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Abstract: Low back pain (LBP) caused by intervertebral disc (IVD) generation (IVDD) has always been an important 
problem that cannot be ignored. Traditional therapies have many deep-rooted and intractable complications that 
promote their treatment mode transfer to new therapies. This article mainly summarizes the shortcomings of tra-
ditional treatment methods and analyzes the research status and future development direction of IVDD treatment. 
We outlined the most promising IVDD therapies, including cell, exosome, gene, and tissue engineering therapy, 
especially tissue engineering therapy, which runs through the whole process of other therapies. In addition, the 
article focuses on the cellular, animal, and preclinical challenges faced by each therapeutic approach, as well as 
their respective advantages and disadvantages, to provide better ideas for relieving the IVDD patients’ pain through 
new treatment methods. 
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Introduction

Low back pain (LBP) is an important problem 
affecting the quality of life of middle-aged and 
older adults and can lead to disability. It has 
become a severe medical and social problem 
worldwide. The leading cause of LBP is interver-
tebral disc (IVD) generation (IVDD). With the 
growth of the global aging trend, the incidence 
of LBP caused by IVDD is increasing yearly, 
which has driven a substantial economic bur-
den on society and families [1]. 

IVD has a complex structure. Macroscopically, 
it is composed of three parts: lateral annulus 
fibrous (AF), central nucleus pulposus (NP), and 
upper and lower sides cartilaginous endplate 
(CEP) [2], which is equivalent to the “buffer 
zone” between the vertebrae (Figure 1). 
Microscopically, it comprises AF cells (AFCs), 
NP cells (NPCs), CEP cells (CEPCs), and many 
extracellular matrix (ECM) components [3]. The- 
se components are interdependent to jointly 

maintain the standard physiological mecha-
nism and ensure the regular exercise of biologi-
cal functions of IVD. When the change of any 
part breaks through the self-healing ability of 
IVD, IVD will degenerate to a certain extent, 
including IVD structure damage and the IVD cell 
numbers and ECM composition changes. 

With the continuous achievement of regenera-
tive medicine and biomaterials in IVDD, which 
aims to reverse or replace the injured IVD 
through regeneration pathways such as cells, 
exosomes, and genes, as well as the construc-
tion of artificial IVDs with scaffold materials, 
these emerging therapies are expected to 
become a new method. In this review, we fo- 
cus on the research status and future applica-
tion prospects of cell therapy, exosome therapy, 
gene therapy, and tissue engineering to lay  
a theoretical foundation for preventing and 
improving the clinical treatment effect of IVDD 
patients. 

http://www.ajtr.org
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Traditional treatment

Currently, the treatment methods of IVDD 
include conservative and surgical treatment, 
and the technology has become mature. Most 
IVDD patients can obtain good short-term 
results, but the long-term efficacy is poor. The 
purpose of conservative treatment is to relieve 
patients’ pain and improve patients’ health. For 
patients with the first attack and most light and 
medium-sized IVDD diseases, priority should 
be given to conservative treatment, including 
physical strengthening, physical therapy, oral 
drugs, analgesic needles, and other symptom-
atic treatments [4-8]. In recent years, acupunc-
ture and traditional Chinese medicine have 
also aroused many scholars’ research interest. 
It plays a particular role in relieving pain in con-
servative treatment and has an excellent short-
term curative effect [9, 10]. Conventional treat-
ment is often ineffective for LBP patients wi- 
th acute nervous system deterioration, cauda 
equina syndrome, and chronic LBP. For most 
patients, surgical treatment has become the 
final choice, such as simple decompression 
surgery, fusion surgery, IVD replacement sur-
gery, and endoscopic resection of diseased  
IVD tissue or decompression, fusion, and IVD 
replacement [11-15]. 

Nevertheless, it is prone to various complica-
tions after several years. In addition, the robot’s 

application in IVDD disease surgery has been 
gradually recognized, and there are few rele-
vant research reports. Although domestic and 
foreign scholars have conducted extensive and 
far-reaching research on the traditional treat-
ment of IVDD, most IVDD patients have receiv- 
ed good treatment to a certain extent. However, 
these current treatment methods are symp-
tomatic treatments. Many complications, su- 
ch as IVD inflammation, adjacent vertebral 
lesions, and infection, cannot fundamentally 
restore the normal anatomical function of IVD 
[16]. Therefore, there is an urgent need for new 
therapies to restore the structure and function 
of IVD. 

