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Abstract: Background: Non-apoptosis cell death could be a secondary consequence of the immune response, which 
profoundly influences tumor microenvironment (TME), escaping from chemotherapy/immunotherapy-induced apop-
tosis resistance effects. Whereas, systemic analysis of non-apoptosis regulated cell death associated with TME 
and clinical outcomes remains unveiled. Methods: Our kidney clear carcinoma (KIRC) samples from The Cancer 
Genome Atlas (TCGA) were stratified into three clusters based on the activity of autophagic cell death, ferroptosis, 
pyroptosis and necroptosis. Clinical prognosis, TME landscape, biological functions and somatic mutation frequency 
were compared among the clusters. Additionally, to identify a gene signature highly correlated with clinical prog-
nosis, a risk score model was constructed, and the clinical prognosis, immune infiltration, somatic mutation and 
biological pathways of risk score subgroups were investigated. Results: Our non-apoptosis cell death clusters are 
robustly predictive of immunotherapy responses. Patients in Cluster B are the most sensitive to immune checkpoint 
blockades-depended immunotherapy. Our risk score model was also verified as a promising biomarker for clinical 
prognosis and immunotherapy efficiency. Where, the High-risk score group was more sensitive to immunotherapy. 
Conclusions: The novel non-apoptosis cell death-based classification and risk score model could predict the out-
come of immunotherapy, and highly associate with immune infiltration. These findings may provide a novel strategy 
to aid in identificatin of biomarkers and selecting personalized therapeutic strategies. 
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Introduction

Precision medicine and personalized treatment 
have eased the outlook of many patients diag-
nosed with advanced cancers. The basic pur-
pose of precision medicine is to match a suit-
able drug with the suitable patient by targeting 
the specific molecules [1]. Renal cell cancer 
(RCC) originates from the nephron tubules, and 
comprises a heterogeneous group of cancers. 
The most common subtypes are kidney renal 
clear cell carcinoma (KIRC), accounting for 
70%-75% of cases [2]. More and more studies 
identified effective biomarkers, which were 
restricted by intratumoral heterogeneity. Re- 
cently, insights obtained from the molecular 
characterization of aberrant genes and signal-
ing pathways associated with tumors have 
been incorporated into clinical strategies. 

Predictably, a more extensive evaluation of  
the high-resolution molecular data, containing 
abundant clinical data, and therapy details, 
should reduce the gaps in our understanding of 
cancer biology and pave the way for improving 
cancer treatments [3]. However, thousands of 
parameters provided by transcriptome cover 
too much information which are overwhelming 
and unsustainable for routine treatment deci-
sions [4]. 

The tumor immune microenvironment (TME) is 
a complex ecosystem that plays a critical role in 
cancer progression and response to therapy 
[5]. More and more experimental evidence sug-
gests the interplay of ferroptosis, necroptosis, 
or pyroptosis with tumor immunity. Tumor cells 
that undergo regulated cell death may trigger 
robust antitumor immunity, and combination 
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therapy of cell death inducers and immune 
checkpoint inhibitors (ICIs) may exert a syner-
gistic and promising role in enhancing antitu-
mor activity [6, 7]. Additionally, autophagic cell 
death independent from of ferroptosis, necrop-
tosis and pyroptosis, occurs in a subpopulation 
of cells that undergo the highest levels of 
autophagy during nutrient starvation [8]. 
Furthermore, autophagic cell death’s crosstalk 
with other regulated cell death has been widely 
reported recently, which notably influencing 
and even reshaping TME [9]. Therefore, the 
activation of the aforementioned cell death 
may help eliminate the cancer cell, which is piv-
otal for the occurrence and development of 
tumors. Nevertheless, comprehensive and in- 
tegrated transcriptome analyses that access 
the non-apoptosis cell death including autoph-
agic cell death, ferroptosis, pyroptosis and ne- 
croptosis remain unreported. Here, we devel-
oped a novel method for classifying of KIRC 
samples into three TME clusters with notably 
distinct immune infiltration and clinical out-
comes. Then, we systematically evaluated our 
novel classification’s immune response’s pre-
dictive efficacy. Additionally, a risk score model 
was constructed based on the differentially 
expressed genes among the TME clusters; the 
model is associated with clinical prognosis and 
immunotherapy response of KIRC. Altogether 
the classification system could help dissect a 
unique TME characterization of KIRC and to 
interpret the clinical responses to immunother-
apies, providing new molecules beneficial for 
the diagnosing and treating of cancers.

