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Abstract: Objective: Microtubule actin cross-linking factor 1 (MACF1) mutations are known to play an important role 
in the progression of various cancers. However, its role in breast cancer remains to be determined. In this study, we 
investigated how MACF1 mutations may play a role in breast cancer development. Methods: The gene-expression 
profile data of patients with breast cancer were obtained from The Cancer Genome Atlas (TCGA)-Breast cancer co-
hort. We estimated the influence of MACF1 mutations on patient clinical prognosis using the Kaplan-Meier method. 
Further, patients with MACF1-mutant (MACF1-MT) and MACF1-wild-type (MACF1-WT) were compared to identify the 
differentially expressed genes (DEGs). We also performed functional enrichment analyses, constructed protein-pro-
tein interaction (PPI) and competing endogenous RNA (ceRNA) networks, and investigated the correlation between 
MACF1 mutations and immune-cell infiltration. To explore the prognostic value of MACF1 mutations, a nomogram 
was developed based on MACF1 mutations and other clinicopathological parameters. Results: Patients with MACF1-
MT had a worse prognosis and higher tumor mutation burden score (P < 0.05) than patients with MACF1-WT. MACF1 
mutations were demonstrated to upregulate the mTOR signaling pathway and alter energy metabolism and tumor 
immune microenvironment. Thus, MACF1 mutations might affect immunogenicity and result in a lower response to 
immunotherapy. By analyzing the Genomics of Drug Sensitivity in Cancer (GDSC), the sensitivity of breast cancer 
cells to 13 drugs was found to be significantly enhanced by MACF1 mutations. The prognostic model was verified 
in predicting the outcome of breast cancer patients. Conclusion: MACF1 mutations might be a potential prognostic 
biomarker and a therapeutic target for breast cancer. 
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Introduction

Breast cancer is a major cause of cancer-asso-
ciated deaths in women worldwide [1]. Despite 
significant development in the diagnosis and 
therapy for breast cancer patients, 20-30% of 
early-stage cases develop distant metastasis 
[2]. Patients with advanced breast cancer often 
have a poor prognosis [3], with low treatment 
responses. This outcome is attributed to tu- 
mor heterogeneity at the molecular level, in- 
cluding processes such as signal transduction, 
cell cycle regulation, and the tumor microenvi-
ronment (TME), which have molecular func-
tions and interactions at multiple steps [4]. 
Although various biomarkers, such as CA153 
and CEA, have been related to breast cancer 
[5], the identification of more specific and sen-

sitive biomarkers are still needed to improve 
the current diagnosis, treatment, and prognosis 
of patients with breast cancer. 

The cytoskeleton comprises microtubules 
(MTs), microfilaments (F-actin), and intermedi-
ate filaments (IFs). Previous studies have dem-
onstrated that specific cross-linking of proteins 
is significantly involved in various functions of 
the cytoskeleton [6]. Microtubule actin cross-
linking factor 1 (MACF1) was the first specific 
cross-linking protein that were identified [7]. 
MACF1 is located on chromosome 1p34.3 and 
contains at least 110 exons. MACF1 is widely 
expressed in tissues, especially the cytoplasm, 
and can combine with the microtubule and 
microfilament cytoskeleton network, which are 
significantly involved in cell proliferation, migra-
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tion, and maintenance of tissue integrity [8]. 
MACF1 also participates in cell signal transduc-
tion, embryo development, and several other 
diseases. 

Given its role in cell signal transduction, MACF1 
may be involved in cancer development. With 
the advent of whole genome sequencing, 
MACF1 has been shown to have a high muta-
tion rate in various cancers, including lung, 
colon, and gastric cancer. In gastric cancer, 
MACF1 mutations were found to be related to 
cancer aggressiveness by promoting cellular 
metastasis and were correlated with a poor 
prognosis [9]. Another study found that the 
mutation rate of MACF1 in breast cancer is 
12% [10]. MACF1 appears to be involved in the 
Wnt/β-catenin signaling pathway [11, 12]. How- 
ever, only a few studies have explored the rela-
tionship between MACF1 mutations and breast 
cancer. Accordingly, the underlying functions 
and mechanisms of MACF1 mutations in tumor 
progression and TME in breast cancer remain 
unknown. 

In the present study, mutational and clinical 
data were obtained from TCGA-Breast Cancer 
cohort to investigate the association between 
MACF1 mutations and prognosis in breast can-
cer patients. Patients enrolled in this study 
were divided into MACF1-mutant (MT) and 
MACF1-wild-type (WT) groups. Based on our 
findings, MACF1-MT patients had a higher tu- 
mor mutation burden (TMB) than MACF1-WT 
patients, which might affect immunogenicity. 
Furthermore, to identify the differentially-ex- 
pressed genes (DEGs) in MACF1-MT and 
MACF1-WT patients, the biological pathways 
and functions relating to MACF1 mutations 
were elucidated. Our results provide new in- 
sights into the mechanisms underlying breast 
cancer development and MACF1 mutations 
might serve as a novel prognostic biomarker 
and a potential therapeutic target for patients 
with breast cancer. 