Promising treatment strategies

Cell therapy

The loss of IVD cells is one of the most sig- 
nificant pathological changes in IVDD. Supple- 
menting the lost IVD cells has always been con-
sidered the most direct and effective method of 
IVDD molecular treatment [17]. Cell therapy is 
to transport the patient’s autologous (or alloge-
neic) adult cells (or stem cells) to degenerative 
IVD in a specific way to supplement the lost IVD 
cells and increase proteoglycan content and 
collagen. This restores the typical tissue struc-
ture and biomechanical function of the IVD. 

Figure 1. Structure composition diagram of intervertebral disc (IVD) generation (IVDD). This figure shows that the 
IVD is composed of the nucleus pulposus (NP), annulus fibrous (AF), and cartilaginous endplate (CEP), which are 
located between two adjacent vertebral bodies and play the role of a connection, mechanical force buffer, etc.
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Table 1. The role of cells in repairing damaged IVD
Cell type Source Experiment Target Function Ref.
NPCs Dog or human Cell, animal or human NPCs/ECM Replenish lost NPCs and ECM. [21]
BMSCs Rat Cell NPCs Directionally induce BMSCs to differenti-

ate into NPCs and promote regeneration.
[30]

ADMSCs Human or rat Cell or animal NPCs Induce ADMSCs to differentiate into NPCs 
and supplement the lost ECM.

[31-33]

NPMSCs Rat Cell or animal NPCs/ECM Induce NPMSCs to differentiate into NPCs 
and supplement the lost ECM.

[34, 35]

UCMSCs Rabbit Cell or animal NPCs/ECM Promote the regeneration of NPCs and 
ECM.

[37]

IPSCs Pig Cell or animal Notochord cell/NPCs Induce IPSCs to differentiate into NPCs 
and promote NP regeneration.

[38, 39]

IVD: Intervertebral Disc; Npcs: Nucleus Pulposus Cells; ECM: Extracellular Matrix; Bmscs: Bone Marrow Mesenchymal Stem Cells; Admscs: 
Adipose-Derived Mesenchymal Stem Cells; Npmscs: Nucleus Pulposus Mesenchymal Stem Cells; Ucmscs: Umbilical Cord Mesenchymal Stem 
Cells; Ipscs: Induced Pluripotent Stem Cells.

Additionally, cell therapy does not cause addi-
tional IVD damage [18]. 

Cell therapy is most widely used in clinical 
research and the transformation of clinical 
achievements. First, the selection of cell types 
follows the first choice of autologous healthy 
stem cells or adult cells, followed by homolo-
gous cells, and cross-species cell transplanta-
tion is not recommended. Second, the specially 
treated cell components comply with ethical 
principles and significantly affect the treat- 
ment of diseases. They can be used in clinical 
trials after review and approval [19, 20]. Cell 
therapy development has gone through many 
stages, including selecting cell sources and 
exploring biological mechanisms and applica-
tion methods. Here, we focus on the possible 
role of cell sources and their functions in treat-
ing IVDD diseases. At present, cells common- 
ly used in IVDD disease treatment research 
include NPCs, bone marrow mesenchymal 
stem cells (BMSCs), adipose-derived mesen-
chymal stem cells (ADMSCs), NP mesenchymal 
stem cells (NPMSCs), umbilical cord mesenchy-
mal stem cells (UCMSCs) and pluripotent stem 
cells (IPSCs) (Table 1). 

The first cells used in cell therapy were autolo-
gous NPCs. The study found that NPCs extract-
ed from canine IVDs can be transplanted into 
autologous IVDs after amplification in vitro. Tr- 
ansplanted NPCs can usually survive, prolifer-
ate, and secrete ECM [21]. A further clinical  
trial evaluation found that patients who re- 
ceived NPC transplants could experience sig-
nificant improvement in pain symptoms, and 

the IVD water content could be increased con-
siderably. However, NPC transplantation has 
many defects, such as limited cell sources, 
poor quality, and premature aging [22-24]. The- 
refore, NPCs cannot be used as the ideal cell 
source for IVD repair. 