Methods

Data download and processing 

Autophagic cell death, ferroptosis, pyroptosis 
and necroptosis related genes were obtained 
from the Molecular Signatures Database 
(MsigDB, https://www.gsea-msigdb.org/gsea/
msigdb/) [10] including “GOBP_AU-TOPHAGIC_
CELL_DEATH”, “WP_FERROPTOSIS”, “REACT- 
OME_PYROPTOSIS” and “GOB-P_NECROPT- 
OTIC_SIGNALING_PATHWAY”, and signatures of 
28 immune cells were all from G Bindea, B 
Mlecnik et al (Table S1) [11]. The FPKM values 
of genome expression files (n=539) and the 
somatic mutation data of kidney renal clear cell 
carcinoma (KIRC) and normal renal tissue were 
downloaded from The Cancer Genome Atlas 
(TCGA, https://portal.gdc.cancer.gov/), where 

corresponding clinical information was incorpo-
rated. Two KIRC validated cohorts (GSE53757 
n=144, GSE73731 n=256) were obtained from 
Gene-Expression Omnibus (GEO). The frag-
ments per kilobase of exon per million mapped 
(FPKM) format of genome expression values 
was then transformed into the format of tran-
script per million (TPM). The “maftools” R pack-
age was applied to process the mutation anno-
tation format (maf) data. The study did not 
require the approval from the ethics commit-
tees because all data were open-access in the 
TCGA or GEO database.

Tumor-infiltrating cells and abundance of au-
tophagic cell death, ferroptosis, pyroptosis, 
and necroptosis analysis

Single-sample gene set enrichment analysis 
(ssGSEA) is an extension of Gene Set Enrich- 
ment Analysis (GSEA), which calculates enrich-
ment scores for the gene set [12]. To better 
elucidate the abundance of regulated cell 
death containing autophagic cell death, ferrop-
tosis, pyroptosis and necroptosis, and im- 
mune infiltrating cells, we used the “GSVA” R 
package to apply the ssGSEA algorithm to 
determine the enrichment scores.

Unsupervised clustering

Unsupervised clustering algorithm was applied 
to obtain different clusters based on the ssG-
SEA enrichment scores. Package “Consen- 
suClusterplus” was used to perform this step 
and to the number of clusters and ensured the 
stability of the classification.

Annotation and pathway enrichment analysis

Gene Ontology (GO) analysis were conducted 
using the “clusterProfiler” R package to deter-
mine the downstream biological processes,  
cell components, and molecular function path-
ways. Furthermore, GSEA analysis was per-
formed using gsea-3.0 software to investigate 
the enrichment pathways of differentially 
expressed genes (DEGs). p-value < 0.05 and 
adjusted p-value (Q value) < 0.05 were consid-
ered statistically significant.

Evaluation of immune infiltration, TMEscore 
and tumor mutation burden

To precisely dissect the features of the KIRC 
tumor immune microenvironment, in the begin-
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ning, we compared the expression levels of 
immune checkpoints (PD-1, CTLA-4, LAG-3, 
and TIM-3) in the different clusters using 
Kruskal-Wallis’ test and applied Pearson’s cor-
relation analysis to identify genes associated 
with immune checkpoints. To further address 
the mechanisms regulating the expression of 
these immune checkpoints, Pearson’s correla-
tion algorithm was conducted to evaluate the 
relationship between the expression levels of 
immune checkpoints and activity of the path-
ways including IFN-α, β pathway, TGF-β path-
way, hypoxia pathway, TNF-α related pathway, 
IL-2 related pathway, and WNT/β-catenin path-
way. All above signaling pathways modulated 
the expression of the aforementioned immune 
checkpoints [13], and all the signature genes of 
the above pathways were also acquired from 
MsigDB. Afterward, the Estimation of STromal 
and Immune cells in Malignant Tumors using 
Expression data (ESTIMATE) algorithm was 
adopted to calculate the stromal and immune 
scores. TMEscore, which is considered a help-
ful tool to predict tumor immunogenicity and 
ICIs sensitiveness from bulk transcriptomic 
data [14] was adopted to investigate the com-
prehensive features of TME. Additionally, to 
obtain the tumor mutational burden (TMB), we 
counted the nonsynonymous and synonymous 
mutation counts of each patient in the TCGA-
KIRC cohort.

