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Abstract: Objectives: The progress of immunotherapy for glioblastoma (GBM) is currently slow. To improve immuno-
therapy, we need a deeper understanding of the immune microenvironment of GBM. Here, we aimed to establish 
a classification system based on immune expression profile in GBM. Methods: Immune gene expression profiles of 
152 patients with GBM from The Cancer Genome Atlas (TCGA) were used to identify subtypes by consensus cluster-
ing, and the classification system was reproduced in the two validation datasets (CGGA and GSE16011). Clinical 
information, molecular characteristics, immune infiltration, and genomic variation were integrated to characterize 
the subtypes. Results: Two distinct immune subtypes in GBM were successfully identified and validated. The Im2 
subtype was closely related to IDH-wildtype and combined +7/-10, while the Im1 subtype was associated with IDH 
mutation. Survival curve analysis showed that the Im2 subtype was associated with significantly shorter survival 
than the Im1 subtype. Im2 showed a high immune score and stromal score, low tumor purity, enrichment of macro-
phages, and high immune checkpoint and HLA gene expression. Im1 was characterized by low immune score and 
stromal score, high tumor purity, enrichment of lymphocytes, and low immune checkpoint and HLA gene expression. 
Finally, we developed an immune-related signature in GBM with better prognosis prediction. Conclusions: Our study 
confirmed the immune heterogeneity of GBM and might provide valuable classification for immunotherapy. 
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Introduction 

Glioblastoma (GBM) is the most common pri-
mary malignant tumor of the central nervous 
system [1, 2]. As the most aggressive glioma, 
GBM (WHO grade 4) accounts for 57% of all 
gliomas [3]. The standard treatment for GBM 
includes maximal surgical resection and post-
operative combined radiotherapy and temo-
zolomide (TMZ), followed by six cycles of adju-
vant chemotherapy with TMZ. Despite stan-
dardized treatment, GBM patients have a poor 
overall prognosis with a median survival of 
14.6 months [4, 5]. The prognosis of GBM has 
not made great progress in recent years, pri-
marily because of the aggressive growth of 
tumor cells, protection by the blood-brain bar-
rier, and the lack of key carcinogenic pathways 
for targeted therapy [6]. 

To improve outcomes for GBM patients, mas-
sive efforts have been made to explore better 
treatment options, such as immunotherapy. 
Currently, clinical trials of immunotherapy in 
GBM patients mainly include immune check-
point blockade, vaccination, chimeric antigen 
receptor (CAR) T cells, and oncolytic viruses  
[7]. Vaccines are one of the most promising 
approaches, although some phase II and III tri-
als have yielded no positive results [8, 9]. De- 
spite the biological activity of many vaccines, 
low levels of immune stimulation are not suffi-
cient to improve patient outcomes. CAR-T cells 
have been shown to be effective in treating 
hematologic tumors, but failed to improve out-
come of GBM in a recent trial [10]. Immune 
checkpoint blockade showed promising thera-
peutic response in a GBM preclinical study [11, 
12], but the current phase III clinical trials  
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for GBM have been unsuccessful [13-15]. 
Infection with oncolytic virus not only directly 
kills tumor cells but also triggers a broad anti-
tumor immune response [16]. However, the 
clinical benefits of oncolytic virus for GBM are 
still limited [17]. The current status of immuno-
therapy in GBM is uncertain. The mechanisms 
of immunotherapy resistance in GBM include 
molecular heterogeneity, systemic immunosup-
pression, adaptive resistance, and reprogram-
ming of myeloid cells [18]. 

To improve the efficacy of immunotherapy for 
GBM, a deep understanding of the immune 
microenvironment and its underlying mecha-
nisms are needed. In the present study, we 
divided GBM into two immune subtypes based 
on immune-related genes. These two immune 
subtypes showed distinct clinical, molecular, 
prognostic, and immune characteristics. Our 
study revealed the immune heterogeneity in 
GBM, and our classification might have clinical 
implications to facilitate the precise immuno-
therapy for GBM. 

