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Abstract: Objectives: To establish an automatic approach for the measurement of the Cobb angle and the diagnosis 
of scoliosis on chest radiograph. Methods: We developed an artificial intelligence (AI) automatic program which 
contained a supervised learning module and an inference module. After the filtering and pre-processing process, 
96 images from the Shenzhen chest X-ray set were used for training with the supervised learning module, and 
491 test images were separately gauged by the AI and the corresponding manual methods. The results of the two 
methods were further compared through statistical analyses. Results: Among the test images, 6068 (99.49%) ver-
tebral bodies were identified within the deviation of one vertebral segment. The value difference between the Cobb 
angle obtained by the AI program and that measured by specialists was 0.4020±0.8703. The intraclass correlation 
coefficient of 0.915 indicated the strong agreement. AI scoliosis diagnosis achieved an accuracy of 98.37%, with 
a specificity of 98.73%, a sensitivity of 88.24% and a kappa coefficient of 0.781. And the area under the receiver 
operating characteristic curve of 0.979 confirmed the consistency of the two methods in diagnosis. Conclusions: We 
developed a novel automatic AI method with the abilities to measure the Cobb angle, and to identify the approximate 
vertebral segment and diagnosis of scoliosis on chest radiograph. The results suggest that this method might be a 
promising alternative strategy for scoliosis screening on chest radiograph and worth further investigation. 
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Introduction

As a three-dimensional structural spinal defor-
mity, scoliosis is characterized by raised ribs, 
unbalanced shoulders, and an asymmetrical 
waist. Even with the development of medical 
imaging technology, which leads to the replace-
ment of two-dimensional images (X-ray) with 
three-dimensional images (CT or MR) in many 
medical fields, X-ray still plays an important role 
in the diagnosis and evaluation of scoliosis. 
Measuring the Cobb angle, the degree of spinal 
curvature on the posteroanterior or anteropos-
terior spinal X-ray, is routinely used for assess-
ing the severity of scoliosis [1]. The angle 
between the two tangents of the cephalad end 
vertebra’s superior surface and the caudad end 
vertebra’s inferior surface on the coronal plane 
is not completely equivalent to the real spinal 

deformity. Although some alternative methods 
have been proposed [2-4], the Cobb angle is 
still considered as the gold standard in current 
clinical diagnosis. When the lateral curvature is 
over 10°, the diagnosis of scoliosis should be 
confirmed. 

As an essential for selecting therapeutic meth-
ods, monitoring spine deformities and evaluat-
ing therapeutic effects, the measurement of 
the Cobb angle should be accurate enough to 
represent the actual state of the spinal struc-
ture. However, manual measurement is faced 
with the problem of reliability and reproducibili-
ty. The measurement errors of the same curve 
from intra- and interobserver measurements 
have been reported to vary between 3-7° [5, 6]. 
And the observer’s subjectivity and experience 
are related to these variations [6].
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Measuring the Cobb angle with the manual 
method is labor-intensive and time-consuming. 
As artificial intelligence (AI) technologies be- 
come increasingly sophisticated, there is grow-
ing hope that the computer will take over some 
human work such as the measurement of Cobb 
angle or the diagnosis of scoliosis one day. 
Compared with manual work, the result carried 
out by computer usually shows better reproduc-
ibility and higher efficiency. Consequently, it 
seems promising to solve the problem of reli-
ability and reproducibility in the measurement 
of Cobb angle with artificial intelligence. Multi- 
ple previous studies have tried to measure the 
Cobb angle or diagnose scoliosis by computer 
programs [7-11]. But much more attention 
needs to be paid due to the complicated clini-
cal environment, which makes measurement of 
the Cobb angle automatically a long way to go. 

In this paper, we present a novel AI method with 
the ability to measure the Cobb angle, identify 
vertebral segments and screen for scoliosis on 
chest radiograph. It processes by automatically 
simulating the manual procedure in dealing 
with chest radiography. 