Materials and methods

Data processing and analysis of mutations

Genomic somatic mutation data (MAF files) and 
the corresponding clinical and prognostic data 
of breast cancer patients were obtained from 
TCGA (http://cancergenome.nih.gov/) [13] and 
UCSC Xena (http://xena.ucsc.edu/). Data for 
955 breast cancer patients with mutational 

and survival information were collected for fur-
ther analyses and annotated using the GH- 
Ch38 version of the genome annotation file 
from the Ensembl database (ftp://ftp.ensembl.
org/pub/current_gtf) [14]. Copy number varia-
tion data were also collected from TCGA data-
base. The clinical parameters of the breast can-
cer patients are summarized in Supplementary 
Table 1. As all data were collected from TCGA 
for this study, institutional ethics committee 
approval was not required. 

Somatic mutation data were visualized using 
the R packages, Maftools [15] and GenVisR 
[16], and the MACF1 mutations were visualized 
using the R package G3viz [17]. GISTIC2.0 anal-
ysis by Genepattern (http://cloud.genepattern.
org/) was used to assess gene copy number 
variations. To estimate the association bet- 
ween MACF1 mutations and patient prognos- 
is, patients were divided into MACF1-MT and 
MACF1-WT groups, and survival analysis was 
performed using the Kaplan-Meier method. 
TMB [18] levels and microsatellite instability 
(MSI) [19] were compared between the MACF1-
MT and MACF1-WT groups. 

In addition, the Human Protein Atlas (HPA) data-
base [20] was used to evaluate MACF1 protein 
expression levels in breast cancer tissues and 
normal breast tissues. TCGA pan-cancer sam-
ples were analyzed with the cBioPortal data-
base [21] for mutation status of MACF1. The 
gene expression levels, copy number variation 
(CNV), and protein expression levels of MACF1 
in various types of cancer cell lines were com-
pared using the Cancer Cell Line Encyclopedia 
(CCLE) database [22]. 

Analysis of drug sensitivity and DEGs

Whole exome sequencing (WES) data were 
downloaded from GDSC and differences in drug 
sensitivity were compared using the R package 
oncoPredict [23]. We used the R package GSVA 
[24] for gene set variation analysis of the 
MACF1-MT and MACF1-WT groups. Using this  
R package, the reference gene sets “h.all.
V7.4.symbols.gmt” and “C2.cp.kegg.V7.4.sym- 
bols.gmt” were downloaded from the MSigDB 
database [25] to calculate the enrichment 
score for each sample. Dysregulated pathways 
in the MACF1-MT and MACF1-WT groups we- 
re analyzed. Moreover, mutation data for the 
MACF1-MT and MACF1-WT groups were com-
pared to identify DEGs using the limma pack-
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age in R. The thresholds for this analysis were 
|log2(fold-change (FC))| > 1 and P-value < 0.05. 
Genes with logFC > 1 and P-value < 0.05 were 
upregulated, while genes with logFC < -1 and 
P-value < 0.05 were downregulated. The DEGs 
were divided into mRNA, lncRNA, and miRNA 
groups. DEGs were visualized using volcano 
plots. 

Gene function and pathway enrichment analy-
sis

Functional and pathway enrichment analyses, 
including gene ontology (GO) [26], analysis of 
the Kyoto Encyclopedia of Genes and Genomes 
(KEGG) pathway, and the identification of cellu-
lar components (CC), molecular functions (MF), 
and biological processes (BP) [27], of the DEGs 
were performed using the R package cluster-
Profiler [28]. Gene set enrichment analysis 
(GSEA) [29] was also performed using cluster-
Profiler to clarify the significant functions and 
pathway differences between MACF1-MT and 
MACF1-WT. Both “c2.cp.kegg.V7.4.entrez.gmt” 
and “c5.go.v7.4.entrez.gmt” were downloaded 
as reference gene sets from the MSigDB data-
base to perform GSEA. 

Protein-protein interaction (PPI) network con-
struction and ceRNA network construction

The Search Tool for the Retrieval of Interacting 
Genes (STRING) was used to construct a PPI 
network for DEGs [30]. Statistically significant 
interactions were identified using a combined 
score > 400. In this study, to identify crucial 
subnetworks, we used MCODE, extracted hub 
genes in the PPI network [31], and set an 
MCODE score > 10 as the cut-off value. The 
Cytoscape software (version 3.7.0) was used to 
visualize the PPI networks, whereas clueGO 
[32] was used for functional annotation. Similar 
to ceRNAs, lncRNAs can sponge miRNAs and 
reduce miRNA inhibitory effects on target 
mRNAs. To analyze the relationship between 
DEGs, miRNAs, and lncRNAs in the post-tran-
scriptional stage, mRNAs, and lncRNAs related 
to differentially-expressed miRNAs from the 
miRNet database [33] were obtained, and an 
mRNA-miRNA-lncRNA regulatory network was 
constructed based on the intersection of differ-
entially expressed mRNAs and lncRNAs identi-
fied in TCGA-Breast cancer cohort. The Cytos- 
cape software (version 3.7.0) was used to  
identify the mRNA-miRNA-LncRNA regulatory 
networks. 

Immune infiltration analysis

To investigate the association between MACF1 
mutations and the TME, differences in immune 
cell content between MACF1-MT and MACF1-
WT patients were assessed. Further, the corre-
lations among immune cell types in patients 
with MACF1 mutations were determined. Stro- 
mal and immune cell abundance was quanti-
fied using the ESTIMATE package [34] in the R 
software. Immune infiltration analysis for the 
22 types of immune cells in the tumor sam- 
ples was carried out using CIBERSORT [35]. 
Correlations between MACF1, immune cells, 
and human leukocyte antigen (HLA) genes were 
analyzed using Spearman’s correlation. 

