantly lower than that in the control group (WMD=-8.10 [-11.57, -4.63], P<0.001) (**Figure 4**).

Six studies examined the effect of linezolid on serum IL8. There was an obvious heteroge-

neity among the included studies (I²=94%, P<0.01). A random effect model was selected for the analysis. The results revealed that serum IL8 in the linezolid experimental group was obviously lower than that in the control group (WMD=-8.08 [-10.68, -5.49], P<0.001) (**Figure 5**).

Six studies analyzed the effect of linezolid on PCT levels in patients. There was no obvious heterogeneity among the included studies ($l^2=0\%$, P=0.97). A fixed effect model was used for analysis. The results revealed that the PCT level of the linezolid experimental group was obviously lower than that in the control group (WMD=-108.17 [-113.07, -103.27], P<0.001) (**Figure 6**).

Six studies analyzed the effect of linezolid on white blood cell counts in patients. There was no obvious heterogeneity ($I^2=0\%$, P=0.53). A fixed effect model was used for analysis. The results revealed that the number of white blood cells ($10^8/L$) in the linezolid experimental group was obviously higher than that in the control group (WMD=62.09 [60.42, 65.38], P<0.001) (**Figure 7**).

Total clinical effectiveness

Thirteen studies assessed the therapy effect of linezolid on patients with pulmonary tuberculosis and severe pneumonia by calculating the total clinical response rate. There was no obvious heterogeneity among the included studies ($I^2=0\%$, P=0.88). A fixed effect model was applied. The meta analysis results revealed that the total effective rate of patients in the linezolid group was obviously higher than that in the control group (OR=5.80 [3.92, 8.58], P<0.001) (**Figure 8**).

Adverse reactions

A total of 13 studies recorded the adverse reaction rates during the treatment of pulmonary

Author	Study Site	Sample Size	Control Group	Test Group	Observation	Adverse	NOS
Zhang Qiuhua [7]	Huizhou, Guangdong	50/50	Isoniazid/Rifampicin/Ethambutol	Intravenous linezolid, q12h, 14d	С	4/1	7
Huang Yiming [8]	Wuzhou, Guangxi	25/25	Isoniazid/Rifampicin/Ethambutol	Intravenous linezolid, q12h, 14d	С; В	6/3	8
Shi haiyan [9]	Jiamusi, Heilongjiang	42/42	Isoniazid/Rifampicin/Pyrazinamide	Intravenous linezolid, q12h, 14d	A; B; D		6
Wen Yunjie [10]	Cixi, Zhejiang	30/30	Isoniazid/Rifampicin/Ethambutol	Intravenous linezolid, q12h, 14d	A; B; C	5/2	6
Pan Lei [5]	Hangzhou, Zhejiang	49/49	Isoniazid/Rifapentine/Ethambutol	Intravenous linezolid, q12h, 28d	A; B; C; D	6/5	8
Zhu Guochuan [11]	Taiyuan, Shanxi	37/37	Isoniazid	Intravenous linezolid, q12h, 14d	А	2/3	7
Wen Ming [12]	Changsha, Hunan	34/16	Isoniazid/Rifapentine/Ethambutol	Intravenous linezolid, q12h, 28d	А	2/1	7
Guan Zhiwei [13]	Lingbao, Henan	32/32	Isoniazid/Rifapentine/Ethambutol	Intravenous linezolid, q24h, 28d	А; В	3/2	6
Jiang Yezhou [5]	Changsha, Hunan	31/31	Isoniazid/Rifampicin/Pyrazinamide	Intravenous linezolid, q12h, 14d	A; B; D	4/3	7
Li Zhuo [14]	Jinzhou, Liaoning	54/54	Isoniazid/Rifampicin/Ethambutol	Intravenous linezolid, q24h, 14d	А; В	5/3	8
Tsering Zhuoga [15]	Tibet	33/33	Isoniazid/Rifampicin/Ethambutol	Intravenous linezolid, q8h, 14d	А	2/3	7
Yang Nan [6]	Jinzhou, Liaoning	80/80	Isoniazid/Rifampicin/Ethambutol	Intravenous linezolid, q12h, 28d	A; B; C	2/1	7
Gao Yuan [16]	Xinxiang, Henan	46/46	Isoniazid/Rifapentine/Ethambutol	Intravenous linezolid, q12h, 28d	A; B	5/3	8
Shi Yunfang [17]	Jincheng, Shanxi	27/27	Isoniazid/Rifapentine/Ethambutol	Intravenous linezolid, q12h, 14d	A; B; C	1/1	6
Li Dong [18]	Yili, Xinjiang	40/40	Isoniazid/Rifampicin/Ethambutol	Intravenous linezolid, q12h, 28d	A; B; C		6
Anger [19]	USA	8/8	Isoniazid/Rifampicin/Pyrazinamide	Intravenous linezolid, q12h, 28d		1/1	7
De Lorenzo [20]	Italy	6/6	Isoniazid/Rifampicin/Pyrazinamide	Intravenous linezolid, q12h, 28d			6
Fortun [21]	Spain	5/5	Isoniazid/Rifampicin/Ethambutol	Intravenous linezolid, q12h, 28d			6
Migliori [22]	Germany	5/6	Isoniazid/Rifampicin/Ethambutol	Intravenous linezolid, q12h, 28d			7
Nam [23]	South Korea	22/22	lsoniazid/Rifampicin/Ethambutol	Intravenous linezolid, Q24h, 14d		1/2	8
Schecter [24]	USA	15/15	Isoniazid/Rifampicin/Ethambutol	Intravenous linezolid, Q24h, 14d		1/2	7
Singla [25]	India	15/14	Isoniazid/Rifampicin/Pyrazinamide	Intravenous linezolid, q12h, 28d		1/2	8
Udwadia [26]	India	9/9	Isoniazid	Intravenous linezolid, Q24h, 14d			7
Villar [27]	Portugal	8/8	Isoniazid/Rifampicin/Pyrazinamide	Intravenous linezolid, q12h, 28d			7