Mesenchymal stem cells (MSCs) are pluripo-
tent and can differentiate into osteoblasts, 
chondroblasts, and NPCs. They have the func-
tion of repairing damaged IVDs. They are the 
most widely used stem cells in IVDD diseases 
[25]. First, BMSCs in a hypoxic environment 
and transforming growth factor (TGF)-β can dif-
ferentiate into NPCs with a similar phenotype, 
activate endogenous NPCs, and increase gr- 
owth factors and ECM [26, 27]. At the same 
time, BMSCs can reduce the expression of 
β-galactosidase and matrix metalloproteinase 
(MMP)-9, and downregulation of TGF-β/NF-κB 
signal transduction increases the number of 
type II collagen and NPCs to reduce inflamma-
tion-induced IVD cell aging and restore the 
activity and function of degenerative NPCs [28, 
29]. Second, ADMSCs can differentiate into 
NPCs under the stimulation of type II collagen 
and promote the regeneration of NPCs. Com- 
bined transplantation with hydroxyapatite de- 
rivatives has higher safety and tolerance, can 
alleviate patient’s pain and increase ECM in  
IVD [30, 31]. Other studies confirmed that a 
smoothed agonist and TGF-β3 combination 
could increase the ECM synthesis and secre-
tion of ADMSCs and improve the expression 
level of NP-specific marker genes and proteins, 
restoring the height water content and biologi-
cal structure of degenerative IVD [32]. NPMSCs, 
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compared with MSCs from other sources, have 
better differentiation ability of NPCs and ad- 
aptability to the IVD microenvironment. They 
have obvious advantages for cell transplanta-
tion and NPC regeneration. It was found that 
NPMSCs isolated from rat tail IVD could survive 
for at least 30 days and significantly increase 
the number of NPCs and ECM content [33, 34]. 
Clinical trials are ongoing, and many clinical tri-
als are still needed to verify the safety and fea-
sibility of IVDD. 

In addition, Perez cruet et al. [35] transplanted 
UCMSCs into the degenerative IVD model of 
rabbits and observed that the histological 
structure of NP was enhanced, and the proteo-
glycan and water content were significantly 
improved. IPSCs are like embryonic stem cells. 
In vitro experiments found that they can differ-
entiate into notochord cells in a porcine NP tis-
sue matrix, which allows mass production of 
high-quality notochord cells to achieve IVD de- 
generation [36]. In addition, IPSCs can also be 
induced to differentiate into NP-like cells in 
vitro, which also has the potential to regene- 
rate IVD [37]. UCMSCs have the advantages of 
lower immunogenicity, noninvasive acquisition, 
and easy expansion in vitro. The most impor-
tant thing is its ability to survive and present a 
chondrocyte-like phenotype when injected into 
rabbit IVD. At the same time, it secretes type  
II collagen, which is expected to reverse the 
degenerative IVD and restore the microenviron-
ment composition of IVD [38, 39]. 

Cell therapy to change the degenerative IVD 
and reshape the microenvironment for IVD cells 
is an important research direction in treating 
IVDD-related diseases. There are various com-
mon problems of cell transplantation in cell 
therapy; for example, cell senescence in ad- 
vance, the low survival rate after transplanta-
tion, requirement of differentiation, isolation, 
and extraction in the advanced laboratory, stor-
age and transportation difficulties, etc. 

Exosome therapy

Exosomes, also called extracellular vesicles 
(EVs), are the products of cells that exercise  
the biological function instructions of cells. Its 
diameter is between 40 and 100 nm [40, 41]. 
The mechanism of exosome formation is com-
plex. After stimulating specific biological infor-
mation, the cell membrane invaginates to form 

“formatted” early endosomes, receives various 
substances from the plasma membrane and 
Golgi apparatus, and regulates cell signals 
through the downregulation of internalization 
receptors [42]. At this time, early endosomes 
containing specific biological function informa-
tion mature and separate to form free multiple 
internal vesicles. Late internal vesicles are also 
called multivesicular bodies. Then, multivesicu-
lar bodies are further processed and modified 
by the Golgi and other organelles. Finally, most 
multivesicular bodies are transported outside 
the cell in cell budding to form exosomes with 
specific functions, and only a tiny portion is 
degraded by lysosomes [43] (Figure 2). In addi-
tion, the biogenesis of exosomes involves the 
strict regulation of various factors and cellular 
signals, including neutral sphingomyelinase-2 
and ATP [44]. It participates in cell regeneration 
and apoptosis under normal and pathological 
conditions. It can also replicate all genetic and 
functional information of mother cells. Com- 
pared with IVD used for repairing degeneration 
by stem cell or adult cell transplantation, it can 
be a carrier of small molecular substances, 
with more stable properties, no immunogenici-
ty, and more convenient storage and trans- 
portation. Therefore, exosome transplantation 
after human intervention may be better for 
reversing or regenerating degenerated IVD cells 
than cell transplantation. 