Construction and evaluation of a nomogram 

We collected the clinical and mutational data of 
955 patients with breast cancer from TCGA 
Breast Cancer cohort. The 955 patients were 
randomly divided into training and testing (5:5) 
sets for constructing and validating a prognos-
tic model. Based on the results of Cox regres-
sion analysis, we constructed a nomogram that 
integrated the valuable clinicopathological vari-
ables from the training set. The rms R package 
was used to construct the nomograms. The 
nomogram was assessed using receiver oper-
ating characteristic (ROC) analyses, calibration 
plots, and Decision Curve Analysis (DCA). In 
addition, validation of the model was carried 
out using the testing set. 

Statistical analysis

All statistical analyses and plots were per-
formed and generated using the R (v3.6.3)  
software. Multiple testing corrections were per-
formed using Benjamin Hochberg (BH). FDR 
correction was also performed to reduce the 
false-positive rate. For comparisons between 
two groups, Student’s t-test was employed to 
estimate the significance of normally distribut-
ed variables, while the Mann-Whitney U test 
was used to analyze non-normally distributed 
variables. Survival analysis was performed 
using the Kaplan-Meier method with the R 
package survival [36], and log-rank tests in 
separate curves. Univariate and multivariate 
Cox regression analyses were used to identify 
independent variables. P < 0.05 was consid-
ered to indicate statistical significance, and all 
statistical tests were bilateral. 
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Figure 1. Analysis of somatic mutations and copy number variations in breast cancer patients. A. Statistics of muta-
tion information in The Cancer Genome Atlas (TCGA)-Breast cancer cohort. B. Genes with the most frequent muta-
tions were identified and presented. The panel on the left shows the genes ordered by their frequencies of mutation, 
while the panel on the right shows the different mutation types expressed as different colors. C. Microtubule actin 
cross-linking factor 1 (MACF1) mutations in TCGA-Breast cancer cohort. D. Copy number alteration (CNV) analysis; 
the outmost edge represents chromosomes, green represents amplification, and red represents deletion. E-G. Iden-
tification of genes with significant amplification or deletion.

Results

High gene mutation frequencies in breast can-
cer patients from TCGA-Breast cancer dataset

We analyzed the mutation types of mutational 
genes in breast cancer patients from the Breast 

Cancer dataset (Figure 1A). As shown in Figure 
1A, the most common mutations were mis-
sense mutations, and the second most com-
mon mutation was deletion. Genes with the 
highest mutation frequencies were PIK3CA, 
TP53, and TTN. As shown in Figure 1B, a high 
frequency of MACF1 mutations was observed. 
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Using copy number variation data from TCGA, 
genes that showed significant amplification or 
deletions were identified. MACF1 was not sig-
nificantly amplified or deleted (Figure 1D-F). 
The relationship between MACF1 mutations 
and the patient prognosis was evaluated using 
Kaplan-Meier survival analysis. Compared to 
the MACF1-WT group, MACF1-MT was more 
strongly associated with poor prognosis (P = 
0.048) (Figure 2A). MACF1 protein levels were 
significantly higher in normal breast tissues 
compared with breast cancer tissues accord- 
ing to the HPA database (Supplementary Figure 
1A). According to the cBioPortal database, skin 
cutaneous melanoma had the highest altera-
tion frequency of MACF1 mutations, and breast 
invasive carcinoma had high alteration fre-
quency of MACF1 mutations (Supplementary 
Figure 1B). Based on the CCLE database, the 
gene expression levels and protein expression 
levels of MACF1 in breast cancer cell lines was 
lower than that in most types of cancer cell 

lines (Supplementary Figure 1C, 1E), and the 
difference of CNV of MACF1 in various types of 
cancer cell lines was not significant (Supple- 
mentary Figure 1D). 

Drug sensitivity and analysis of TMB and MSI

Compared with patients without MACF1 muta-
tions, those with MACF1 mutations exhibited a 
higher TMB score (P < 0.05) (Figure 2B). The 
differences in MSI levels between patients with 
and without MACF1 mutations were not statisti-
cally significant (Figure 2C). The correlations 
between MACF1 mutations and drug sensitivity 
in breast cancer cells were analyzed using the 
GDSC cohort. Patients with MACF1 mutations 
were found to have lower IC50 values for seve- 
ral drugs, including GSK1059615, rapamycin, 
and mitomycin-C. Moreover, these patients dis-
played poor sensitivity to AZD8055 (Figure 3A). 
We proceeded to determine the effect of 
MACF1 mutations on biological characteristics 
and oncogenic signaling pathways using the R 

Figure 2. Associations between MACF1 mu-
tation, survival rate, tumor mutation burden 
(TMB), and microsatellite instability (MSI). A. 
The overall survival of patients with or with-
out MACF1 mutations was analyzed using the 
Kaplan-Meier method. B. Association between 
MACF1 status and TMB in breast cancer. C. 
Representative bar graph showing the asso-
ciation between MACF1 mutations and MSI.
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Figure 3. Drug sensitivity analysis and differences in biological characteristics. A. Representative box plots show-
ing drug sensitivity of the breast cancer cells based on their MACF1 mutations. B. Results of Kyoto Encyclopedia of 
Genes and Genomes (KEGG) pathway enrichment between the MACF1-mutant (MACF1-MT) and MACF1-wild-type 
(MACF1-WT) groups. C. Results of hallmark enrichment between the MACF1-MT and MACF1-WT groups.