Table 1. General characteristics of included publications

Note: Observation index: A, total clinical effective rate; B, serum inflammatory factors; C, bacterial clearance rate; D, immune function protein adverse reactions.

Treatment efficacy of linezolid for pulmonary tuberculosis with severe pneumonia

	Experim	ental	Contr	ol		Odds Ratio	Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% Cl	M-H, Fixed, 95% Cl
Huang 2021	40	50	32	50	26.6%	2.25 [0.91, 5.55]] – – –
Li 2015	22	25	16	25	8.0%	4.13 [0.96, 17.70]	
Pan 2019	25	30	14	30	9.7%	5.71 [1.72, 18.94]	
Shi 2018	39	49	28	49	23.8%	2.92 [1.19, 7.17]	
Wen 2016	78	80	70	80	7.3%	5.57 [1.18, 26.30]	
Yang 2021	20	27	17	27	18.3%	1.68 [0.53, 5.37]	j + •
Zhang 2017	37	40	20	40	6.2%	12.33 [3.26, 46.63]	1
Total (95% CI)		301		301	100.0%	3.66 [2.41, 5.58]	」 ↓ ◆
Total events	261		197				
Heterogeneity: Chi ² =	7.13, df=	6 (P = 0	.31); I ² = 1	16%			
Test for overall effect:	Z= 6.05 (P < 0.00	001)				0.01 0.1 1 10 100 experimental control

Figure 2. Meta-analysis of the effect of linezolid on bacterial clearance rate in tuberculosis patients with severe pneumonia.

	Expe	erimenta	al	Co	ontrol			Mean Difference		Mean Di	ference		
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% Cl		IV, Rando	m, 95% Cl		
Gao 2021	113.3	5.32	46	119.85	4.22	46	15.2%	-6.55 [-8.51, -4.59]		•			
Guan 2019	112.26	11.52	32	130.26	6.85	32	10.8%	-18.00 [-22.64, -13.36]		-			
Huang 2021	110.05	5.13	25	122.47	5.64	25	13.6%	-12.42 [-15.41, -9.43]		+			
Jiang 2020	116.2	5.22	31	119.8	4.2	31	14.6%	-3.60 [-5.96, -1.24]		-			
Li 2020	108.1	7.96	54	116.4	5.12	54	14.4%	-8.30 [-10.82, -5.78]		•			
Pan 2019	116.22	5.23	49	119.82	4.21	49	15.3%	-3.60 [-5.48, -1.72]		-			
Yang 2021	115.11	4.12	80	120.93	4.32	80	16.0%	-5.82 [-7.13, -4.51]					
Total (95% Cl)			317			317	100.0%	-7.84 [-10.41, -5.27]		•			
Heterogeneity: Tau ² =	= 10.28; C	hi² = 56	.43, df =	= 6 (P < 0	.0000	1); l² = 3	89%		400	1		+	10
Test for overall effect	: Z = 5.98	(P < 0.0	0001)						-100	-50 0 experimental	control	50	10

Figure 3. Meta-analysis of the effect of linezolid on serum TNF- α level in tuberculosis patients with severe pneumonia.