The specific mechanism of exosomes in the 
treatment of IVDD is unclear. This may be re- 
lated to inhibiting the inflammatory response, 
inhibiting apoptosis, promoting the transfor- 
mation of chondroid NPCs, and regulating 
miRNA expression. Exosomes secreted by 
MSCs (MSCs-Exo) probably play an anti-inflam-
matory role by reducing the expression of 
inflammatory factor cyclooxygenase-2, induc-
ible nitric oxide synthase, and inflammatory 
body thioredoxin interacting protein/nucleo-
tide-binding and leucine-rich repeat protein 3 
and mRNA to reduce the expression of ECM 
degradation protease and slow down the cata-
bolic reaction of ECM to delay the process of 
IVDD [50]. In addition, exosomes can redu- 
ce the expression of endoplasmic reticulum 
stress-related proteins in an NPC apoptosis 
model and inhibit the activity of critical enzym- 
es in the process of apoptosis and the manifes-
tation of apoptosis-related proteins caspase-3 
and 12 to block IVD cell apoptosis induced by 
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Figure 2. Biosynthesis of exosomes. First, when foreign signals stimulate the cells, the cell membrane collapses and 
selectively carries specific functional signal molecules (proteins, DNAs, RNAs, and cell-matrix) under the joint action 
of the Golgi apparatus, endoplasmic reticulum, and other organelles and forms early endosomes. Second, the early 
endosomes were further modified and processed by the endoplasmic reticulum and Golgi apparatus to form late 
endosomes. Finally, exosomes are excreted as cell budding, cells play specific biological functions, and intracellular 
lysosomes catabolize some of them.

endoplasmic reticulum stress [51, 52]. In addi-
tion, normal exosomes secreted by NPC (NPC-
Exos) promote the differentiation of stem cells 
into chondroid NPCs and increase the expres-
sion of ECM components such as proteogly-
cans and type II collagen to supplement NPCs 
and maintain the homeostasis of the ECM envi-
ronment [53]. Meanwhile, exosomes may also 
indirectly regulate IVD tissue repair by carrying 
miRNAs, such as miRNA-27a, miRNA-532-5p, 
miRNA-142-3p, and miRNA-21/-155 [54-58]. 

Exosomes come from a wide range of sources, 
and the application of exosomes from MSCs is 
the most studied. In the same medium, exo-
somes secreted by BMSCs (BMSC-Exos) were 
cocultured with degenerative NPCs. Degenera- 

tive NPCs showed an NP-like phenotype, and a 
certain number of regenerated normal NPCs 
could be detected. In this process, the miRNA-
142-3p carried by exosomes effectively block- 
ed the mitogen-activated protein kinase path-
way, reduced the expression of apoptotic ge- 
nes, and prevented the further degeneration of 
NPCs [54, 55]. In addition, exosomes can pro-
mote the production and secretion of ECM 
components such as proteoglycans, aggre-
cans, and type II collagen in IVD, which is con-
ducive to restoring the microenvironment of 
degenerative IVD [54, 59-61]. Exosomes con-
taining miRNA-21/-155 can act on phospha-
tase, tensin homolog, and Bach1, inhibiting 
p53 and the phosphatidylinositol 3-kinase/Akt 
pathway and upregulating heme oxygenase-1 
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to prevent IVD cell degeneration [57, 58]. The 
specific proteins carried by BMSC-Exos can 
restore the damage to mitochondria in NPCs, 
maintain the stability of the mitochondrial in- 
ternal environment, reduce the participation of 
mitochondria in the oxidative stress response 
and inhibit the formation of inflammatory bod-
ies by reducing the inflammatory response in 
IVD tissue [50]. Exosomes are also involved in 
inhibiting IVDD caused by autophagy. Exosom- 
es can block the inflammatory response in- 
duced by interleukin (IL)-1 by acting on the criti-
cal factor of the inflammatory response, IL-1 
[62]. 

Similarly, exosomes from ADMSCs are round or 
oval capsules with precise edges and an aver-
age diameter of 90 nm, with a larger diameter 
than BMSCs [63]. It was found that the mi- 
RNAs presented by BMSC-Exos and exosomes 
secreted by ADMSCs (AMSC-Exos) can inhibit 
the further occurrence of IVD cell degeneration 
by regulating and clearing inflammatory factors 
in degenerative IVDs to restore the normal bio-
logical microenvironment in IVDs [64-67]. In 
addition, both types of exosomes can specifi-
cally express CD63 and 70-kDa heat shock pro-
teins, which is conducive to the early diagnosis 
of IVDD [67]. ADMSC-Exos also showed a simi-
lar effect to BMSCs in inhibiting IVD cell apo- 
ptosis, but they can also reduce the calcifica-
tion of CEP [68, 69]. Recent studies have found 
that exosomes secreted by NPMSCs (NPMSC-
Exos) are a channel to realize the biological 
function of NPMSCs, which can maximize their 
parental cells’ natural process in the degen- 
erative IVD microenvironment. NPMSC-Exos 
could induce the directional differentiation of 
NPMSCs, and the expression levels of type II 
collagen, proteoglycan, Sox9, CD24, and Krt-19 
increased significantly [53]. In addition, healthy 
exosomes secreted by CEP stem cells (CEPSCs) 
(CEPSC-Exos) can also enhance the occurrence 
of autophagy and inhibit NPC apoptosis by acti-
vating the phosphatidylinositol 3-kinase/Akt 
signaling pathway, effectively improving the 
microenvironment of IVD and delaying IVDD to 
a certain extent, which may be related to anti-
apoptotic proteins [70]. In addition, relevant 
studies have confirmed that CEPSC-Exos can 
overexpress GATA-binding protein 4, promote 
TGF-β, and accelerate the invasion, migration, 
and differentiation of CEPSCs into NPCs, which 
is conducive to repairing degenerative IVD tis-
sue [71]. 