Differentially expressed gene analysis

Package “limma” applied to screen out the dif-
ferently expressed genes (DEGs) among the 
phenotypes using the Chi-Squared test. We 
intersected the DEGs and genes with different 
expressions in bladder cancer tissue compar-
ing normal tissue based on TCGA cohorts. 
Considering the least absolute shrinkage 
(LASSO), univariant and multivariant cox re- 
gression analysis were successively performed 
using the R package “glmnet” to select candi-
date genes for constructing the risk model, 
riskscore = (coefi × Expi), where i refers to the 
number of selected DEGs.

Identification of clinical significance of risks-
core

The samples were divided into low- and high-
riskscore groups, where the cut-off was set at 
the median of these scores. We applied pack-
age “survival” to evaluate the difference of 

overall survival between the categorized pa- 
tients. To estimate the predictive capability of 
riskscores, univariate and multivariate cox 
regression analyses were used followingly. 
Subsequently, a difference analysis of risks-
cores was performed with clinicopathological 
features using Kruskal-Wallis’ test (clinical 
stage, T, M, N stage, and pathological grade). 
And the correlations of riskscores with clinical 
stages, M and N stages, were then verified by 
samples from the GEO database. Lastly, the 
areas under the curve (AUC) of the receiver 
operating characteristic (ROC) curve were 
applied to evaluate the predictive value of gene 
signature. Subsequently, we correlated the 
selected genes’ constructed riskscores and 
expression levels with the ssGSEA scores of 
the regulated cell death (Autophagic cell death, 
ferroptosis, pyroptosis and necroptosis). KIRC 
samples in various clinical stages to conduct 
correlation analysis to investigate the rele- 
vance of the expression of selected genes and 
Stromal and Immune scores computed by the 
ESTIMATE package to explore how selected 
genes influence the immune infiltration in KIRC 
patients at different disease stages.

Statistical analysis 

Data analyses and visualization were mainly 
completed by R (version 4.0.3) software, PERL 
212 programming language (version 5.32.1.1). 
Statistical significance for normally distributed 
variables was estimated by unpaired wilcox 
tests for comparisons of two groups. The 
Kaplan-Meier Technique was used to generate 
survival curves. p-values of less than 0.05 were 
considered statistically significant.

Results

Non-apoptosis regulated cell death clusters 
exhibit different clinical prognosis and immune 
infiltration

Based on ssGSEA scores of immune infiltra-
tion, pyroptosis, autophagy, ferroptosis, and 
necroptosis, unsupervised clustering was im- 
plemented and accessed three clusters, that 
were ultimately obtained, were accessed inclu- 
ding 305 samples in Cluster A and 165 sam-
ples in Cluster B, 60 samples in Cluster C. The 
Cluster B was characterized as high-enrich- 
ment inflammation, while Clusters A and C  
were characterized as middle-enrichment and 
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low-enrichment, respectively (Figure 1A). The 
boxplot also showed a significant difference 
between infiltration and non-apoptosis regulat-
ed cell death enrichment in the clusters (Figure 
1B). Additionally, the patients in Cluster A had 
significantly longer overall survival (OS) com-
pared with patients in Clusters B and C (Figure 
1C, P=0.04). Generally, high activation of non-
regulated cell death is probably accompanied 
by high immune infiltration and vice versa. 
Furthermore, this corresponding relationship 
also affects the clinical survival of KIRC 
patients.