Methods

GBM patient acquisition

Our study collected a total of 450 patients with 
GBM from The Cancer Genome Atlas (TCGA), 
Chinese Glioma Genome Atlas (CGGA), and 
GSE16011. For TCGA dataset (152 GBM pa- 
tients), we collected the RNA-seq data, clinical 
and molecular information, somatic mutation 
and copy-number alterations (CNAs) (http://
cancergenome.nih.gov/). Measures of DNA da- 
mage, including copy number variation burden, 
aneuploidy score, homologous recombination 
deficiency, and intratumoral heterogeneity we- 
re also retrieved [19]. Two validation datasets 
included RNA-seq data of 139 GBMs from  
the CGGA dataset [20] and RNA microarray 
data of 159 GBMs from the GSE16011 dataset 
[21]. Clinical and molecular information was 
also collected from two validation datasets. 
This study was approved by the hospital ethics 
committee and conducted in accordance with 
the Declaration of Helsinki. Informed consents 
from participants existed in the three datasets 
[22]. 

Identification of immune subtypes

Using 771 immune-related genes [23], we first 
performed univariate Cox regression analysis 

in TCGA dataset to screen out the genes asso-
ciated with prognosis. Next, consensus cluster-
ing (R package “ConsensusClusterPlus”) was 
performed with the candidate genes (Median 
Absolute Deviation, MAD > 0.5) to identify 
immune subtypes of TCGA patients. The maxi-
mum value of K was 10. 

To predict immune subtypes in the CGGA and 
GSE16011 datasets, a partition around me- 
doids (PAM) classifier was trained with TCGA 
dataset (R package “pamr”). Each patient was 
classified into an immune subtype based on 
the correlation with the centroid. Reproducibi- 
lity and similarity of immune subtypes between 
training and validation datasets were assessed 
using the in-group proportion (IGP) statistics. 

Evaluation of immune infiltration

Immune fraction, stromal fraction, and tumor 
purity were calculated using the ESTIMATE 
algorithm [24]. The CIBERSORT algorithm cal-
culated the proportion of 22 types of immune 
cells infiltrating the tumor [25]. Enrichment lev-
els of 29 immune signatures [26] were deter-
mined by single sample Gene Set Enrichment 
Analysis (ssGSEA, R package “GSVA”). 

Development of an immune-related signature

We screened the differentially expressed genes 
(fold change > 2 or < 0.5, FDR < 0.05) between 
the two immune subtypes in the TCGA dataset. 
Then, univariate Cox regression analysis was 
performed to identify genes with prognostic 
significance (P < 0.05, Wald test). Next, we se- 
lected the genes shared by all three datasets 
as candidate genes. Finally, an optimal Cox pro-
portional hazard model (26 genes) was con-
structed using the Least Absolute Shrinkage 
and Selection Operator (LASSO) algorithm. Our 
immune-related signature was developed with 
a linear combination of 26 gene expression 
level (expr) weighted by LASSO regression  
coefficients: Risk Score = (exprgene1 × coeffi-
cientgene1) + (exprgene2 × coefficientgene2) + … + 
(exprgene26 × coefficientgene26). 

Bioinformatic analysis

Expression patterns of two immune subtypes 
were evaluated by principal component analy-
sis (PCA) with R package “gmodels”. Up-re- 
gulated and down-regulated genes in the Im2 
subtype were selected for Gene Ontology (GO) 
analysis in DAVID Bioinformatics Resources  
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6.8 [27]. Gene set enrichment analysis (GSEA) 
was performed with R package “fgsea”. The 
Tumor Immune Dysfunction and Exclusion 
(TIDE) score was calculated to predict patient 
response to immune checkpoint blockade  
[28]. Time-dependent ROC curve (timeROC) 
was used to predict the overall survival of 
patients at 1, 2, and 3 years [29]. 

Immunohistochemical staining

Formalin-fixed, paraffin-embedded GBM speci-
mens were cut (5 µm section), deparaffinized, 
and rehydrated before antigen repair in buffer 
specified by the manufacturer. After blocking 
endogenous peroxidase activity with ethanol 
containing 3% hydrogen peroxidase, we incu-
bated sections in primary antibody overnight  
at 4°C, followed with secondary antibodies 
(anti-mouse or anti-rabbit). In this study, our 
stained sections were scored by two experi-
enced pathologists. The staining intensity was 
0-3 points: 0 (negative), 1 (weak), 2 (moder- 
ate), and 3 (strong). The extent of staining 
reflected the percentage of positive cells: 0 (< 
5%), 1 (6%-25%), 2 (26%-50%), 3 (51%-75%), 
and 4 (> 75%). Staining index was defined as 
the product of staining intensity and staining 
extent. For each primary antibody, we did pre-
liminary experiment. We selected two times, 
equal to, or half of the recommended dilution 
concentration for the experiment, and the best 
results of positive expression were used for the 
formal experiment. 