Although initial results have been achieved in 
the source, extraction, and culture of exo-
somes, the biological mechanisms of exo-
somes are still unclear, and how to realize the 
application of exosomes in diseases is still the 
most prominent and urgent problem. 

Gene therapy

Gene therapy provides a new idea for treating 
IVDD. The technique is to insert the foreign 
gene into the IVDD patients’ appropriate recep-
tor cells through gene transfer technology. The 
foreign gene can express critical products, 
such as NPCs and extracellular matrix, to treat 
IVDD diseases. Gene therapy can also include 
therapeutic measures and new technologies 
taken at the DNA level. 

There are three approaches for IVDD diseases: 
viral vectors, non-viral vectors, and gene edit-
ing. The advantage of a virus vector is that it 
can replicate and proliferate efficiently in cells, 
but its safety needs to be confirmed. This virus 
includes retrovirus, lentivirus, adenovirus, ade-
no-associated, and baculovirus [72-76]. Non-
viral vectors have high safety but low transfec-
tion efficiency, mainly polylysine, polyethylenei- 
mine, inorganic nanoparticles, silicon nanopar-
ticles, natural polymer nanoparticles, and RNA 
interference [77-84]. DNA nuclease gene-edit-
ing technology can achieve accurate and effi-
cient gene editing in normal eukaryotic cells 
[85, 86]. The above three gene therapy app- 
roaches are commonly used for the treatment 
of IVDD and are the most promising clinical 
application methods (Figure 3). One or more 
genes control the expression of matrix synthe-
sis factors, catabolic, growth factors and recep-
tors, inflammatory factors and receptors, and 
intracellular regulatory factors related to IVDD. 
Their expression may be realized by genetic 
modification. 

Viral vectors are widely studied, and the tech-
nology is relatively mature. They are suitable 
biological vectors for gene therapy for IVDD.  
For example, the retrovirus is a single-stranded 
RNA virus that can efficiently transfect IVD cells 
and express the target gene product in host 
cells. Wehling et al. [86] successfully produced 
an IL-1 receptor antagonist protein by transfer-
ring the complementary DNA of the bacterial 
lacZ gene and human IL-1 receptor antagonist 
into chondrocytes isolated from bovine tail CEP 
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Figure 3. The transcription, translation, and function of foreign genes after they enter the target cell through gene 
editing technology. A. The target gene is inserted into RNA through gene editing technology. It enters the receptor 
cell through vectors for transcription and translation to form functional proteins and perform biological functions 
outside the cell. B. First, the target DNA fragment is removed by “molecular scissors”. Then, nonhomologous or ho-
mologous recombination is completed and replaced by gene editing. Finally, functional proteins are formed through 
transcription and translation to perform biological functions.

through a retroviral vector. Reinecke et al. [87] 
detected similar results in rat IVD cells. These 
results show the potential value of local gene 
therapy for IVDD and are a new method of exog-
enous gene therapy for IVDD. The characteris-
tic of lentivirus is that it can carry a relatively 
large gene load and a large genome. It has obvi-
ous advantages in the multigene expression 
system. It can efficiently transfect cells in mitot-
ic and nonmitotic stages [88]. It was also found 
that the contents of type II collagen and proteo-
glycan in the lentivirus vector gvi15-mediated 