Non-apoptosis regulated cell death clusters 
predict distinct immunotherapy efficiency

According to the different immune infiltration 
phenotypes, it was speculated that Cluster B 
could respond to immunotherapy the most, 
while Cluster C could be the least sensitive. To 
address these questions, first, the expression 
of immune checkpoints were compared among 
the clusters (Figure 2A-D). As the targets of 
ICIs, the expression of immune checkpoint mol-
ecules could essentially predict the effect of 
ICBs. Intriguingly, the results showed that the 
expression of PD1, CTLA4, LAG3, and TIM3 
were upregulated in Cluster B, and downregu-
lated in Cluster C, which prompted me to 
explore further the biological mechanisms that 
induced the upregulation of these immune 
checkpoints. To show the heterogeneity in the 
expression of immune checkpoints in Cluster B 
patients. The unsupervised clustering algo-
rithm was applied to divide Cluster B patients 
into two subclasses further: B1, and B2 (Figure 
S1A). As expected, the heatmap suggested a 
notably different expression of these immune 
checkpoints between Clusters B1 and B2 
(Figure S1B). Subsequently, the signature 
genes of pathways that were widely reported to 
potentiate in regulating the expression of PD1, 
CTLA4, LAG3 and TIM3 from the molecular sig-
nature database. The ssGSEA scores of IFN-α, 
IFN-β, IL-2, IL-6, and TNF related pathways 
showed a trend similar to the above immune 
checkpoint expression (Figure S1C). Addi- 
tionally, genes highly correlated with immune 
expression (checkpoints correlation coefficient 
> 0.35, P < 0.001), were extracted and GO 
analyses were performed to identify potential 
upstream pathways (Figure S1D). The correla-
tion heat map more precisely depicts the statis-

tical relationship between the above upstream 
pathways and these immune checkpoints 
(Figure S1E).

Second, the stromal and immune components 
in TME were further calculated and compared 
for each sample. Our results showed that the 
StromalScores and ImmuneScores among the 
clusters significantly differed (Figure 2E, 2F). 
Third, the TMEscore for each patient was esti-
mated to predict tumor immunogenicity and 
ICIs sensitiveness from bulk transcriptomic 
data (Figure 2G). Lastly, previous research 
underscored that higher TMB was associated 
with longer survival after treatment with ICIs 
[14]. Our result showed a significant difference 
between Clusters A and C, while there was no 
significant difference from Cluster B (Figure 
2H). These results suggested that our classifi-
cation system could predict the immunothera-
py response in KIRC patients.

Non-apoptosis regulated cell death clusters 
exhibit different biological functions

Genomic mutations can act as oncogenic driv-
ers which enable tumorigenesis and promotion. 
The mutation landscapes of the three different 
clusters deepen our understanding of their dif-
ferent biological characteristics. The top 20 
mutated genes were respectively displayed in 
the waterfall curve (Figure 3A-C). Among them, 
VHL was the first common mutated gene with 
51%, 46%, and 23% mutation rates, respec-
tively. The mutation rates of Polybromo-1 
(PBRM1) (47%) in Cluster A were significantly 
higher than patients in Cluster B (32%), and 
Cluster C (19%). Additionally, SETD2 mutation 
rates in Cluster C are ultimately lower (< 6%) 
than that in Cluster A (12%) and B (15%). 
Moreover, there are higher mutation variation 
rates of MTOR (19%) and TP53 (10%) in Cluster 
C. To further examine the potential upstream 
and downstream biological behavior of the dis-
tinct non-apoptosis cell death clusters, DEGs 
were screened out (Table S2) after which GO 
analysis among the three clusters was per-
formed (Table S3). In GO enriched pathways, 
Cluster A was characterized by the humoral 
immune response (Figure 3D), such as immu-
noglobulin mediated immune response, com-
plement activation classical pathway. Cluster B 
was characterized by the enhanced immune-
related pathways (Figure 3E), such as immune 
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Figure 1. Dramatic distinctions of Tumor microenvironment (TME) features among Cluster A, Cluster B and Cluster 
C. A. Complex heatmap demonstrated different immune infiltration in Cluster A, B, and C. B. Violin plot showed the 
alterations among the Clusters in immune cells. C. Kaplan-Meier plot of Kidney Renal clear cell carcinoma (KIRC) 
patients in the three clusters.