Statistical analysis 

R language (https://www.r-project.org/) was 
used for most statistical analysis. Differences 
between immune subtypes were verified using 
Student’s t-test or chi-square test. Differences 
in survival by Kaplan-Meier analysis were as- 
sessed using the log-rank test. In addition, the 
R packages involving drawing also included 
pheatmap, gglpot2, Hmisc, and ComplexHeat- 
map. A two-sided p-value < 0.05 was consid-
ered significant. 

Results 

Identification of two immune subtypes in glio-
blastomas

To reveal the immune heterogeneity in GBM, we 
performed cluster analysis with 771 immune 
genes in the literature [23]. The workflow is 

shown in Figure 1A. We screened 99 progno-
sis-related genes by Cox regression analysis (P 
< 0.05, Wald test). By performing consensus 
clustering on expression profiles of candidate 
genes (MAD > 0.5), we identified two robust 
immune subtypes, Im1 and Im2 (Figures 1B 
and S1). Then PCA analysis based on the 
immune candidate genes showed a different 
distribution pattern between the two subtypes 
(Figure 1C). Moreover, survival curve analysis 
showed that Im2 was associated with signifi-
cantly shorter survival than Im1 (P = 0.013, 
Figure 1D). 

To validate the above results, we used the TCGA 
dataset to train a Partition Around Medoids 
(PAM) classifier to predict the immune subtypes 
of patients in the CGGA and GSE16011 datas-
ets. Each patient in the validation dataset was 
classified into a subtype based on the correla-
tion with the centroid (Figure 1B) [30]. In-group-
proportion (IGP) analysis revealed that the sub-
types of the training and validation datasets 
were highly consistent (Table S1). Additionally, 
the two immune subtypes obtained in valida-
tion datasets showed a similar expression dis-
tribution pattern and survival characteristics 
with the TCGA dataset (Figure 1C, 1D). 

Clinical and molecular features of two immune 
subtypes

Next, we further analyzed the clinical character-
istics of the two immune subtypes. There were 
significantly more patients over the age of 45 
years in Im2 than in Im1 (P < 0.05, Figure 2A; 
Table S2). IDH-wildtype, combined gain of en- 
tire chromosome 7 and loss of entire chromo-
some 10 (combined +7/-10), was significantly 
associated with Im2 (P < 0.05). Then, our 
immune classification was compared with the 
previous TCGA transcriptome and methylation 
classification [31, 32]. We found that the TCGA 
subtype mesenchymal and methylation clus-
ters LGm5 were significantly enriched in Im2 (P 
< 0.05). Im1 was associated with TCGA sub- 
type proneural and LGm1 (P < 0.05). We ob- 
served similar clinical and molecular character-
istics in the two validation datasets (Figure 2B 
and 2C; Tables S3 and S4). 

Functional annotation of immune subtypes

To characterize two immune subtypes, we 
screened for differentially expressed genes 
(DEGs) (fold change > 2 or < 0.5, FDR < 0.05, 
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Figure 3A) between the subtypes for Gene 
Ontology (GO) analysis in DAVID. GO analysis 

revealed that genes upregulated in Im2 are 
enriched in biological processes including 