caspase-3 siRNA-transfected NPCs of human 
degenerative IVD were significantly higher than 
those in the control group for one week [73].  
In addition, lentivirus-mediated survivin-trans-
fected NPCs of degenerative IVD could restore 
the morphology of degenerative NPCs but did 
not affect the apoptosis rate. At the same time, 
similar studies have shown that the lentivirus 
vector β3 transduces TGF. Connective tissue 
growth factor and tissue inhibitor of metallopro-
teinase (TIMP)-1 can also upregulate proteogly-
cans and type II collagen [89]. TIMP-1 mediated 
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by adeno-associated virus alone can also de- 
lay the progression of IVDD, and its immunoge-
nicity is lower, which is not related to any known 
diseases in mammals [90, 91]. In addition, the 
adenovirus vector has the characteristics of in 
vitro stability and easy purification. It is not  
integrated into the host cell to avoid the possi-
bility of insertion gene mutation. Relevant stud-
ies have found that adenovirus as a gene deliv-
ery vector can prolong the expression of grow- 
th differentiation factor (GDF)-5, significantly 
increase the content of mucopolysaccharide 
and hydroxyproline in NPCs, and promote the 
synthesis of ECM, which is very important for 
restoring the IVD cell survival environment [92]. 
There are few studies on gene therapy for IVDD 
mediated by a baculovirus vector. Only a few 
studies have shown that baculovirus can suc-
cessfully express the green fluorescent pro- 
tein gene in IVDD without symptoms [76]. 
Nevertheless, its effectiveness and availability 
need to be confirmed by further research. 

Compared with viral vectors, nanoparticle vec-
tor-mediated gene therapy has unique advan-
tages, including a small volume, no cytotoxicity, 
no immunogenicity, and high gene transduc- 
tion efficiency. It is widely used in experimental 
research on gene therapy for IVDD disease 
[81]. It was found that these nanoparticles 
could downregulate the gene expression of 
matrix protein aggrecan/type I collagen and 
type II collagen and upregulate MMP-3 expres-
sion [80]. This is a discovery for gene therapy in 
IVDD in vivo. RNA interference is mainly used 
for specific gene silencing and can be used  
as gene therapy for IVDD. Moreover, knocking 
down caspase-3 in rabbit IVD cells by siRNA 
technology effectively prevented NPC apopto-
sis and delayed IVDD development. SiRNA can 
also reduce the IVD cell response to IL-β and 
effectively reduce or inhibit the inflammatory 
response stimulation to IVD [84]. In recent 
years, nanoparticle carriers have been a re- 
search hotspot for gene modification and have 
shown good application prospects. 

Unlike viral and nanoparticle vectors, gene edit-
ing technology is a new and popular techno- 
logy for site-specific genome modification. It 
was developed for the third-generation clus-
tered regularly interspaced short palindromic 
repeats/Cas-9 system. This technology is be- 
coming more mature, the cost is gradually 

reduced, and the scope of application is ex- 
panding [85]. The latest research found that 
gene-editing technology can directly upregulate 
cartilage tissue protein aggrecan and type II 
collagen to enhance the regeneration pheno-
type without inducing other growth factors [93, 
94]. Therefore, gene therapy shows excellent 
potential application value in treating IVDD dis-
eases and provides a method to accurately 
control the phenotype of stem cells for treating 
IVDD diseases. 

Gene therapy, as a targeted therapy that has 
been pursued for a long time, still has various 
challenges, including long-term safety, the 
mass production of gene drugs, the controlla-
bility of genes expressed in vivo, the inability of 
foreign genes to be stably expressed in vivo for 
a long time, the low efficiency of target gene 
transfer, changes in the biological characteris-
tics of target cells, ethical problems, etc. 

Tissue engineering therapy

Tissue engineering was first proposed at the 
Washington Science Foundation in 1987 and 
officially confirmed and defined in 1988. It 
applies engineering and life science principles 
to develop biological substitutes for restoring, 
maintaining, and improving injured IVD function 
[95]. In particular, tissue engineering technolo-
gy may be the most critical step in developing 
cell, exosome, and gene therapy. Tissue engi-
neering materials can provide a suitable carrier 
and minimally invasive surgery for cell trans-
plantation, exosome transplantation and ge- 
netic modification. At present, research on tis-
sue engineering technology mainly focuses on 
regenerative IVD cells, bionic IVDs, and solving 
the complications caused by traditional thera-
pies (encapsulating regenerative factors to pro-
mote fusion surgery and eliminate inflammato-
ry reactions) [60, 96, 97] (Figure 4). 