response-activating signal transduction, im- 
mune response-activating cell surface receptor 

signaling pathway, positive regulation of leuko-
cyte activation, production of molecular media-
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Figure 2. Classification based on cell death could predict the immunotherapy efficacy. Violin plots suggested the 
different expression of PD-L1 (A), CTLA-4 (B), TIM-3 (C) and LAG-3 (D). Box plots showed that StromalScore (E), Im-
muneScore (F), TMEscore (G) and Tumor mutation burden (TMB) (H) were distinct among Clusters A, B and C.

tor of the immune response, and response to 
interferon-gamma. While, Cluster C was charac-

terized by the upregulated metabolism path-
ways (Figure 3F), such as response to drugs, 
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Figure 3. Characteristics of Clusters with somatic mutation, biological function. (A-C) Waterfall plot was depicted to display the somatic mutation of patients in Clus-
ter A (A), B (B) and C (C) respectively, each column displayed the individual KIRC samples, TMB of each sample was exhibited by upper bar diagram. The right number 
represented the mutation frequency, and the bar diagram on the right exhibited the proportion of each mutation type, including missense, nonsense, splice, frame-
shift, and multiple mutations. (D-F) Gene Ontology (GO) enrichment analysis of high-expression genes in Cluster A (D), Cluster B (E), and Cluster C (F), respectively.
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organic acid transport, and metal ion and an- 
ion transmembrane transport. What’s more, 
immune pathways were enriched in Cluster B, 
which again confirmed that patients in Clus- 
ter B could be more sensitive to clinical 
immunotherapy.

Construction of a riskcore model to estimate 
individual KIRC sample

Owing to the classification system’s unsatisfac-
tory predictive capacity for clinical prognosis, a 
gene signature that could accurately predict 
the prognosis of KIRC patients was construct-
ed. Five thousand three hundred and ninety dif-
ferently expressed genes through pairwise pair-
ing of our Clusters (Table S4). Furthermore, 952 
genes that were expressed differently between 
normal and cancer tissues were selected by 
taking the intersection with the gene set on 
GEPIA 2.0 database (Table S5). Additionally, GO 
and Kyoto Encyclopedia of Genes and Geno- 
mes (KEGG) analyses were conducted to indi-
cate the pathways with differential activity in 
Clusters A, B, and C (Figure S2A, S2B). Then, 15 
genes were screened out for subsequent ana- 
lysis based on LASSO analysis (Figure S3A, 
S3B), and univariate Cox analysis (Figure S3C). 
Among these 15 genes, SH3 domain contain-
ing 2 (SORBS2), Complement C1r Subcom- 
ponent Like (C1RL) and Gamma-Aminobutyric 
Acid Type B Receptor Subunit 1 (GABBR1), all  
of which could independently predict the prog-
nosis of KIRC patients, were selected to con-
struct the riskscore model after undergoing the 
multivariant cox regression (Figure S3D).

Riskscore model can be predictive of KIRC 
clinical outcomes and immunotherapy efficacy

The capability in prognosis prediction of SO- 
RBS2, C1RL and GABBR1 was estimated 
(Figure S4A-C). Survival analysis suggests that 
KIRC patients in the low-risk group showed sig-
nificantly higher OS than those in high-risk 
group (Figure 4A, P < 0.0001). Moreover, the 
univariable cox regression model shows that 
riskscore, age, tumor grade, T stage, M stage 
and N stage can affect the prognosis of KIRC 
patients while the multivariable Cox regression 
model shows that only risk score and age were 
the independent predictor of KIRC (Figure 4B). 
Furthermore, (Figure 4C) ROC curve was depict-
ed to verify the potential of riskscore model in 
prediction of g survival at 1, 3, and 5 years 
(Overall set: AUC at 1-, 3- and 5-year is 0.758, 
0.720, and 0.758). Based on the TCGA cohorts, 