Figure 1. Identification of two subtypes in GBM through immune gene profiling. A. The flow chart shows how to iden-
tify and validate the two immune subtypes. B. Heatmaps of two immune subtypes from three databases. C. Principal 
component analysis (PCA) of two immune subtypes based on candidate genes. D. Kaplan-Meier analysis showed 
a difference in overall survival (OS) between two immune subtypes. The p value was obtained by the log-rank test. 
MAD, Median Absolute Deviation. 
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“Immune response”, “Inflammatory response”, 
“Chemokine-mediated signaling pathway”, 
“Neutrophil chemotaxis” and “Leukocyte mig- 
ration” (Figure 3B). Whereas the genes down-
regulated in Im2 were enriched in biological 
processes of normal neurological function, 
including “Chemical synaptic transmission”, 
“Regulation of ion transmembrane transport”, 
and “Nervous system development” (Figure 
S2A). GSEA analysis showed that the pathways 
enriched in Im2 included “HALLMARK_TNFA_
SIGNALING_VIA_NFKB” (NES = 2.67, padj = 
6.1e-03), “HALLMARK_INFLAMMATORY_RES- 
PONSE” (NES = 3.01, padj = 6.1e-03), “GO_
LEUKOCYTE_ACTIVATION” (NES = 2.48, padj = 
6.1e-03), and “GO_IMMUNE_SYSTEM_PROCE- 
SS” (NES = 2.41, padj = 6.1e-03) (Figure 3C). 

Evaluation of immune characteristics of two 
subtypes

Due to differences in immune enrichment 
between the two immune subtypes, we further 
analyzed immune infiltration. First, ESTIMATE 

analysis [24] revealed that the immune score 
and stromal score of Im2 were significantly 
higher than those of Im1, and the tumor purity 
was significantly lower than that of Im1 (P < 
0.05, Figure 3D). CIBERSORT analysis [25] 
showed a higher proportion of macrophages in 
Im2 and a higher proportion of lymphocytes in 
Im1 (P < 0.05, Figure 3E). Moreover, HLA and 
checkpoint gene expression were significantly 
upregulated in Im2 (Figure 3F). To further ana-
lyze differences in immunotherapy responses 
between subtypes, we performed TIDE analy- 
sis [28]. We found that Im2 had a significantly 
lower TIDE score than Im1 (P = 0.0065, Figure 
3G). We also performed the above analysis in 
the two validation datasets and obtained simi-
lar results (Figure S2B-I). Overall, these results 
indicated that the Im2 subtype in GBM is 
immune-hot but immune-suppressive, while 
the Im1 subtype is immune-moderate. Further, 
patients of Im2 might respond better to im- 
mune checkpoint blockade therapy than those 
of Im1. 

Figure 2. Clinical and molecular differences between two immune subtypes in three datasets. (A) TCGA dataset, (B) 
CGGA dataset and (C) GSE16011 dataset. IDH, Isocitrate Dehydrogenase; MGMT, O6-Methylguanine-DNA Methyl-
transferase; Combined +7/-10, Combined Gain Of Entire Chromosome 7 And Loss Of Entire Chromosome 10. 
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Figure 3. Functional annotation analysis and immune characteristics of two immune subtypes in TCGA dataset. A. The volcano map showed differentially expressed 
genes between the two immune subtypes. B. Gene Ontology (GO) analysis of up-regulated genes in Im2 subtype. C. Gene set enrichment analysis (GSEA) showed 
the top 15 pathways enriched in Im2 subtype. D. Stromal score, immune score, and tumor purity from ESTMATE algorithm for two immune subtypes. E. Proportion of 
macrophages and lymphocytes from CIBERSORT algorithm for two immune subtypes. Macrophages included M0, M1 and M2 macrophages. Lymphocytes included 
naive B cells, memory B cells, Plasma cells, CD8 T cells, CD4 naive T cells, CD4 memory resting T cells, CD4 memory activated T cells, follicular helper T cells, regu-
latory T cells (Tregs), gamma delta T cells, resting NK cells, and activated NK cells. F. Heatmap showed HLA and immune checkpoint gene expression levels in two 
subtypes. G. Boxplot showed TIDE scores in two subtypes. 
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Prognostic analysis of immune response

Considering that tumor immune response can 
affect the survival of patients [33], we calcu-
lated 29 immune signatures [26] for each pa- 
tient using the ssGSEA method. Among these 
signatures, APC co-stimulation and macro-
phages were related to poor outcomes in GBM 
patients (Figure 4A and 4B). When patients 
were grouped by subtype, we found that Tfh 
predicted poor survival in Im2 of the TCGA 
dataset. Similarly, we selected a group of im- 
portant immune checkpoint genes to assess 
their prognostic value. We observed poor prog-

nosis in patients with high expression of 
TNFRSF14 or TNFSF4 (Figure S3). These re- 
sults suggested that immune cells or check-
points in GBM were related to patient prog- 
nosis and might serve as potential immuno-
therapy targets. 