	Expe	riment	al	Co	ntrol			Mean Difference		Mean Di	fference		
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% Cl		IV, Rando	<u>m, 95% (</u>	1	
Gao 2021	95.88	2.68	46	113.9	3.61	46	16.9%	-18.02 [-19.32, -16.72]					
Guan 2019	100.26	3.62	32	108.62	4.57	32	16.4%	-8.36 [-10.38, -6.34]		•			
Huang 2021	102.75	5.26	25	109.24	6.17	25	15.1%	-6.49 [-9.67, -3.31]		+			
Jiang 2020	100.3	2.3	31	105.1	1.22	31	17.1%	-4.80 [-5.72, -3.88]					
Pan 2019	100.28	2.31	49	105.12	1.23	49	17.2%	-4.84 [-5.57, -4.11]					
Yang 2021	100.17	2.42	80	106.23	1.34	80	17.2%	-6.06 [-6.67, -5.45]					
Total (95% CI)			263			263	100.0%	-8.10 [-11.57, -4.63]		•			
Heterogeneity: Tau ² =	= 18.09; C	hi² = 33	39.67, 0	df=5(P∢	< 0.00	001); I ²	= 99%		H-100	-50 0	<u> </u>		
Test for overall effect	Z= 4.57	(P < 0.)	00001)						-100		control	50	100

	Expe	rimen	tal	C	ontrol			Mean Difference	Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% Cl	IV, Random, 95% Cl
Gao 2021	26.5	3.31	46	31.82	3.29	46	16.7%	-5.32 [-6.67, -3.97]	•
Guan 2019	26.02	1.25	32	38.62	3.62	32	16.7%	-12.60 [-13.93, -11.27]	•
Huang 2021	27.11	3.09	25	39.42	3.17	25	16.2%	-12.31 [-14.05, -10.57]	•
Jiang 2020	26.4	3.22	31	31.8	3.2	31	16.4%	-5.40 [-7.00, -3.80]	•
Pan 2019	26.45	3.23	49	31.82	3.21	49	16.8%	-5.37 [-6.65, -4.09]	•
Yang 2021	25.34	3.12	80	32.93	3.42	80	17.1%	-7.59 [-8.60, -6.58]	•
Total (95% CI)			263			263	100.0%	-8.08 [-10.68, -5.49]	•
Heterogeneity: Tau ² =	= 10.00; (Chi² = '	111.93.	df = 5 (P < 0.0	00001);	I² = 96%		
Test for overall effect	-								-100 -50 0 50 10 Favours (experimental) Favours (control)

Figure 5. Meta-analysis of the effect of linezolid on serum IL8 level in tuberculosis patients with severe pneumonia.

Treatment efficacy of linezolid for pulmonary tuberculosis with severe pneumonia

	Expe	riment	al	C	ontrol			Mean Difference	Meanl	Difference	
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Fixed, 95% CI	IV, Fixe	ed, 95% Cl	
Ci 2018	412.13	22.5	33	522.8	23.9	33	19.1%	-110.67 [-121.87, -99.47]			
DeLorenzo 2012	398.26	12.7	6	507.6	18.9	6	7.2%	-109.34 [-127.56, -91.12]			
Gao 2021	424.69	21.2	46	529.7	39.7	46	14.2%	-105.01 [-118.02, -92.00]			
Guan 2019	407.58	19.8	32	519.2	29.7	32	15.7%	-111.62 [-123.99, -99.25]			
Jiang 2020	379.76	12.9	31	486.8	18.5	31	38.1%	-107.04 [-114.98, -99.10]	+		
Nam 2009	417.31	28.7	22	521.5	40.2	22	5.6%	-104.19 [-124.83, -83.55]			
Total (95% CI)			170			170	100.0%	-108.17 [-113.07, -103.27]	•		
Heterogeneity: Chi ² =	0.95, df=	5 (P =	0.97);	I² = 0%					-200 -100	0 100	200
Test for overall effect:	Z = 43.27	'(P < 0	0.00001)					-200 -100	0 100	200

Figure 6. Meta-analysis of the effect of linezolid on the level of PCT in tuberculosis patients with severe pneumonia.