riskscore is positively correlated with clinical 
stage (P=1.648e-07), grade (P=1.617e-10), T 
stage (P=6.664e-07), M stage (P=1.958e-06), 
and N stage (P=0.014) (Figure 4D). The risks-
core is significantly different between clinical 
stages of patients by the GSE53757 cohort 
(P=0.016). Furthermore, our research demon-
strated a significant distinction between 
patients of stage I-III and stage VI by analyzing 
GSE73731 (P=6.527e-05). Subsequently, the 
expressions of SORBS2, C1RL and GABBR1, 
and values of riskscores were correlated with 
the ssGSEA scores of autophagic cell death, 
ferroptosis, pyroptosis and necroptosis to eval-
uate whether they could act as targets for cell 
death pathways in KIRC, the result showed a 
significant correlation of the selected genes 
and the cell death pathways (Figure S4D). To 
estimate the immunotherapy efficacy, the 
StromalScore (Figure 4E), ImmuneScore 
(Figure 4F), and TMEscore (Figure 4G), which 
helped us access the TME status, were calcu-
lated. These results indicate that the high-
riskscore group may be more sensitive to 
immunotherapy. Because of the tumor hetero-
geneity in patients at different clinical stages, 
the correlation of SORBS2, C1RL and GABBR1 
with immune infiltration were analyzed using 
the samples from stages I to IV, respectively 
(Figure S4E). The results suggested that 
SORBS2, C1RL, and GABBR1 have different 
patterns of gene-cell regulation in the onset, 
progression, and end stages of the KIRC. 
Presumably, our research elucidates that risks-
core we calculated could assist clinicians in 
evaluating the patient’s disease state and 
selecting the appropriate treatment for the 
patient. 

The potential biological functions of SORBS2, 
C1RL and GABBR1 

We next listed the distributions of the top 20 
somatic mutant genes with highest frequency, 
mutation frequency of PBRM1 is identified to 
be significantly different between high-risks-
core and low-riskscore groups (Figure 5A, 5B). 
Lastly, according to GSEA analysis, the com-
mon pathways of the candidate genes are 
mainly enriched in the GSEA terms “GLYCERO- 
LIPID_METABOLISM”, “MAPK_SIGNALING PA- 
THWAY”, “MTOR_SIGNALING_PATHWAY”, “PH- 
OSPHATI-DYLINOSITOL_SIGNALING_SYSTEM”, 
and “PROPANOATE_METABOLISM”. Moreover, 
the significant enrichment of SORBS2 are 
“JAK_STAT_SIGNALING_PATHWAY” and “P53_
SIGNA-LING_PATHWAY” (Figure 5C). C1RL is 
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Figure 4. Clinical significance of riskscore. (A) Kaplan-meier plotter of riskscore based on KIRC samples (B) uni-
variable and multivariable cox regression analysis of riskscore. (C) Receiver operating characteristic (ROC) curve 
indicated areas under the curve of 1-, 3-, and 5-year Overall Survival (OS). (D) According to the TCGA samples, 
correlation of riskscore and clinical features, including clinical stage, grade, T stage, M stage; (E) Verification rela-
tionship between riskscore and T stage (GSE53757) and grade (GSE73731). (F-H) Differences in StromalScore (F), 
ImmuneScore (G), TMEscore (H) between high-riskscore, and low-riskscore groups in TCGA. The upper and lower 
ends of the boxes represented the interquartile range of values. The lines in the boxes represented median value.

significantly enriched in “VEGF_SIGNALING_
PATHWAY” (Figure 5D). The significantly en- 
riched downstream pathways of GABBR1 asso-
ciated with cancer are “TGF_BETA_SIGNALING_

PATHWAY”, “WNT_SIGNALING_PATHWAY” and 
“PATHWAYS_IN_CANCER” (Figure 5E). The 
above enriched pathways play essential roles 
in different biological behavior and have pro-
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Figure 5. Somatic mutation and GSEA pathways altered in high riskscore group and low riskscore group. (A, B) The 
waterfall plot of tumor somatic mutation was drawn in those with high riskscore (A) and low riskscore (B) group. (C-E) 
GSEA of C1RL, GABBR1 and SORBS2, marked by squares are the common pathway of the three pathways.

found effects on the tumor microenvironment. 
The above findings collectively elucidated that 
SORBS2, C1RL and GABBR1 could be non-neg-
ligible as regards participating in TME forma-
tion and KIRC evolution. 