Genomic alterations of immune subtypes

To further explore the genomic differences be- 
tween immune subtypes, we collected somatic 
mutation and copy-number alterations (CNA) 
data from the TCGA dataset. In Figure 5A, we 
found that IDH1 mutations were significantly 

Figure 4. Immune signatures were associated with the prognosis of GBM. A. The heatmaps showed the hazard 
ratios of 29 immune signatures in Cox regression analysis. *P < 0.05, **P < 0.01, ***P < 0.001. B. Kaplan-Meier 
analysis of GBM stratified by macrophage and APC co-stimulation scores. 
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Figure 5. Somatic variation in two immune subtypes of TCGA dataset. A. Somatic mutation and copy-number alterations (CNA) in two immune subtypes. Fisher test, 
**P < 0.01. B. Measures of DNA damage in two immune subtypes. 
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enriched in Im1 (P < 0.05). The mutation fre-
quency of ATRX and TP53 in Im1 tended to be 
higher than that in Im2. In Im2, the mutation 
frequency of PTEN tended to be higher than 
that in Im1, and CDKN2A mutation only app- 
eared in Im2. The combined +7/-10 was signifi-
cantly enriched in Im2. CNA analysis showed 
that CDK4 amplification was enriched in Im1, 
while RB1 deletion was found only in Im2. In 
addition, we assessed the measures of DNA 
damage [19]. Im2 had a significantly higher 
aneuploidy score than Im1, while Im1 had a  
significantly higher homologous recombination 
deficiency and CNV segment burden than Im2 
(P < 0.05, Figure 5B). 

Development of an immune-related prognostic 
signature 

Based on our immune classification, we devel-
oped an immune-related signature. First, we 
screened 1580 differentially expressed genes 
(DEGs, fold change > 2 or < 0.5, FDR < 0.05) 
between the two subtypes, wherein 273 genes 
were associated with prognosis in univariate 
Cox regression analysis (Figure 6A, P < 0.05, 
Wald test). We identified 233 genes shared by 
TCGA and two validation datasets to build an 
optimal model using the LASSO algorithm 
(Figure 6B). Finally, an immune-related signa-
ture of 26 genes (Figure 6C) was obtained,  

Figure 6. Identification of an immune-related signature in GBM. A. Venn diagram showed differentially expressed 
genes (DEGs) between two subtypes and prognosis-related genes (PRGs). B. Cross validation for optimizing param-
eter screening in LASSO regression modeling. C. The heatmap showed the expression of 26 signature genes. D. 
The regression coefficients of 26 genes in the immune-related signature. E. Kaplan-Meier analysis showed the dif-
ference in overall survival (OS) between the high-risk group and the low-risk group. F. Distribution of signature risk 
score in GBM stratified by immune subtypes and IDH mutation status. G. The timeROC curves showed the 1-year, 
2-year, and 3-year AUCs of signature.
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and the score was calculated using regression 
coefficients (Figure 6D). Patients were divided 
into low-risk and high-risk groups according to 
the median risk score. The survival curve 
revealed that the high-risk group lived for a sig-
nificantly shorter duration than the low-risk 
group (P < 0.0001, Figure 6E). The risk scores 
were significantly higher in the Im2 subtype or 
IDH-wildtype GBM (P < 0.05, Figure 6F). Fur- 
thermore, the 1-, 2-, and 3-year AUC of the sig-
nature was respectively 87.56%, 90.27%, and 
91.02% in the ROC curves (Figure 6G). In both 
validation datasets, we calculated the signa-
ture score for each patient with regression 
coefficients of TCGA and obtained similar 
results (Figure S4). These results confirmed  
the excellent survival predictive value of our 
immune-related signature.