Figure 4. Identifying differentially expressed genes (DEGs) between the MACF1-MT and MACF1-WT groups. A. Rep-
resentative Volcano plot showing DEGs in patients with or without MACF1 mutations. B. Representative Volcano 
plot showing mRNAs with different expression between the MACF1-MT and MACF1-WT groups. C. Representative 
Volcano plot showing miRNAs with different expression between MACF1-MT and MACF1-WT groups. D. Representa-
tive Volcano plot showing LncRNAs with different expression between the MACF1-MT and MACF1-WT groups.

package GSVA. Based on the results for the 
MACF1-MT group, hallmark glycolysis and 
mTORC1 signaling were significantly upregulat-
ed (Figure 3C), while KEGG histidine metabo-
lism was significantly downregulated. In paral-
lel, KEGG cysteine and methionine metabolism, 
galactose metabolism, and glycolytic gluconeo-
genesis were significantly upregulated (Figure 
3B). 

DEGs identification and functional enrichment 
analysis

Based on the cut-off criteria (|logFC| > 1 and P 
< 0.05), the gene profile data of MACF1-MT 

patients (n = 50) or MACF1-WT patients (n = 
905) were analyzed using the R package limma. 
As shown in Figure 4A, 949 DEGs were identi-
fied (Figure 4A). Further, as shown in Figure 4B 
and 4D, 38 differentially expressed lncRNAs 
and 911 mRNAs were found. Among these 38 
lncRNAs, 9 were upregulated and 29 were 
downregulated. Of the 911 mRNAs, 79 were 
upregulated and 832 were downregulated 
(Figure 4B, 4D).

The miRNA profile data were analyzed using  
the same cutoff criteria. A total of 12 miRNAs 
were identified (Figure 4C). Among the 12 iden-
tified miRNAs, one was upregulated and 11 
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were downregulated (Figure 4C). To better 
understand the functional enrichment of MA- 
CF1 mutations in breast cancer, GO (Supple- 
mentary Figure 2A; Supplementary Table 2) 
and KEGG functional enrichment analyses were 
performed using the R package clusterProfiler. 
Ten enriched GO terms were identified in the BP 
category. These terms were enriched in res- 
ponse to chemical synaptic transmission, epi-
dermis development, the epoxygenase P450 
pathway, proteolysis, cytoskeleton organiza-
tion, cell-cell signaling, response to nicotine, 
positive regulation of synaptic transmission, 
glutamatergic, memory, and digestion (Supple- 
mentary Figure 2B). Categorization by CC 
revealed 10 enriched GO terms, which were 
associated with organelle membrane, extracel-
lular space, postsynaptic membrane, interme-
diate filament, plasma membrane, keratin fila-
ment, extracellular region, and blood micropar- 
ticles and so on (Supplementary Figure 2C). 
Moreover, the MF category revealed 10 signifi-
cant enrichments in GO terms associated with 
monooxygenase activity, serine-type endopep-
tidase activity, structural constituent of the 
cytoskeleton, acting on paired donors, struc-
tural molecule activity, oxidoreductase activity, 
arachidonic acid epoxygenase activity, oxygen 
binding, heme binding and so on (Supplemen- 
tary Figure 2D). Diseases, such as visual sei-
zure, opioid addiction, epileptic seizures, nico-
tine dependence, withdrawal symptoms, mel-
ancholia, cocaine abuse, and palmoplantar 
keratosis, also correlated with the 911 DEGs 
(Supplementary Figure 2E). Finally, the path-
ways that were significantly affected by DEGs 
were analyzed (Supplementary Figure 2F; 
Supplementary Table 3). The results showed 
that neuroactive ligand-receptor interactions, 
gastric acid secretion, and nicotine addiction 
were affected. We showed the top two sig- 
nificantly enriched pathways (Supplementary 
Figure 2G, 2H). 

MACF1 mutations related biological functions 
and pathways obtained by GSEA

GSEA of the differences between MACF1-MT 
and MACF1-WT groups was conducted to iden-
tify key signaling pathways and biological func-
tions associated with MACF1 mutations (Figure 
5A, 5B; Supplementary Table 4). Biological 
functions, including blood microparticles, chro-

mosome centromeric region, cornification, hu- 
moral immune response, immunoglobulin com-
plex, intermediate filament cytoskeleton, kera-
tinization, keratinocyte differentiation, and mi- 
totic sister chromatid segregation, showed sig-
nificant differential enrichment in MACF1-MT. 
Further, signaling pathways, such as drug me- 
tabolism cytochrome p450, antigen process- 
ing and presentation, graft versus host dis-
ease, cell cycle, retinol metabolism, and natu-
ral killer cell-mediated cytotoxicity, were signifi-
cantly enriched (Figure 5C, 5D; Supplementary 
Table 4). 