Methods and materials

Dataset

This study used an open-source chest X-ray 
(CXR) image dataset published by the National 
Library of Medicine, National Institutes of 
Health, Bethesda, MD, USA [12, 13]. The ch- 
est X-rays, acquired from outpatient clinics of 
Shenzhen No. 3 People’s Hospital in China, 
were collected as part of the daily out-patient 
routine within one month. All personal informa-
tion was deidentified, and the use of these 
images had been exempted by the Ethics 
boards [12]. There were altogether 662 frontal 
chest x-ray images, captured by Philips DR 
Digital Diagnose system, namely 326 normal 
and 336 pulmonary tuberculosis x-rays. No 
case of spinal tuberculosis, spinal tumor or  
spinal fracture was observed in this image 
dataset. 

The inclusion criterion for this study was the 
chest X-ray image from people aged between 
10 and 60. And the exclusion criteria were as 
follows: (I) CXRs with interference from extra-
corporeal objects; (II) CXRs with spinal implants. 
Among the eligible 589 images, 96 were ran-

domly selected for model training or model vali-
dation, and the other 493 were used as the test 
set. 

Image pre-processing

The pre-processing procedure contained image 
enhancement and size standardization. The 
spinal structure was not the original highlight of 
CXR. It could be vague when overlaid with the 
ribcage or inner organs such as the heart and 
lung [14]. Therefore, the gamma transforma-
tion was applied to suppress noises derived 
from soft tissues, adjust gray levels and stretch 
the contrast of the spinal structure. The func-
tion formula and function graph were repre-
sented in Figure 1B. As the gray-scale histo-
grams shown in Figure 1A and 1C, the contrast 
of the original brighter pixels was stretched and 
that of the opposite pixels was suppressed. 
After this transformation, the spinal details 
were stressed, making it much easier for fur-
ther annotation and detection. 

For original images from the Shenzhen set, 
width and high varied slightly around 3000 pix-
els [12]. To modify the shape to square, each 
rectangular image was padded with black mar-
gins. Then padded images were resized to 
1024 × 1024 pixels. All these pre-processing 
procedures were undertaken by a simple batch 
script written in Python. 

Image annotation

For each CXR in the training set and validation 
set, the manual annotation was performed 
from the first thoracic vertebra to the bottom of 
the image. Bounding boxes and segmentation 
edges of vertebral bodies were annotated with 
the mouse control. If the inferior endplate of 
the lowest vertebral body segment was not 
completely displayed, this segment would be 
ignored. On the basis of segmentation annota-
tion, the parallel auxiliary line and 13 critical 
points of each endplate were further annotat-
ed. During the annotation process, for indis-
tinct structures, the approximate positions we- 
re estimated according to the relationship wi- 
th pedicles and adjacent vertebral bodies. An 
experienced spine surgeon carried out this pro-
cess, then another senior surgeon checked and 
revised the results. Afterwards, the annotated 
data was packaged into files as the ground 
truth. 
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Figure 1. A. The gray-scale histograms of the original Chest X-ray image. The x-axis demonstrates gray scale values 
from 0 to 255. The y-axis shows the number of pixels. B. The gamma transformation’s function graph. The x-axis and 
y-axis separately demonstrate the gray scale values before and after the gamma transformation. C. The gray-scale 
histograms of the image after the gamma transformation. The x-axis demonstrates gray scale values and the y-axis 
displays the number of pixels. D. The original Chest X-ray image. E. The image after the pre-processing procedure.

AI program

The main program, developed in Python, con-
tained a supervised learning module and an 
inference module. The supervised learning mo- 
dule could be used independently for model 
training or together with the inference module 
as the gauging program. 

Supervised learning: The detection and seg-
mentation tasks of our project were mostly 
based on mask region-convolutional neural 
network (Mask R-CNN), a flexible, robust and 
general framework [15]. The latter part of the 
Mask R-CNN framework was slightly modified, 
and an endplate critical point detection branch 
was added into the network. For each detected 
object, namely the detected vertebral body, 26 
critical points were designed for the descrip- 
tion of superior and inferior endplates. At the 

beginning of model training, pretrained weights 
derived from Microsoft COCO dataset (https://
cocodataset.org/) were loaded into the back-
bone and region proposal layer. Images and 
annotations from the training set and validation 
set were then fed into the network. After a 
series of training and filtering, we got the final 
trained weight. 