Discussion

In view of the significant intra- and inter-tumor 
heterogeneity of gliomas, numerous glioma 
classification studies based on different omics 
data have emerged [31, 32, 34]. Immune pro- 
filing has gradually become a feasible method 
for cancer classification. Thorsson et al. per-
formed immunogenomic analysis of 33 tumor 
types and classified six immune subtypes [19]. 
Becht et al. performed immune and stromal 
classification of colorectal cancer with tran-
scriptome data. The four molecular subtypes 
showed distinct immune orientations and prog-
nosis [35]. Su et al. evaluated the proportion of 
immune cells in ccRCC using digital cytometry, 
and obtained four distinct subtypes by unsu-
pervised clustering [36]. In the present study, 
we defined two novel subtypes of GBM based 
on 771 previously reported immune genes. The 
stability and reproducibility of the two immune 
subtypes were proved in the validation datas-
ets. There were different clinical, molecular, 
prognostic, and immune characteristics bet- 
ween the two subtypes, which deepened our 
understanding of immune heterogeneity in 
GBM. 

We found that patients in Im2 had a significant-
ly worse prognosis. Furthermore, Im2 subtype 
was closely correlated with IDH-wildtype, com-
bined +7/-10, and worse TCGA subtype (mesen-
chymal). The Im1 subtype was associated with 
IDH mutation and better TCGA subtype (pro-
neural). In the 2021 WHO Classification of CNS 
Tumors [37], combined +7/-10 has been identi-

fied as a biomarker for grade and prognosis, 
and histologic grade II and III IDH-wild type dif-
fuse astrocytoma carrying this molecular fea-
ture were designated as IDH-wildtype GBM, 
CNS WHO grade 4. The enrichment of com-
bined +7/-10 in Im2 may be associated with 
poor prognosis. 

Next, we performed functional annotation anal-
ysis and found significant differences between 
the two subtypes in terms of immune and 
inflammatory responses. We then comprehen-
sively assessed the immune status of the two 
subtypes, including immune score, proportion 
of immune cells, and immune checkpoints 
expression. Im2 showed high immune score 
and stromal score, low tumor purity, enrich-
ment of macrophages, high expression of im- 
mune checkpoint and HLA genes, revealing an 
immune-hot but immune-suppressive tumor 
microenvironment (TME). Im1 showed low im- 
mune and stromal scores, high tumor purity, 
enrichment of lymphocytes, low expression of 
immune checkpoint and HLA genes, indicating 
an immune-moderate TME. These findings 
revealed the immune heterogeneity of GBM. At 
present, common markers for tumor check-
point immunotherapy include PD-L1 protein 
expression, tumor-infiltrating lymphocytes, tu- 
mor mutational burden (TMB), microsatellite 
instability (MSI), and HLA diversity [38, 39]. The 
TIDE algorithm allowed us to predict patient 
response to immune checkpoint blockade.  
We found that Im2 had a significantly lower 
TIDE score than Im1, revealing the potential 
immunotherapy predictive value of our classi- 
fication. 

Tumor-associated immune cells show great 
prospects as prognostic biomarkers. Gentles  
et al. constructed a prognostic landscape 
across human cancers to identify tumor- 
associated leukocytes for prognostic stratifica-
tion and targeted therapy [33]. Galon et al.  
analyzed data on tumor-infiltrating immune 
cells and found that this was a better predictor 
of prognosis in colorectal cancer patients than 
current histopathologic methods [40]. Wouters 
et al. comprehensively reviewed the literature 
and reported the positive prognostic role of 
tumor-infiltrating B cells and plasma cells [41]. 
We evaluated 29 immune signatures through 
the ssGSEA algorithm and found that macro-
phage and APC co-stimulation predicted poor 
prognosis in GBM. Therefore, we speculated 
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that macrophages enriched in Im2 might be 
associated with poor prognosis of patients. 
Then we selected GBM samples (17 of Im1,  
5 of Im2) for immunohistochemical analysis, 
and found that the expression of macrophage-
associated markers (IBA1) was significantly 
upregulated in Im2 (P = 0.032, Figure S5A).  
Two representative stained sections were 
showed in Figure S5B and S5C. These clinical 
samples further confirmed the enrichment of 
macrophages in Im2. 