PPI and ceRNA networks 

A PPI network was constructed and visualized 
(Supplementary Figure 3A) using a total of 507 
DEGs and 2,001 PPI pairs. The top five genes 
that interacted with other DEGs were ALB (inter-
acting with 86 DEGs), SNAP25 (interacting with 
52 DEGs), GRIA2 (interacting with 51 DEGs), 
SST (interacting with 46 DEGs), and NRXN1 
(interacting with 45 DEGs). In the PPI network 
related to DEGs, enrichment of genes associ-
ated with immunity, such as antimicrobial pep-
tide production, neutrophil chemotaxis, regula-
tion of lymphocyte proliferation, and regulation 
of osteoclast differentiation, was observed 
(Supplementary Figure 3B). The MCODE algo-
rithm was applied to identify densely connect-
ed network components. The two most signifi-
cant MCODE components were extracted from 
the PPI network and comprised 12 (Supple- 
mentary Figure 3C) and 21 genes (Supple- 
mentary Figure 3E), respectively. Genes in 
MCODE component 1 were enriched in syntax-
in-1 binding and neuron projection membrane 
(Supplementary Figure 3D), whereas genes in 
MCODE component 2 were enriched in startle 
response and calcium-dependent protein bind-
ing (Supplementary Figure 3F). Additionally, 
mRNAs, miRNAs, and lncRNAs that were differ-
entially expressed in MACF1-MT were identi-
fied. Using the miRNet database, lncRNAs and 
mRNAs associated with miRNAs were identi-
fied, and an mRNA-miRNA-lncRNA regulatory 
network was constructed based on DEGs iden-
tified in TCGA-Breast cancer cohort (Supple- 
mentary Figure 3G). The network contained  
47 interaction relationships, comprising 15 
mRNAs, 5 miRNAs, and 2 lncRNAs. The differ-
entially expressed mRNAs regulated by the 
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Figure 5. MACF1 mutations related biological functions and pathways based on Gene set enrichment analysis (GSEA). A, B. GSEA of biological function enrichments 
of breast cancer patients with or without MACF1 mutations. C, D. GSEA results showing enrichment of the functional pathways of breast cancer patients with or 
without MACF1 mutations. The dot size depicts the number of genes contained in the enrichment functions, while the color of dots depicts adjusted P-values.
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miRNAs were AMER2, ANK1, NPTX1, and 
TMEM151B. Further, the identified miRNAs 
were hsa-mir-153-3p (regulating 12 mRNAs), 
hsa-mir-135a-5p (regulating 6 mRNAs), hsa-
mir-105-5p (regulating 4 mRNAs), hsa-mir-
216a-5p (regulating 4 mRNAs and 1 lncRNA), 
and hsa-mir-153-5p (regulating 3 mRNAs). 

Immune cell infiltration analysis

The immune cell content in patients with or 
without MACF1 mutations was analyzed (Figure 
6A). As a result, MACF1-MT patients were found 
to have a higher content of immune cells than 
MACF1-WT patients, suggesting that MACF1 
mutations may activate immune cells (P < 0.05, 
Figure 6B). We analyzed the correlation bet- 
ween immune cell types in MACF1-MT patients 
and found that most immune cells showed a 
negative correlation (P < 0.05, Figure 6C), indi-
cating that different immune cells inhibit each 
other. Such finding suggests that the immuno-
therapeutic response of MACF1-MT patients 
might be poor. The correlation between 22 
immunocytes and HLA genes was also deter-
mined, which revealed that activated memory 
CD4+ and CD8+ T cells, resting and activated 
mast cells, and M1 and M2 macrophages were 
significantly correlated with several HLA family 
genes (P < 0.05, Figure 6D). In addition, MACF1 
gene expression was positively correlated with 
monocytes, resting mast cells, naïve B cells, 
neutrophils, resting NK cells, and resting mem-
ory CD4+ T cells. In parallel, MACF1 expression 
was negatively correlated with activated NK 
cells, regulatory T cells (Tregs), follicular helper 
T cells, and CD8+ T cells (P < 0.05, Figure 6E). 
MACF1 gene expression was also negatively 
correlated with the immune score (P < 0.05, 
Figure 6F) and positively correlated with the 
stromal score (P < 0.05, Figure 6G). 

Nomogram model construction and prediction 
efficacy validation

The training set included 477 patients with 
breast cancer, and we performed both univari-
ate and multivariate Cox regression analyses 
based on clinicopathological characteristics 
including MACF1 mutations (group), MACF1 ex- 
pression, age, and gender and so on. Univaria- 
te analysis revealed that MACF1 mutations 
(group), ER status, N/M stage, and tumor stage 
were significantly correlated with patient sur-

vival (Figure 7A; Supplementary Table 5). In  
the multivariate Cox regression model, Black or 
African American race and N3 stage were iden-
tified as prognostic factors (Figure 7B; Supple- 
mentary Table 6). Therefore, a nomogram was 
constructed to integrate MACF1 mutations 
(group) and other clinicopathological variables, 
such as ER status, N/M stage, and tumor stage 
(Figure 7C) [37]. Thereafter, the prediction effi-
cacy of this model was determined. Based on 
the results, Calibration plots for the overall sur-
vival (OS) at 1, 3, and 5 years showed good 
agreement with actual observations (Figure 
7D-F). Using time-dependent ROC analysis,  
the prediction efficiencies of 1-, 3-, and 5-year 
OS were 82.7%, 78%, and 73%, respectively 
(Figure 7G). The DCA for the prognostic model 
was performed, showing a good net benefit 
(Figure 7H). The prognostic model was validat-
ed by using the testing set (478 breast cancer 
patients). The results showed that OS was  
significantly shorter for patients with MACF1 
mutations compared to patients without MA- 
CF1 mutations both for the training and the 
testing sets (Figure 8A, 8B). Another nomo-
gram, comprising clinicopathological variables 
selected from the training set, was built by the 
testing set (Figure 8C). According to the results, 
the prognostic model had a good predictive 
effect on OS at 1, 3, and 5 years in breast can-
cer patients in the testing set (Figure 8D-F). 
The prediction efficiencies of 1-, 3-, and 5-year 
OS in patients with breast cancer in the testing 
set were 83.7%, 78.7%, and 76.3%, respective-
ly (Figure 8G). DCA demonstrated that the net 
benefit of the model for breast cancer patients 
in the testing set was significant (Figure 8H). 