Discussion

Implementing precision medicine hinges on 
integration omics data, including transcrip-
tomics, into the clinical decision-making pro-
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cess. A systemic analysis of transcriptomics 
efficiently contributes to early diagnosis, identi-
fication of clinical targets and evaluation of 
therapeutic efficacy. While one of the transla-
tional problems of precision oncology is partly 
related to the biological heterogeneity of the 
disease. Recent discoveries have shaped the 
concept that failure to induce regulated cell 
death (RCD) is a crucial feature of the tumori-
genic process, causing the establishment of 
various therapeutic strategies [15]. The con-
cept of RCD was continuously expanded after 
the discovery of a series of novel formation of 
regulated cell death, such as ferroptosis, pyrop-
tosis, necroptosis and autophagic cell death. 
Recently, a wealth of evidence suggested that 
non-apoptosis RCD profoundly alters TME of 
KIRC and confers different clinical prognoses. 
Hence, the ssGSEA scores of non-apoptosis 
RCD were used for classification, and they were 
correlated with immune infiltration, which was 
suggestive of three different states of the 
tumor microenvironment with different clinical 
prognoses and sensitivity to immunotherapy. 
Hereafter, a riskscore model was constructed 
with clinical significance evaluated using TCGA 
and further verified by GSE5375 and GSE7373 
respectively. 

Various immune markers that can be used to 
characterize the tumor’s immune status exist. 
Besides immune cells, cell surface structures, 
cytokines, and tumor genetics or the microbi-
ome may be used [16]. It was found that the 
activation of ferroptosis, pyroptosis, necropto-
sis and autophagic cell death could accurately 
predict inflammation status. More and more 
recent studies have also provided evidence 
that cell death could act as a potent trigger of 
inflammation, suggesting that cell death could 
contribute to the pathogenesis of inflammatory 
diseases and tumors [17-19]. Our enrichment 
analysis also showed the intrinsic biological 
connection between cell death and tumor 
immune, which is particularly involved with lipid 
metabolism and cell surface and cytokines-
related pathways. Additionally, different clus-
ters showed different genomic backgrounds. 
KIRC has several secondary mutations, includ-
ing Polybromo-1 (PBRM1) or BAF180, SET do- 
main containing 2 (SETD2), and BRCA1 associ-
ated protein 1 (BAP1) [20]. Our research may 
provide a clue to confirming the genetic back-
ground of high-, middle- and low-immune infil-
tration and their biological relevance. Notably, 
our TME classification was a platform that con-
sistently and significantly correlated with sur-

vival and accurately accessed immunotherapy 
efficiency for KIRC patients. 

Interestingly, the OS in Cluster A was the lon-
gest among the three clusters. Cluster B was 
characterized by high immune infiltration, an 
abundance of intratumoral CD8+ and CD4+ 
T-cells have been associated with high tumor 
grade and shorter patient survival, with higher 
expression of a series of immune exhaustion 
markers, especially CTLA4 [21]. Distinct 
immune status in Clusters A, B and C indicate 
different immunotherapy responses. CTLA-4 
and PD-1/PD-L1 axis, which were targeted by 
nivolumab, and ipilimumab, respectively, can 
lead to durable responses in clinical trials [22]. 
Anti-LAG3 therapy was combined with anti-PD- 
1 therapy improving progression-free survival 
(47.7% vs 36.0% at 12 months, P=0.0055) in 
melanoma [23]. Anti-TIM-3 therapy was also 
confirmed efficiently (partial response & dis-
ease stability) in non-small cell lung cancer 
patients who were refractory to anti-PD-1 [24]. 
Multiple authoritative algorithms were adopted 
to predict immunotherapy response and to esti-
mate the predictive potential of our classifica-
tion based on non-apoptosis RCD. Our study 
employed a novel research designation to re-
emphasize the importance of regulated cell 
death for immunotherapy.