Similarly, we analyzed 44 common immune 
checkpoint genes and found a poor prognosis 
in patients with high expression of TNFRSF14 
or TNFSF4 (Figure S3). To further reveal the 
mechanism of TNFRSF14 or TNFSF4, we first 
analyzed the expression and found that 
TNFRSF14 or TNFSF4 was significantly upregu-
lated in IDH-wildtype or Im2 subtype (Figures 
S6A and S6B, S7A and S7B). Meanwhile, we 
observed that TNFRSF14 or TNFSF4 was posi-
tively correlated with representative immune 
checkpoint genes, indicating immunosuppres-
sive status in GBM with high expression of 
TNFRSF14 or TNFSF4 (Figures S6C and S7C). 
Further, we analyzed the biologic functions of 
TNFRSF14 or TNFSF4. Genes strongly posi- 
tively correlated with TNFRSF14 or TNFSF4 
(Pearson R > 0.5) were screened and analyzed 
in Metascape [42]. We found that TNFRSF14 
was mainly related to immune and inflammato-
ry responses, and the results of GSEA analys- 
is were consistent (Figure S6D and S6E). 
Metascape analysis showed that TNFSF4 was 
mainly associated with malignant biological 
functions including extracellular matrix organi-
zation, angiogenesis and cell-cell adhesion 
(Figure S7D). GSEA analysis showed that TNF- 
SF4 was also associated with immune and 
inflammatory responses (Figure S7E). There- 
fore, it is of great significance to further study 
the mechanism of TNFRSF14 or TNFSF4 on 
GBM. 

We further explored the genomic differences 
between immune subtypes and found that 
IDH1 mutations were significantly enriched in 
Im1 which had lower immune scores and mac-
rophages. Consistently, Amankulor et al. report-
ed that IDH1 mutations lead to downregulation 
of immune cell infiltration in the glioma micro-
environment [43]. Bunse et al. found that IDH1 
mutation-derived R-2-HG impaired activation 
and proliferation of T cell in gliomas [44]. We 

also found that the mutation frequency of ATRX 
and TP53 in Im1 tended to be higher than that 
in Im2. ATRX and TP53 mutations played key 
roles in the astrocytic lineage differentiation 
and development of astrocytoma, and occurred 
in 80% of Grade II and III astrocytoma. Hu et  
al. revealed that ATRX loss induced T-cell apop-
tosis and polarization of anti-inflammatory 
macrophages and infiltration of immunosup-
pressive regulatory T cells [45]. Additionally, the 
mutation frequency of PTEN in Im2 tended  
to be higher than that of Im1. Studies have 
shown that PTEN-deficient tumors inhibited the 
activation of Type I IFN pathway, which in turn 
impaired the enrichment and activation of  
antitumor T cells and NK cells [46, 47]. These 
suggested that somatic alterations might in- 
fluence immune responses in tumors, and fur-
ther studies are needed to determine these 
correlations. 

Using differentially expressed genes between 
the two immune subtypes, we identified an 
immune-related prognostic signature by LASSO 
regression modeling. The prognosis was signifi-
cantly worse in the high-risk group, which app- 
eared more in the Im2 subtype or IDH-wildtype 
GBM. Our signature has shown superior surviv-
al predictive potential, but its clinical applica-
tion value still needs to be evaluated in future 
investigations. 

In summary, we classified GBM from the per-
spective of immunity and obtained two stable 
subtypes with different clinical, molecular, 
prognostic, and immune characteristics. Our 
study supported the existence of immune het-
erogeneity in GBM and highlighted the impor-
tance of patient stratification in immuno- 
therapy. 
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Table S1. IGP was estimated for each immune subtype in the validation datasets
Immune subtype CGGA GSE16011
Im1 0.917 0.873 
Im2 0.806 0.900 

Figure S1. Consensus clustering based on immune gene expression of GBM from TCGA dataset. A. Clustering matrix 
for k=2 to k=10. B. CDF (cumulative distribution function) curve for k=2 to k=10. C. Relative change in area under 
CDF curve for k=2 to k=10.