First, tissue engineering therapy has stringent 
requirements for materials, including low immu-
nogenicity, reasonable encapsulation rate, non-
toxicity, degradability, and specific mechanical 
support properties. The most popular biomate-
rials in clinical research include natural colla-
gen, chitosan, and hyaluronic acid, as well as 
synthesized carbon fibers, hydrogels, polylactic 
acid, polyglycolic acid, and polylactic-co-glycol-
ic acid [98]. Especially for IVD regeneration and 
artificial IVD construction, a single biomaterial 
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Figure 4. Cells combined with biological factors promote nucleus pulposus (NP) regeneration or 3D-printed biologi-
cal intervertebral discs (IVDs) through tissue engineering technology. A. Cells are combined with growth factors and 
transplanted into degenerative IVDs through a specific delivery system. Growth factors can directionally induce 
some cells to differentiate into NPCs to promote the regeneration of NPCs. Among them, these cells have the func-
tion of NP forming or directional differentiation into NP cells (NPCs), including NPCs, bone marrow mesenchymal 
stem cells (BMSCs), nucleus pulposus mesenchymal stem cells (NPMSCs), adipose-derived mesenchymal stem 
cells (ADMSCs), umbilical cord mesenchymal stem cells (UCMSCs), cartilaginous endplate stem cells (CEPSCs) and 
pluripotent stem cells (IPSCs). Currently, the commonly used differentiation-inducing factors include exosomes, 
drugs, bone morphogenetic proteins (BMPs), miRNAs, transforming growth factor (TGFs), and growth differentiation 
factors (GDFs). B. Biomaterials, cells, and biological factors are printed in different proportions by a special 3D print-
ing machine [138] to obtain the target biological IVD. These biomaterials are mainly collagen proteins, chitosana, 
hyaluronic acid, carbon fibers, hydrogels, polylactic acid (PLA), polyglycolic acid (PGA), poly(lactic-co-glycolic acid) 
(PLGA), and SiO2. At present, there are mainly two kinds of biological IVDs. One is the bio-IVD, which can withstand 
certain horizontal, vertical, and torsional stresses. Another is that in addition to the above characteristics, the bio-
IVD with NP-like tissue in the center has the function of the natural IVD to distribute mechanical force evenly.

often cannot meet the requirements of com-
plex IVD regeneration. It often needs to hybrid-
ize two or more materials to meet the needs of 

IVD tissue. For example, nanofiber chitosan 
solution can be used to enhance NP for IVD 
regeneration and repair [99]. The former mainly 
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Table 2. Biological factors for GelMA hydrogel clinical disease research
Biological factor Target Organization Function Ref.
GDF-5 and adipose-derived stem cells Rats IVD Maintain NP tissue integrity and accelerate 

ECM synthesis
[60]

Aspirin Rabbits IVD Regulation of inflammation after  
discectomy

[97]

Human dental pulp stem cell and human 
umbilical vein endothelial cells

Cells Dental pulp tissue Lead to ameloblast and odontoblast  
differentiation

[108]

Human BMSCs Cells Bone tissue Stem cell osteogenic differentiation [109]

BMSCs Cells Bile ducts Construct biologically active artificial bile 
ducts

[110]

Human amniotic mesenchymal stromal 
cells and stromal-derived factor-1alpha

Rats Brain tissue Promote stem cell differentiation and repair 
focal brain injury

[111]

ECM and human cardiac progenitor cell Rats Myocardial tissue Repair damaged myocardium [112]

NPCs Cells IVD Promote NPC regeneration [113]

Collagen Cells Vascular tissue Promote angiogenesis [115]

EVs Rats Cartilage tissue Stimulate chondrogenesis and heal  
cartilage defects

[116]

Exosomes secreted by human umbilical 
vein endothelial cells

Rats Skin tissue Accelerate wound healing [117]

Exosomes and ECM Rabbits Bone and cartilage 
tissue

Supplement mitochondria-related proteins 
and promise osteochondral defects 
regeneration

[118]

Riboflavin Cells Bone tissue Promote bone regeneration [119]

Induced pluripotent stem cell-derived 
neural stem cells

Mice Spinal cord Repair injured spinal cord [120]

14-3-3ε protein Cells Bone tissue Promote osteoblast differentiation and 
osteogenesis

[121]

Vascular endothelial growth factor Cells Vascular tissue Promote angiogenesis [122]

Doxorubicin Mice Skin tissue Sustained delivery of drugs [123]

Angiogenic growth factor Cells Vascular tissue Delivery of vascular growth factors and 
promotion of angiogenesis

[124]

Transposase-470 Cells Vascular tissue Inhibit tumor angiogenesis [125]

Sinomenium Mice Bone and joint tissue Delay surgery-induced osteoarthritis [126]

Ciprofloxacin Cells Oral tissue Ablation for oral infection [127, 128]

Puerarin Rabbits Pelvic tissue Anti-inflammatory and promoting tissue 
regeneration

[129]

Calcium peroxide Cells Cartilage tissue Promote chondrocyte regeneration [130]

Metformin Cells Bone tissue Promote osteoblast proliferation [131]