The riskscore model is a robust biomarker for 
predicting clinical outcomes and guiding ratio-
nal and effective immunotherapy. The model 
was constructed based on the expression of 
SORBS2, C1RL and GABBR1. The SORBS2, 
considered as Arg/c-Abl kinase binding protein 
2 (ARGBP2), is an adapter protein that could 
interact with multiple actin regulatory proteins, 
including Arg, c-Cbl and Pyk2, which were en- 
rolled in cell adhesion molecules and regula-
tors and effectors of small GTPases [25]. Fur- 
thermore, SORBS2 was widely discovered to be 
involve in the process of mediating miRNA to 
regulate cell death [26-29]. C1RL protein, which 
is homologous to C1r, is considered the active 
form of serine hydrolase [30]. Reportedly, fol-
lowing ligand recognition, the binding of C1s to 
C1r and C1q triggers the activation of the clas-
sical complement pathway [31]. Membrane 
pores caused by the complement system could 
facilitate regulated cell death [32]. Our analy-
ses also showed a positive correlation bet- 
ween the C1RL and regulated cell death (Figure 
S4D). GABA B type receptor (GABBR1) is a 
metabotropic receptor for the primary inhibito-
ry neurotransmitter gamma-aminobutyric acid 
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(GABA). GABBR1 was reported to promote the 
growth and proliferation of hepatocellular car- 
cinoma and cholangiocarcinoma [33, 34]. In 
contrast, GABBR1 can act as a tumor promoter 
to enhance the ability of migration and invasion 
of renal cancer [35]. It has been reported that 
GABA is involved in the regulation of mitophagy 
through endogenous metabolites [36]. Alter- 
natively, programmed cell death was reported 
to be enhanced by the NKCC1-mediated GABA 
signaling [37], which further showed the pro-
found relevance between GABBR1 and regu-
lated cell death.

Nevertheless, there are many several essential 
limitations in our research. First for being 
restricted by the number of samples that were 
analyzed, our results may not represent the 
tumor microenvironment of physical condition. 
Second, the weaknesses within the bioinfor-
matical analysis enslaved our inquiry into the 
exquisite machinery. Finally, conclusions dem-
onstrated through statistical analysis were pre-
liminary without verification by experiments. 
Generally speaking, by identifying various im- 
mune and non-apoptosis RCD phenotypes of 
kidney tumors and enabling personalized can-
cer biomarkers, a novel perspective was pro-
vided to dissect the heterogeneity of TME, and 
contributed to the identification of personalized 
tumor therapeutic targets for KIRC.

Conclusions

Three TME associated subtypes associated 
with clinical outcomes of KIRC patients were 
identified and the immunotherapy response 
was accurately predicted. The riskscore model 
could be a prognostic marker and help interpret 
the responses of KIRC to immunotherapies, 
providing new strategies for treating cancers.
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Figure S1. Upregulation of immune checkpoints in cluster B is regulated by numerous mechanisms: (A) Consensus 
heatmap demonstrated two robust clusters (B1, B2) based on patients in Cluster B; (B) Heatmap demonstrating 
expression of immune checkpoints, samples were clustered by B1 and B2, z-scores were calculated for each gens; 
(C) Expression levels of immune checkpints and enrichment scores of pathways each patient, those circled by 
boxes refer to ratings with the same expression trend; (D) Gene ontology analysis of genes correlating with immune 
checkpoints; (E) Heatmap showing the correlation between the enrichment of pathways and expression of immune 
checkpoints.
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Figure S2. Enrichment analysis of phenotypes related DEGs. (A) Gene ontology enrichment analysis of phenotypes-
related DEGs; (B) Kyoto Encyclopedia of Genes and Genomes enrichment analysis.
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Figure S3. Identification of prognosis associated phenotypes related DEGs. (A, B) Show coefficient results derived 
from LASSO Cox regression algorithm; (C) Univariate cox regression analysis of genes selected from LASSO algo-
rithm; (D) Multivariate cox regression analysis of genes selected from univariate cox regression analysis, genes 
marked by red squares were screened out for riskscore construction.
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Figure S4. Survival analysis of (A) SORBS2, (B) C1RL and (C) GABBR1, (D) Intrinsic correlation of non-apoptosis RCD 
and candiate genes expression. The circular area suggests a p-value, while the colour depth represents the correla-
tion coefficient; (E) Heatmap reveals the correlation between expression levels of SORBS2, C1RL, and GABBR1 and 
values of StromalScore, ImmuneScore, and ESTIMATEScore at different clinical stages of ccRCC patients, respec-
tively. Welch’s t test: *P < 0.05;  **P < 0.01; ***P < 0.001.