Table S2. Clinical characteristics of patients with distinct immune subtypes in TCGA dataset

Variable
Im1 Im2

P value
n=71 n=81

Age 0.046*
    ≤ 45 years 14 6
    > 45 years 57 75
Gender 0.052
    Female 19 35
    Male 52 46
IDH < 0.001*
    Mutant 9 0
    Wildtype 61 78
    NA 1 3
MGMT promoter 0.334
    Methylated 27 25
    Unmethylated 29 41
    NA 15 15
Combined chromosome +7/-10 0.005*
    Yes 37 60
    No 32 18
    NA 2 3
TCGA transcriptome subtype < 0.001*
    Mesenchymal 4 60
    Classical 29 20
    Neural 5 0
    Proneural 18 0
    NA 15 1
Methylation cluster < 0.001*
    LGm1 7 0
    LGm2 2 0
    LGm3 0 0
    LGm4 20 23
    LGm5 21 38
    LGm6 6 5
    NA 15 15
*P < 0.05.
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Table S3. Clinical characteristics of patients with distinct immune subtypes in CGGA dataset

Variable
Im1 Im2

P value
n=66 n=73

Age < 0.001*
    ≤ 45 years 43 18
    > 45 years 23 55
Gender 0.247
    Female 28 23
    Male 38 50
IDH < 0.001*
    Mutant 38 3
    Wildtype 28 70
MGMT promoter < 0.001*
    Methylated 45 21
    Unmethylated 20 50
    NA 1 2
TCGA transcriptome subtype < 0.001*
    Mesenchymal 3 46
    Classical 25 22
    Neural 9 3
    Proneural 29 2
*P < 0.05.

Table S4. Clinical characteristics of patients with distinct immune subtypes in GSE16011 dataset

Variable
Im1 Im2

P value
n=70 n=89

Age 0.031*
    ≤ 45 years 23 15
    > 45 years 47 74
Gender 0.084
    Female 28 23
    Male 42 66
IDH 0.344
    Mutant 17 16
    Wildtype 38 57
    NA 15 16
TCGA transcriptome subtype < 0.001*
    Mesenchymal 6 67
    Classical 27 17
    Neural 13 3
    Proneural 24 2
*P < 0.05.
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Figure S2. Functional annotation analysis and immune characteristics of two immune subtypes. (A) Gene Ontology 
(GO) analysis of down-regulated genes in Im2 subtype of TCGA dataset. Stromal score, immune score, and tumor 
purity from ESTMATE algorithm for two immune subtypes in CGGA (B) and GSE16011 (D) datasets. Proportion of 
macrophages and lymphocytes from CIBERSORT algorithm for two immune subtypes in CGGA (C) and GSE16011 (E) 
datasets. Heatmap showed HLA and immune checkpoint gene expression levels for two immune subtypes in CGGA 
(F) and GSE16011 (G) datasets. Boxplot showed TIDE scores for two immune subtypes in CGGA (H) and GSE16011 
(I) datasets.
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Figure S3. Immune checkpoint genes were associated with the prognosis of GBM. A. The heatmaps showed the 
hazard ratios of immune checkpoint gene expression in Cox regression analysis. *P < 0.05, **P < 0.01, ***P < 
0.001. B. Kaplan-Meier analysis of GBM stratified by expression of TNFRSF14 and TNFSF4.
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Figure S4. Validation of the obtained immune-related signature in CGGA and GSE16011 datasets. A. Heatmaps 
show the signature gene expression in CGGA and GSE16011 datasets. B. Kaplan-Meier analysis of the immune-
related signature in GBM. P value was calculated by the log-rank test. C. Distribution of signature risk score in GBM 
stratified by immune subtypes and IDH mutation status. D. The timeROC curves showed the 1-year, 2-year and 
3-year AUC of signature.

Figure S5. The IBA1 protein expression in Im1 and Im2 (A). Representative photographs of immunohistochemical 
staining of IBA1 in Im1 (B) and Im2 (C). Positive cells are stained brown. Scale bar, 60 μm.
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Figure S6. TNFRSF14 expression in three datasets according to IDH status (A). TNFRSF14 expression in three da-
tasets according to immune subtypes (B). Correlation between immune checkpoint genes and TNFRSF14 (C). The 
biological functions of TNFRSF14 were analyzed in metascape (D) and GSEA (E).
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Figure S7. TNFSF4 expression in three datasets according to IDH status (A). TNFSF4 expression in three datasets 
according to immune subtypes (B). Correlation between immune checkpoint genes and TNFSF4 (C). The biological 
functions of TNFSF4 were analyzed in metascape (D) and GSEA (E).