Discussion

Breast cancer has the highest incidence and 
mortality rates among women worldwide [38]. 
Despite improved screening, diagnosis, and 
therapy, prognosis for breast cancer patients 
remains poor [39]. Owing to its relatively high 
immunogenicity and mutational load, immuno-
therapy has been considered the best thera-
peutic choice for breast cancer [40]. Never- 
theless, the efficacy of breast cancer immuno-
therapy has not been efficiently predicted 
owing to the lack of reliable biomarkers. In th- 
is regard, aberrant expression of MACF1 was 
found significantly associated with the patho-
genesis, progression, and metastasis of breast 
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Figure 6. The association between MACF1 mutations and immune infiltration. A. Distribution map of immune cells of breast cancer patients with or without MACF1 
mutations. The X-axis represents patient ID, and the Y-axis represents immune cells proportion. B. Difference in immune cell content between the MACF1-MT and 
MACF1-WT groups. Blue represents MACF1-MT patients and green represents MACF1-WT patients. C. Correlation heat map of immune cell types. D. Correlations 
between 22 immunocytes and human leukocyte antigen (HLA) family genes. E. Correlations between MACF1 gene expression level and immune cell types. F. Cor-
relation between MACF1 gene expression level and immune score. G. Correlation between MACF1 gene expression level and stromal score.
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Figure 7. MACF1 mutation-based nomogram construction and performance validation in patients with breast can-
cer in training set. A. Cox univariate regression. B. Cox multivariate regression. C. Nomogram for the prediction of 
the breast cancer patients’ survival probability at 1, 3, and 5 years. D-F. Representative calibration plots showing the 
prediction of the overall survival (OS) at 1, 3, and 5 years using the nomogram. G. Time-dependent receiver operat-
ing characteristic (ROC) curve analysis of the nomogram. H. The Decision Curve Analysis (DCA) of the nomogram.
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Figure 8. MACF1 mutation-based nomogram construction and performance validation in patients with breast can-
cer in testing set. A. The OS of patients with or without MACF1 mutations was analyzed in training set. B. The OS of 
patients with or without MACF1 mutations was analyzed in testing set. C. Nomogram for the prediction of the breast 
cancer patients’ survival probability at 1, 3, and 5 years. D-F. Representative calibration plots showing the predic-
tion of the OS at 1, 3, and 5 years using the nomogram. G. Time-dependent ROC curve analysis of the nomogram. 
H. The DCA of the nomogram.

cancer [41]. The underlying mechanisms of 
MACF1 mutations in tumor progression and 

TME remain largely unknown. However, a worse 
prognosis was found for patients with MACF1 
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mutations compared to patients without MA- 
CF1 mutations. 

In this study, the mutation frequency of MACF1 
was found to be relatively high in breast cancer 
patients and MACF1 was neither amplified nor 
deleted. Further, MACF1-MT patients had high-
er TMB scores than MACF1-WT patients. As a 
result, we opted to compare the immune cell 
content between patients, which revealed that 
patients with MACF1 mutations had a signifi-
cantly higher immune-cell content than MACF1-
WT patients. Such findings indicate that muta-
tions in MACF1 may activate immune cells. 
Therefore, owing to the higher mutation load, 
MACF1-MT patients may present altered immu-
nogenicity. Most immune cell types were found 
to be negatively correlated with the MACF1-MT 
group, suggesting that the immunotherapeu- 
tic response in these patients might be unsa- 
tisfactory. 

A total of the 22 types of immune cells were 
investigated. MACF1 expression was found to 
be positively correlated with naïve B cells, rest-
ing mast cells, monocytes, resting memory 
CD4+ T cells, neutrophils, and resting NK cells, 
and negatively correlated with activated NK 
cells, CD8+ T cells, Tregs, and follicular helper T 
cells. Further, activated and resting mast cells, 
M1 and M2 macrophages, and activated mem-
ory CD4+ and CD8+ T cells were found to be sig-
nificantly correlated with multiple HLA family 
genes. Consequently, the overexpression of 
MACF1 may upregulate immunosuppressive 
immune cells and molecules in the tumor 
immune microenvironment. By quantifying im- 
mune and stromal cell abundance, significant 
negative and positive correlations were obser- 
ved between the expression of MACF1 and 
immune and stromal scores, respectively. Gene 
overexpression is generally caused by amplifi-
cation or mutation [42]. Therefore, the overex-
pression of MACF1 in breast cancer may arise 
from mutations rather than amplification. How- 
ever, further research is required to test this 
hypothesis. 