Octacalcium phosphate Cells Bone and vascular 
tissue

Promote osteogenesis and angiogenesis [132]

Tumor necrosis factors Cells soft tissue Promote wound healing [133]

Decellularized liver matrix Cells Liver tissue Elevate liver functions [134]

Platelet Cells Bone and cartilage 
tissue

Promote bone and cartilage regeneration [135]

6-deoxy-aminocellulose derivatives Cells and rats Skin and soft tissue Accelerate wound healing [136]

Hydroxyapatite Rats Bone tissue Fill bone defect [137]
Gelma: Gelatin Methacryloyl; GDF: Growth Differentiation Factor; IVD: Intervertebral Disc; Npcs: Nucleus Pulposus Cells; Evs: Extracellular Vesicles; ECM: Extracellular 
Matrix; Bmscs: Bone Marrow Mesenchymal Stem Cells.

strengthens the mechanical properties, which 
are similar to those of silicon dioxide. The latter 
mainly enhances the biocompatibility of the tis-
sue, which is similar to that of hydrogel and 
polylactic-co-glycolic acid [100-102]. This must 
meet the standards of biomaterial transplanta-
tion, such as being nontoxic and having low 
immunogenicity. In addition, hydrogels with cer-

tain photosensitivity, such as gelatin methacry-
loyl (GelMA) hydrogel and sericin methacryloyl 
hydrogel can meet the requirement of IVD 
regeneration by injection at a certain light time. 
All the biological properties of GelMA hydrogels 
conform to the requirement for NPC regenera-
tion. It can induce ECM production, induce NPC 
regeneration, and reduce inflammatory factors 
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via biological factors. Liu et al. [97] transplant-
ed aspirin-GelMA hydrogel into IVDs with ac- 
tive inflammatory factors. They found that the 
expression of the inflammatory factor, MMP-3 
and a disintegrin-like metalloproteinase with 
thrombospondin-4/-5 could be significantly 
inhibited and the inflammatory cycle could be 
shortened. In addition, celecoxib/polyesterim-
ide microspheres have been anti-inflammatory 
in canine degenerative IVD tissue [103]. 

Second, it should be pointed out that bionic 
IVDs, besides having good biocompatibility with 
the host, have rigorous requirements on the 
mechanical properties of tissue engineering 
scaffold materials, such as longitudinal com-
pression force, torsion force and elastic retrac-
tion force [104]. Vicente et al. [105] used 20% 
wt BaSO4 as the contrast agent for the pre-
formed hydrogel injected into the bovine NP 
chamber. The axial compression tensile cycle 
test is carried out at different frequencies. The 
results show that the treated gelatin-treated 
IVD has good mechanical properties. The sig-
nificance of single imitation NP transplantation 
is low for IVD diseases in which NP and AP are 
damaged simultaneously. However, there is no 
bionic IVD to meet the requirements of clinical 
trials. For example, natural biomaterials lack 
specific mechanical properties, while synthetic 
materials lose particular biological activity and 
degrade. These are still unsolved problems in 
constructing artificial IVDs [106, 107]. There- 
fore, simulating the overall cell and matrix 
structure of IVD remains a severe challenge. 

In addition, tissue engineering technology also 
has a strict selection of molecular substances 
carried, mainly including cells [108-113], pro-
teins [60, 114-122], and medicine [97, 123-
131]. In addition to the above, it also includes 
stromal-cell derived factor-1α [111], octacal- 
cium phosphate [132], cellulose nanofibrils 
[133], decellularized liver matrix [134], plate-
lets [135], 6-deoxy-aminocellulose derivatives 
[136] and gelatin-hydroxyapatite [137]. These 
small molecules can be encapsulated by Gel- 
MA hydrogels and transplanted into clinical dis-
ease (Table 2). 

Tissue engineering technology can provide a 
new approach to cell, exosome and gene thera-
py. At the same time, this technology has great 
potential for future medical regeneration and 
could provide a better strategy for clinical dis-

ease treatment. However, the current clinical 
application of tissue engineering technology is 
not mature, and the safety of the material 
needs to be further explored, which has delay- 
ed the clinical application of tissue engineering 
to some extent. 

Conclusions

In conclusion, there are still many unresolved 
complications in conservative, surgical, and 
minimally invasive treatments, and it is impos-
sible to cure IVDD fundamentally. Tissue engi-
neering technology crosses the entire cell, exo-
some and gene therapy spectrum. It is expect- 
ed to restore the normal physiological structure 
of IVD at the molecular level. Although there are 
many problems to be solved in these emerging 
IVDD therapies, from long-term research, these 
therapies for IVDD diseases at the etiological 
level are of great clinical research value. 
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