	Expe	rimen	ital	C	ontrol			Mean Difference		Mean Difference	
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Fixed, 95% CI		IV, Fixed, 95% Cl	
Huang 2021	192.5	12.3	25	132.8	10.9	25	14.8%	59.70 [53.26, 66.14]			
Jiang 2020	187.9	11.8	31	122.3	8.7	31	23.1%	65.60 [60.44, 70.76]			
Li 2015	201.6	15.4	40	135.9	11.8	40	17.0%	65.70 [59.69, 71.71]			-
Pan 2019	175.7	14.2	49	114.6	9.5	49	26.9%	61.10 [56.32, 65.88]			-
Schecter 2010	169.1	12.7	15	109.8	12.3	15	7.7%	59.30 [50.35, 68.25]		.	
Singla 2012	195.7	11.9	15	131.5	8.9	14	10.6%	64.20 [56.58, 71.82]			
Total (95% Cl)			175			174	100.0%	62.90 [60.42, 65.38]			٠
Heterogeneity: Chi ² = Test for overall effect		•			6				-100 -50	0 5	0 100

Figure 7. Meta-analysis of the effect of linezolid on white blood cell count in tuberculosis patients with severe pneumonia.

	Experim	ental	Contr	ol		Odds Ratio	Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% Cl	M-H, Fixed, 95% CI
Ci 2018	32	33	15	33	1.9%	38.40 [4.68, 315.15]	
Gao 2021	41	46	32	46	14.6%	3.59 [1.17, 11.01]	
Guan 2019	30	32	20	32	5.2%	9.00 [1.82, 44.59]	
Jiang 2020	28	31	21	31	8.5%	4.44 [1.09, 18.18]	
Li 2015	52	54	41	54	6.4%	8.24 [1.76, 38.61]	
Li 2020	34	40	17	40	10.7%	7.67 [2.63, 22.36]	
Pan 2019	44	49	36	49	15.4%	3.18 [1.04, 9.75]	
Shi 2018	37	42	28	42	14.0%	3.70 [1.19, 11.49]	
Shi 2022	24	27	17	27	7.9%	4.71 [1.12, 19.70]	
Wen 2016	28	30	22	30	6.1%	5.09 [0.98, 26.43]	
Wen 2019	32	34	11	16	3.7%	7.27 [1.23, 43.00]	
Yang 2021	80	80	76	80	2.0%	9.47 [0.50, 178.87]	``
Zhu 2019	36	37	32	37	3.6%	5.63 [0.62, 50.73]	
Total (95% CI)		535		517	100.0%	5.80 [3.92, 8.58]	◆
Total events	498		368				
Heterogeneity: Chi ² =	6.68, df = 1	12 (P =	0.88); I ² =	0%			
Test for overall effect	Z = 8.80 (F	P < 0.00	001)				0.01 0.1 1 10 100 experimental control

Figure 8. Meta-analysis of the total effective rate of patients in the linezolid trial group and the control group.

tuberculosis complicated with severe pneumonia. The meta-analysis found that there was no obvious heterogeneity among the included studies ($I^2=0\%$, P=0.99). A fixed effect model was applied. The results revealed that there was no obvious distinction in the incidence of adverse reactions between the linezolid experimental and the control group (OR=1.53 [0.95, 2.47], P=0.08) (**Figure 9**).

Sensitivity and heterogeneity analysis

A perceptual analysis was implemented by Stata. The data of each study included in the analysis were eliminated sequentially. Their influence on the combined total effect results was observed. The analysis revealed that after excluding each of the studies, the combined effect size did not change significantly. This