MACF1 mutations upregulated hallmark glycol-
ysis, hallmark mTORC1 signaling, KEGG cyste-
ine and methionine metabolism, KEGG galac-
tose metabolism, and KEGG glycolysis gluco- 
neogenesis, and downregulated KEGG histidine 
metabolism. Previous studies have shown that 

cancer cells do not use mitochondrial oxida- 
tive phosphorylation to generate energy, even 
under aerobic conditions. Instead, these cells 
use aerobic glycolysis, defined as the Warburg 
effect, which provides growth and proliferation 
advantages to cancer cells [43]. Owing to the 
frequent activation of the PI3K/AKT/mTOR pa- 
thway in breast cancer, PI3K, mTORC1, and 
mTORC2 can be exploited as potential thera-
peutic targets [44, 45]. Thus, MACF1 mutations 
may promote the growth, migration, and inva-
sion of tumor cells, leading to poorer immuno-
therapeutic results. Therefore, novel clinical 
strategies for breast cancer therapy need to be 
explored. 

The regulatory effects of MACF1 mutations 
were investigated and identified by analyzing 
the drug sensitivity data. The sensitivity of 
breast cancer cells to 13 drugs, such as GSK- 
1059615 (PI3K inhibitor), rapamycin (mTOR 
inhibitor), and Mitomycin-C (chemotherapeutic 
drug), was enhanced in MACF1-MT patients 
compared to MACF1-WT patients. Thus, MACF1 
mutations might lead to a worse prognosis, 
which may be due to upregulation of the mTOR 
signaling pathway, and modifications in energy 
metabolism and within the tumor immune 
microenvironment. Based on these observa-
tions, we hypothesized that MACF1-MT patients 
would gain more benefits from an immuno- 
therapeutic combination of PI3K and mTOR 
inhibitors. 

DEGs were identified in MACF1-MT patients. 
Additionally, GO and KEGG functional enrich-
ment analyses were performed to further re- 
veal the functional implications of MACF1 
mutations within the 911 DEGs. GO and KEGG 
functional enrichment analyses revealed that 
these DEGs were mainly related to signal tr- 
ansduction and substance metabolism. In the 
present study, MACF1 mutations were found to 
be associated with graft-versus-host disease 
and the processing and presentation of anti-
gens, drug metabolism cytochrome P450, NK 
cell-mediated cytotoxicity, cell cycle, and retinol 
metabolism by GSEA. Of note, these biological 
pathways are primarily related to immunologi-
cal functions. By constructing a PPI network, 
DEGs were recognized to be enriched in im- 
mune and inflammatory responses. According 
to previous studies, inflammatory responses 
can promote tumor progression and are a hall-
mark of numerous cancers [46-48]. Finally, 
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DEGs were used to construct a ceRNA net- 
work, which lays the foundation for more in-
depth experimental research to identify the 
underlying mechanisms of breast cancer. 

For more accurate prognostic prediction, we 
constructed a nomogram based on MACF1 
mutations and other important parameters in 
the training set. According to the calibration 
plots, we found favorable predictive values for 
the OS of patients at 1-, 3-, and 5-year follow-
ups. Further, the time-dependent ROC curves 
performed well for the prediction of patient 1-, 
3-, and 5-year OS rates. The DCA for the prog-
nostic model revealed a good net benefit. 
Furthermore, there were similar results in the 
testing set. Further research is needed to vali-
date the nomogram for use in clinical practice. 

Although our research revealed the relation-
ship between MACF1 mutations and breast 
cancer, some limitations are worth noting. First, 
the cohort data contained a small sample of 
patients despite the use of TCGA-Breast can- 
cer cohort data, and we need an external data-
set to validate our results. Second, the number 
of MACF1-WT patients differed from that of the 
MACF1-MT patients. Future studies should bal-
ance sample sizes across these groups. Third, 
the caveats that are inherent to retrospective 
studies should be validated in prospective stu- 
dies. Nonetheless, we propose that immuno-
therapy with PI3K and mTOR inhibitors might 
achieve more beneficial outcomes in MACF1-
MT patients; however, further experimental and 
clinical verification is required. More mechanis-
tic studies are also needed to clarify the signal 
transduction and molecular mechanisms of 
MACF1 mutations in breast cancer. 

In conclusion, MACF1 mutations may predict 
poor prognosis in breast cancer patients and 
may regulate signaling pathways, energy meta- 
bolism, and the tumor immune microenviron-
ment. Further, MACF1 mutations in breast can-
cer were significantly associated with the sen- 
sitivity of breast cancer cells to 13 drugs, such 
as GSK1059615, rapamycin, and mitomycin-C. 
Our findings suggest that MACF1 mutations 
may serve as a potential prognostic biomarker 
and a therapeutic target in breast cancer.
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Supplementary Table 1. Associations between Microtubule actin cross-linking factor 1 (MACF1) muta-
tions and clinicopathologic features