Inference process: At the testing stage, the 
trained weight was loaded into the supervised 
learning neural network in advance, and test 
images from the test set were pre-processed 
and fed into the supervised learning module. 
Then the outputs were input to the next infer-
ence engine. Within the inference process, 
bounding boxes with abnormal locations were 
eliminated according to the positional relation-
ship, and the segment name of each vertebral 
body was obtained based on the sequence of 
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corrected bounding boxes. For the vertebral 
body at the bottom of each CXR, the integrity 
was uncontrollable, which might seriously inter-
fere with the fitting of the vertebral endplate in 
the test. Therefore, the lowest vertebral body of 
each image was designed to be ignored. 

Then locations of bounding boxes were used to 
fit the central spinal curve with sixth order poly-
nomial curves, and endplate fitted straight lin- 
es were obtained by the least square method 
on the basis of superior and inferior endplates’ 
critical points. After a series of inference, these 
fitted straight lines were synthetically corrected 
with the contour of vertebral bodies, the central 
curve and slopes of the adjacent endplates. 
Then slope angles of endplates were succes-
sively checked from top to bottom. For those 
outliers, the inference engine would make a 
further comprehensive correction that com-
bined with critical points, the central line, 
instance masks’ contours and other factors. 
Intersection angles between the upper verte-
bra’s superior endplate and lower vertebra’s 
inferior endplate were automatically calculated 
and compared in sequence. The largest one 
was then chosen as the Cobb angle of the CXR. 
When the Cobb angle was 10° or higher, the 
patient would be diagnosed with scoliosis by 
the AI program. 

Manual measurement

For each test image that could pass through 
the AI test, a semi-automatic Python script with 
graphical user interface was used to determine 
the Cobb angles. Similar to the traditional 
method, the most deviated cephalad end and 
caudad end vertebrae were firstly determined 
by the eye, and then the parallel straight lines 
of the corresponding superior and inferior end-
plates were marked off with the mouse control. 
The marking process was produced by an expe-
rienced spine surgeon, and then another senior 
surgeon reviewed and calibrated the marked 
endplate lines. Afterwards, the manual mea-
surement result of the Cobb angle was figured 
out by computer.

Statistical analysis

Statistical evaluations were carried out with the 
assistance of SPSS version 26. A P value < 
0.05 was regarded as statistically significant. 
The intraclass correlation coefficient (ICC) was 

used to check the agreement between the 
Cobb angle obtained by AI and that measured 
by manual. McNemar’s test was used to de- 
termine whether there was any difference 
between the AI and manual diagnoses of scoli-
osis. Kappa coefficient was used to evaluate 
the agreement between the two methods. And 
receiver operating characteristic (ROC) curve 
was used to assess the diagnostic ability of the 
AI program. 

Results

In this study, all images were used after pre-
processing. Compared with the original CXR 
such as Figure 1D, the image after the gamma 
transformation (Figure 1E) showed more details 
of the bony structure, and noises derived from 
soft tissues were suppressed to some extent. 
And all input images were padded and scaled 
to the same size (1024 × 1024 pixels) in the 
batch processing stage. 

The automatic detection results of the super-
vised learning and inference process were 
shown in Figure 2. Auxiliary lines of superior 
and inferior endplates, fitted on the basis of a 
combination of bounding boxes (Figure 2B), the 
central curve (Figure 2C), critical points (Figure 
2D), vertebral masks (Figure 2E) and so on, 
were separately displayed with blue color and 
pink color (Figure 2A). For each image, the 
Cobb angle was automatically calculated, and 
the most deviated cephalad end and caudad 
end vertebrae were framed with purple and 
green boxes separately. Moreover, the estimat-
ed segment names were printed near the cor-
responding vertebrae (Figure 2F). Under the 
hardware environment of NVIDIA Titan X GPU 
and Intel Core i5 CPU, the execution speed of 
the AI test program is around 3.0 seconds per 
CXR. Among the test set, only two images’ 
detections failed due to the detection of mis-
taken bounding boxes. And these two images 
were eliminated from the subsequent statis- 
tics. 