Treatment efficacy of linezolid for pulmonary tuberculosis with severe pneumonia

	Experim	ental	Contr	ol		Odds Ratio	Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% Cl	I M-H, Fixed, 95% Cl
Ci 2018	2	33	3	33	10.1%	0.65 [0.10, 4.14]]
Gao 2021	5	46	3	46	9.6%	1.75 [0.39, 7.79]]
Guan 2019	3	32	2	32	6.5%	1.55 [0.24, 9.97]]
Huang 2021	6	25	3	25	8.2%	2.32 [0.51, 10.54]]
Jiang 2020	4	31	3	31	9.3%	1.38 [0.28, 6.76]]
Li 2015	5	54	3	54	9.7%	1.73 [0.39, 7.65]]
Pan 2019	6	49	5	49	15.7%	1.23 [0.35, 4.32]]
Shi 2018	1	27	1	27	3.4%	1.00 [0.06, 16.85]]
Wen 2016	5	30	2	30	6.0%	2.80 [0.50, 15.73]]
Wen 2019	2	34	1	16	4.6%	0.94 [0.08, 11.17]]
Yang 2021	2	80	1	80	3.5%	2.03 [0.18, 22.80]]
Zhang 2017	4	50	1	50	3.3%	4.26 [0.46, 39.54]]
Zhu 2019	2	37	3	37	10.2%	0.65 [0.10, 4.12]	1
Total (95% CI)		528		510	100.0%	1.53 [0.95, 2.47]	ı 🔶
Total events	47		31				
Heterogeneity: Chi ² =	3.71, df = 1	12 (P =	0.99); l² =	:0%			
Test for overall effect:	Z=1.76 (F	P = 0.08)				0.01 0.1 1 10 100 experimental control

Figure 9. Meta-analysis of adverse reaction rates in linezolid trial group and control group.

Figure 10. Sensitivity and heterogeneity analysis of included studies.

suggested that the results of this study were stable. The distinctions among the included literature were small, and the results were more reliable (**Figure 10**).

Publication bias

A funnel plot analysis was performed to analyze the publication bias of the included studies. It

was found that the scattered dots in the figure were symmetrically distributed, indicating that the included research had no obvious publication bias (Figure 11).

Discussion

Pulmonary tuberculosis is a slow-onset disease caused by infection of Mycobacterium tuberculosis. Patients experience many complications. For patients with severe pulmonary infection in clinical practice, external ventilation and circulation equipment are needed to support the overall clinical diagnosis and therapy. Antibiotics are the mainstay in clinical treatment of pulmonary tuberculosis and severe pneumonia. Based on the 50S ribosomal subunit of bacterial, linezolid hinders the synthesis of related proteins in bacteria,

achieving a broad-spectrum antibacterial effect [4]. Pan et al. [5] conducted a relevant study on 98 patients with severe pulmonary tuberculosis in clinical practice. The study showed that combining essential tuberculosis therapy with linezolid improved the primary treatment efficacy and serum inflammatory factors. and It enhanced the patient's immunity with reliable safety. Yang et al. [6] analyzed the

Figure 11. Publication bias was analyzed by funnel plot.

clinical data of 160 patients with severe pneumonia and suggested that concurrent linezolid treatment decreased the level of related serum inflammatory factors and improved the overall effective rate without increasing the adverse reactions. In this study, a comprehensive metaanalysis was taken to quantitatively and objectively evaluate the effectiveness and reliability of linezolid in patients with pulmonary tuberculosis complicated with severe pneumonia. This study provided reliable evidence-based medical support for clinical practice.

This study found that the overall effective rate of linezolid combined with conventional therapy was better than that of the conventional therapy. In terms of inflammation, the serum levels of TNF- α , IL6, and IL8 in patients taking linezolid combined with conventional therapy were lower than those in the conventional therapy group. The incidence of adverse reactions showed no apparent differences between the linezolid group and others, suggesting that linezolid was safe for patients with tuberculosis complicated with severe pneumonia.

This study had certain limitations: the detection methods of serum inflammatory factors used in various studies were different. This resulted in specific heterogeneity in the outcomes. Some of the data were derived from the calculation of the obtained data. This was insufficient. The overall research in this paper deviated from the original data. There was not much available data.

The preliminary results of this study showed that linezolid combined with the conventional anti-tuberculosis therapy mode is better than the conventional therapy in terms of bacterial clearance rate and total clinical effectiveness.

Disclosure of conflict of interest

None.

Address correspondence to: Yunyun Wang, Department of Pharmacy, Jincheng People's Hospital, No. 456 Wenchang East Street, Jincheng 048026, Shanxi, China. Tel: +86-15935066012; E-mail: wwyy66-12@163.com

References

- [1] Kang W, Yu J, Du J, Yang S, Chen H, Liu J, Ma J, Li M, Qin J, Shu W, Zong P, Zhang Y, Dong Y, Yang Z, Mei Z, Deng Q, Wang P, Han W, Wu M, Chen L, Zhao X, Tan L, Li F, Zheng C, Liu H, Li X, A E, Du Y, Liu F, Cui W, Wang Q, Chen X, Han J, Xie Q, Feng Y, Liu W, Tang P, Zhang J, Zheng J, Chen D, Yao X, Ren T, Li Y, Li Y, Wu L, Song Q, Yang M, Zhang J, Liu Y, Guo S, Yan K, Shen X, Lei D, Zhang Y, Yan X, Li L and Tang S. The epidemiology of extrapulmonary tuberculosis in China: a large-scale multi-center observational study. PLoS One 2020; 15: e0237753.
- [2] Oh S, Trifonov L, Yadav VD, Barry CE 3rd and Boshoff HI. Tuberculosis drug discovery: a decade of hit assessment for defined targets. Front Cell Infect Microbiol 2021; 11: 611304.
- [3] Brown AN, Drusano GL, Adams JR, Rodriquez JL, Jambunathan K, Baluya DL, Brown DL, Kwara A, Mirsalis JC, Hafner R and Louie A. Preclinical evaluations to identify optimal linezolid regimens for tuberculosis therapy. mBio 2015; 6: e01741-01715.
- [4] Hashemian SMR, Farhadi T and Ganjparvar M. Linezolid: a review of its properties, function, and use in critical care. Drug Des Devel Ther 2018; 12: 1759-1767.
- [5] Conradie F, Diacon AH, Ngubane N, Howell P, Everitt D, Crook AM, Mendel CM, Egizi E, Moreira J, Timm J, McHugh TD, Wills GH, Bateson A, Hunt R, Van Niekerk C, Li M, Olugbosi M

and Spigelman M. Treatment of highly drug-resistant pulmonary tuberculosis. N Engl J Med 2020; 382: 893-902.

- [6] Yeager SD, Oliver JE, Shorman MA, Wright LR and Veve MP. Comparison of linezolid stepdown therapy to standard parenteral therapy in methicillin-resistant staphylococcus aureus bloodstream infections. Int J Antimicrob Agents 2021; 57: 106329.
- [7] Zhang QH. Effect of linezolid on patients with pulmonary tuberculosis complicated with severe pneumonia. Chin J Urban Rural Enterprise Hyg 2017; 32: 103-104.
- [8] Huang YM. Effect and safety analysis of linezolid adjuvant therapy on inflammatory status in patients with pulmonary tuberculosis complicated with severe pneumonia. Mod Med Health Res 2021; 5: 54-56.
- [9] Guan J, Fu R, Ruan EB, Liang Y, Qu W, Wang GJ, Wang XM, Liu H, Wu YH, Song J, Wang HQ, Xing LM and Shao ZH. Clinical analysis of 102 blood disease patients with gram positive cocci infection treated with linezolid. Zhonghua Xue Ye Xue Za Zhi 2010; 31: 527-530.
- [10] Dheda K, Limberis JD, Pietersen E, Phelan J, Esmail A, Lesosky M, Fennelly KP, Te Riele J, Mastrapa B, Streicher EM, Dolby T, Abdallah AM, Ben-Rached F, Simpson J, Smith L, Gumbo T, van Helden P, Sirgel FA, McNerney R, Theron G, Pain A, Clark TG and Warren RM. Outcomes, infectiousness, and transmission dynamics of patients with extensively drug-resistant tuberculosis and home-discharged patients with programmatically incurable tuberculosis: a prospective cohort study. Lancet Respir Med 2017; 5: 269-281.
- [11] Grudinina SA, Zubkov MM, Krotova LA, Kurdiukova luP, Kutsenko MA, Marinin VF, Sidorenko SV, Sinpal'nikov AI, Solomatin AS, Sterkhova GV, Fesenko OV, Fomina IG and Chuchalin AG. Comparison of linezolid and vancomycin in nosocomial pneumonia: results of the multicenter double-blind study. Antibiot Khimioter 2002; 47: 12-17.
- [12] Wang Y, Zhang HJ and Song AJ. Evaluation on efficacy and safety of vancomycin and linezolid for treatment of pulmonaryinfections. Chin J Nosocomiol 2015; 25: 2734-2736.
- [13] Lee M, Lee J, Carroll MW, Choi H, Min S, Song T, Via LE, Goldfeder LC, Kang E, Jin B, Park H, Kwak H, Kim H, Jeon HS, Jeong I, Joh JS, Chen RY, Olivier KN, Shaw PA, Follmann D, Song SD, Lee JK, Lee D, Kim CT, Dartois V, Park SK, Cho SN and Barry CE 3rd. Linezolid for treatment of chronic extensively drug-resistant tuberculosis. N Engl J Med 2012; 367: 1508-1518.
- [14] Didilescu C and Craiova UM. Present and future in the use of anti-tubercular drugs. Pneumologia 2011; 60: 198-201.