Under the precondition of the successful test, 
there were altogether 6099 vertebral bodies 
detected by the AI program. In further manual 
review, 48 redundant vertebral bodies and 17 
missed vertebral bodies were determined. The 
sensitivity of AI vertebra detection was 99.74%, 
and the positive predictive value was 99.28%. 
In terms of the identification of the vertebral 
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Figure 2. A. Overview image of the automatic detection. B. The visualization result of the detected vertebral bound-
ing boxes and corresponding vertebral segment names. C. The visualization result of the fitted spinal central curve. 
D. The visualization result of the endplates’ critical points. Each color represents a type of critical point. E. The 
visualization result of the detected vertebral masks and contours of the corresponding vertebral bodies. F. The 
visualization result of the final AI result. The auxiliary parallel lines of superior and inferior endplates are separately 
displayed in blue color and pink color. The most deviated cephalad end and caudad end vertebrae are separately 
framed with purple and green boxes.

segment, 5340 (87.56%) vertebral bodies we- 
re correctly identified, and other 728 vertebral 
bodies were identified as their contiguous seg-
ments. Overall, 6068 (99.49%) results of the 
segment identification were located within the 
deviation of one vertebral segment. 

The value difference between the Cobb angle 
obtained by the AI program and that measured 
manually was 0.4020±0.8703 and the intra-
class correlation coefficient was 0.915 with P < 
0.001. The Bland-Altman Plot (Figure 3) dis-
played that the vast majority of the points were 
located around the average value and between 
the 95% confidence interval (CI). 

According to the diagnostic criteria of scoliosis, 
the diagnostic results of the AI method and the 
manual method were represented in Table 1. 
Regarding the manual Cobb angle result as  
the ground truth, this AI scoliosis diagnosis 
achieved an accuracy of 98.37% in the test  

set, with a specificity of 98.73% and a sensitiv-
ity of 88.24%. The P value of McNemar’s test 
was 0.289, suggesting there was no significant-
ly difference between the two methods in sco-
liosis diagnosis within the dataset. In addition, 
the kappa coefficient of the two diagnostic 
methods was 0.781. As shown in Figure 4, the 
area under the ROC curve (AUC) of the AI scolio-
sis diagnosis was 0.979.

Discussion

Typically, the whole thoracic vertebrae and 
upper lumbar vertebrae can be displayed on 
chest radiograph. Even though the lumbar 
curve of scoliosis tends to be underestimated, 
chest X-ray is regarded as a feasible approach 
for scoliosis screening [16, 17]. In this study, we 
chose an open-source chest radiography data-
set derived from the same type of device. One 
positive aspect of using the open-source image 
dataset was to facilitate comparisons of future 
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Table 1. Crosstabulation table of the two methods in 
scoliosis screening

Manual measurement
Total

scoliosis non-scoliosis
AI measurement Scoliosis 15 6 21

non-scoliosis 2 468 470
Total 17 474 491

Figure 3. The Bland-Altman Plot of the Cobb angle results measured by the two methods. The x-axis displays the 
average of the two measures, while the y-axis displays the difference between the Cobb angle obtained by the AI 
program and that measured manually. The solid red line represents the average value and the light blue dashed 
lines indicate the 95% confidence interval. Each scattered point represents the result of a test chest X-ray image.

studies in passing. Although the Shenzhen CXR 
dataset was originally set up for the diagnosis 
of pulmonary tuberculosis [18, 19], the spinal 
signals that provided information on the curve 
of the spine were unaffected by lung disease. 
The use of this image dataset was intended to 
testify the effectiveness of the proposed algo-
rithm. Consequently, CXRs from people aged 
between 10 and 60, the majority of the datas-
et, were targeted to support the task, while oth-
ers were excepted due to the small number of 
same-age samples. 

Annotation of images from the training set and 
validation set was started at the first thoracic 
vertebra, from top to bottom. But during the 
automatic test process, for test set images, a 

few seventh cervical vertebrae and 
sporadic other cervical vertebrae were 
inevitably detected due to the struc-
tural similarity, and there were occa-
sional missed detections. Fortunately, 
these redundant and missed detec-
tions had little impact on the overall 
Cobb angle measurement, but could 
affect the supplementary identifica-

tion of the vertebral segment. The identification 
procedure was also processed by the inference 
module, which was capable of numbering ver-
tebral segment according mainly to the se- 
quence of detected bounding boxes in most 
cases. But some minor deviations in segments’ 
identification, accounting for 12.44% of all, 
were inevitable when vertebrae were mistak-
enly detected. Briefly, 99.49% of results of ver-
tebrae identification were within the deviation 
of one vertebral segment. 