- [15] Agyeman AA and Ofori-Asenso R. Efficacy and safety profile of linezolid in the treatment of multidrug-resistant (MDR) and extensively drug-resistant (XDR) tuberculosis: a systematic review and meta-analysis. Ann Clin Microbiol Antimicrob 2016; 15: 41.
- [16] Tang S, Yao L, Hao X, Zhang X, Liu G, Liu X, Wu M, Zen L, Sun H, Liu Y, Gu J, Lin F, Wang X and Zhang Z. Efficacy, safety and tolerability of linezolid for the treatment of XDR-TB: a study in China. Eur Respir J 2015; 45: 161-170.
- [17] Luchetti G, Roncaioli JL, Chavez RA, Schubert AF, Kofoed EM, Reja R, Cheung TK, Liang Y, Webster JD, Lehoux I, Skippington E, Reeder J, Haley B, Tan MW, Rose CM, Newton K, Kayagaki N, Vance RE and Dixit VM. Shigella ubiquitin ligase IpaH7.8 targets gasdermin D for degradation to prevent pyroptosis and enable infection. Cell Host Microbe 2021; 29: 1521-1530, e1510.
- [18] Pang Y, Zong Z, Huo F, Jing W, Ma Y, Dong L, Li Y, Zhao L, Fu Y and Huang H. In vitro drug susceptibility of bedaquiline, delamanid, linezolid, clofazimine, moxifloxacin, and gatifloxacin against extensively drug-resistant tuberculosis in Beijing, China. Antimicrob Agents Chemother 2017; 61: e0900-17.
- [19] Anger HA, Dworkin F, Sharma S, Munsiff SS, Nilsen DM and Ahuja SD. Linezolid use for treatment of multidrug-resistant and extensively drug-resistant tuberculosis, New York City, 2000-06. J Antimicrob Chemother 2010; 65: 775-783.
- [20] De Lorenzo S, Centis R, D'Ambrosio L, Sotgiu G and Migliori GB. On linezolid efficacy and tolerability. Eur Respir J 2012; 39: 770-772.
- [21] Fortún J, Martín-Dávila P, Navas E, Pérez-Elías MJ, Cobo J, Tato M, De la Pedrosa EG, Gómez-Mampaso E and Moreno S. Linezolid for the treatment of multidrug-resistant tuberculosis. J Antimicrob Chemother 2005; 56: 180-185.
- [22] Migliori GB, Eker B, Richardson MD, Sotgiu G, Zellweger JP, Skrahina A, Ortmann J, Girardi E, Hoffmann H, Besozzi G, Bevilacqua N, Kirsten D, Centis R and Lange C. A retrospective TB-NET assessment of linezolid safety, tolerability and efficacy in multidrug-resistant tuberculosis. Eur Respir J 2009; 34: 387-393.
- [23] Nam HS, Koh WJ, Kwon OJ, Cho SN and Shim TS. Daily half-dose linezolid for the treatment of intractable multidrug-resistant tuberculosis. Int J Antimicrob Agents 2009; 33: 92-93.
- [24] Schecter GF, Scott C, True L, Raftery A, Flood J and Mase S. Linezolid in the treatment of multidrug-resistant tuberculosis. Clin Infect Dis 2010; 50: 49-55.
- [25] Singla R, Caminero JA, Jaiswal A, Singla N, Gupta S, Bali RK and Behera D. Linezolid: an effective, safe and cheap drug for patients fail-

ing multidrug-resistant tuberculosis treatment in India. Eur Respir J 2012; 39: 956-962.

- [26] Udwadia ZF, Sen T and Moharil G. Assessment of linezolid efficacy and safety in MDR- and XDR-TB: an Indian perspective. Eur Respir J 2010; 35: 936-938.
- [27] Villar M, Sotgiu G, D'Ambrosio L, Raymundo E, Fernandes L, Barbedo J, Diogo N, Lange C, Centis R and Migliori GB. Linezolid safety, tolerability and efficacy to treat multidrug- and extensively drug-resistant tuberculosis. Eur Respir J 2011; 38: 730-733.