The main AI gauging program was a combina-
tion of the supervised learning module and the 
inference module. The supervised learning 
module was built on the basis of Mask-R-CNN 
[15]. The Mask-R-CNN network structure after 
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Figure 4. The receiver operating characteristic curve of the AI program in 
screening scoliosis.

the Region Proposal Network [20] was modified 
and a branch with 26 critical points designed 
for endplates was inserted into the framework. 
And the inference module, the core of our gaug-
ing program, possessed the ability to deter-
mine the suitable endplate fitted lines accord-
ing to the locations of bounding boxes, masks, 
critical points, the central curve and the slopes 
of the adjacent vertebral endplates.

The trained program showed relatively fast de- 
tection speed and good generalization ability 
for images from the same source. After repro-
cessing by the inference module, the output 
results could well cover the vast majority of the 
test set. Nevertheless, due to image quality or 
unexpected reasons, occasional bounding box 
errors came with the output. Although we tried 
to avoid detecting mistaken vertebral bodies by 
model optimization and parameter adjustment, 
there were still isolated cases of bounding 
boxes with the wrong position that could not be 
eliminated. Or, to be more specific, there were 
two images with detection failure among the 
test set. 

In general, an increase of 5  
or more on two consecutive 
radiographs was an indication 
of curve progression [6]. The- 
refore, the variability of the 
Cobb angle measurement > 5° 
would affect the clinical strat-
egy [8, 21]. In the comparison 
of the AI and manual mea- 
surements, the sensitivity of  
AI scoliosis diagnosis was 
88.24%, while the specificity 
was 98.73%, and the accuracy 
was 98.37%. And the width of 
the 95% confidence interval 
was 3.4114 (Figure 3), less 
than the 5° threshold of chan- 
ge that might influence treat-
ment decisions. And the ICC  
of 0.915 indicated the strong 
agreement between the AI and 
manual Cobb measurements. 
The result of McNemar’s test 
revealed that the difference 
between these two diagnostic 
methods was not statistically 
significant. Additionally, the ka- 
ppa coefficient of 0.781 and 

the ROC curve (Figure 4) confirmed the consis-
tency of the two methods in scoliosis diag- 
nosis. 

In comparison with previous studies [7-11], our 
method includes the inference module, which 
was designed to integrate several strategies  
for the endplate line fitting. Though increasing 
complexity, this introduction improves the ga- 
uging process’s fault tolerance ability and gen-
eralization performance. While measuring the 
Cobb angle, our method can identify the cepha-
lad end and caudad end vertebrae fuzzily and 
provide a visually intuitive output presentation 
(Figure 2). Our approach has shown potential 
for scoliosis screening on CXR, and the likes of 
this AI method might get a broader application 
in the future. 

In this study, we aimed to provide an automatic 
AI approach for Cobb angle measurement on 
CXR. Compared with the manual measurement, 
we obtained acceptable results with high simi-
larity in the single CXR dataset. However, even 
if the distribution of scoliosis in the Shenzhen 
dataset was close to the previous reports [22, 
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23], the primary limitation was that the majority 
of images were from people without scoliosis. 
We therefore only paid attention to the curve 
with the most lateral deviation on chest radio-
graph in the designing stage. Besides, CXRs 
with some special conditions, such as severe 
scoliosis, spinal deformity, spinal degeneration 
and so on, were not taken into consideration by 
this study. Our method should be available for 
regular scoliosis screening in the single-source 
chest radiograph dataset, but recognition and 
measurement of images with all these varia-
tions were not limited to just expansion of 
annotation and training [24, 25]. Further inves-
tigation is needed for this challenging and com-
plicated task. 

Conclusion

In this study, an automatic AI method was 
developed for the measurement of the Cobb 
angle and the diagnosis of scoliosis, which was 
also capable of identifying the approximate  
vertebral segment. The AI program obtained 
acceptable results as the screening instrument 
within a single CXR dataset. It seems to be  
a promising alternative strategy for scoliosis 
screening on chest radiograph, but some spe-
cial and extreme conditions were not consid-
ered in our design. Further studies are there-
fore necessary to improve the algorithm and 
expand the applicable range. 
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