MACF1-MT MACF1-WT p test
sample 50 905
MACF1 = low (%) 25 (50.0) 433 (47.8) 0.773 exact
group = wt (%) 0 (0.0) 905 (100.0) < 0.001 exact
gender = MALE (%) 0 (0.0) 11 (1.2) 1 exact
race (%) 0.357 exact
    AMERICAN INDIAN OR ALASKA NATIVE 0 (0.0) 1 (0.1)
    ASIAN 2 (4.0) 53 (5.9)
    BLACK OR AFRICAN AMERICAN 8 (16.0) 151 (16.7)
    WHITE 34 (68.0) 630 (69.6)
age = 60+ (%) 22 (44.0) 410 (45.3) 0.885 exact
lymph = 10+ (%) 37 (74.0) 737 (81.4) 0.196 exact
ER (%) 0.012 exact
    Indeterminate 0 (0.0) 2 (0.2)
    Negative 20 (40.0) 190 (21.0)
    Positive 27 (54.0) 673 (74.4)
PR (%) 0.252 exact
    Indeterminate 0 (0.0) 3 (0.3)
    Negative 21 (42.0) 275 (30.4)
    Positive 26 (52.0) 586 (64.8)
HER2 (%) 0.907 exact
    Equivocal 6 (12.0) 150 (16.6)
    Indeterminate 0 (0.0) 11 (1.2)
    Negative 26 (52.0) 457 (50.5)
    Positive 8 (16.0) 137 (15.1)
stage_M (%) 0.024 exact
    M0 42 (84.0) 760 (84.0)
    M1 4 (8.0) 17 (1.9)
    MX 4 (8.0) 128 (14.1)
stage_N (%) 0.008 exact
    N0 28 (56.0) 419 (46.3)
    N1 11 (22.0) 310 (34.3)
    N2 3 (6.0) 109 (12.0)
    N3 4 (8.0) 55 (6.1)
    NX 4 (8.0) 12 (1.3)
stage_T (%) 0.242 exact
    T1 9 (18.0) 245 (27.1)
    T2 33 (66.0) 524 (57.9)
    T3 4 (8.0) 102 (11.3)
    T4 4 (8.0) 31 (3.4)
    TX 0 (0.0) 3 (0.3)
tumor_stage (%) 0.016 exact
    stage I 7 (14.0) 156 (17.2)
    stage II 28 (56.0) 518 (57.2)
    stage III 8 (16.0) 199 (22.0)
    stage IV 4 (8.0) 15 (1.7)
    stage X 2 (4.0) 7 (0.8)
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Supplementary Figure 1. Expression analysis of MACF1 from databases. A. MACF1 protein expression levels in breast cancer tissues and in normal breast tissues. 
B. The MACF1 mutation status analysis in various types of cancer. C. The gene expression levels of MACF1 in various types of cancer cell lines. D. The copy number 
variation (CNV) analysis of MACF1 in various types of cancer cell lines. E. The protein expression levels of MACF1 in various types of cancer cell lines.
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Supplementary Table 2. Gene ontology (GO) enrichment in breast cancer
ONTOLOGY ID Description P value
BP GO:0007268 chemical synaptic transmission 1.44E-09
BP GO:0008544 epidermis development 5.58E-09
BP GO:0019373 epoxygenase P450 pathway 5.89E-07
BP GO:0006508 proteolysis 5.4E-06
BP GO:0007010 cytoskeleton organization 9.66E-06
BP GO:0007267 cell-cell signaling 1.29E-05
BP GO:0035094 response to nicotine 1.32E-05
BP GO:0051968 positive regulation of synaptic transmission, glutamatergic 1.58E-05
BP GO:0007613 memory 0.000108
BP GO:0007586 digestion 0.000123
CC GO:0005615 extracellular space 9.66E-23
CC GO:0005576 extracellular region 4.83E-10
CC GO:0031090 organelle membrane 5.77E-09
CC GO:0045211 postsynaptic membrane 4.15E-07
CC GO:0005887 integral component of plasma membrane 4.62E-07
CC GO:0005882 intermediate filament 1.44E-06
CC GO:0030054 cell junction 2.44E-05
CC GO:0005886 plasma membrane 6.98E-05
CC GO:0072562 blood microparticle 0.0002
CC GO:0045095 keratin filament 0.000204
MF GO:0004252 serine-type endopeptidase activity 3.01E-09
MF GO:0005200 structural constituent of cytoskeleton 4.13E-09
MF GO:0005198 structural molecule activity 2.66E-08
MF GO:0008392 arachidonic acid epoxygenase activity 2.74E-06
MF GO:0020037 heme binding 3.34E-06
MF GO:0005230 extracellular ligand-gated ion channel activity 4.41E-05
MF GO:0019825 oxygen binding 6.74E-05
MF GO:0016705 oxidoreductase activity, acting on paired donors, with incorporation or 

reduction of molecular oxygen
0.000273

MF GO:0004497 monooxygenase activity 0.000308
MF GO:0008236 serine-type peptidase activity 0.000547

Supplementary Figure 2. Gene ontology (GO) and KEGG functional enrichment analysis of the identified DEGs. (A) 
GO functional enrichment analysis of differentially expressed mRNAs. (B-D) Enriched GO terms in the “biological 
process” (B), “cellular component” (C), and “molecular function” (D) categories. The node tones represent gene 
expression levels. Yellow and green tones represent upregulated and downregulated genes, respectively. (E) GO 
functional enrichment analysis of differentially expressed mRNAs. The node tones indicate gene expression levels, 
while the gene amount contained in enriched diseases is depicted by the node size. (F) KEGG pathway enrichment 
analysis. Node colors indicate gene expression levels, and different colored lines indicate enrichment in different 
pathways. (G, H) The first two KEGG pathways with significant enrichment.
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Supplementary Table 3. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment in 
breast cancer
ONTOLOGY ID Description P value
KEGG_PATHWAY hsa04080 Neuroactive ligand-receptor interaction 1.79056E-09
KEGG_PATHWAY hsa04971 Gastric acid secretion 4.92554E-05
KEGG_PATHWAY hsa00980 Metabolism of xenobiotics by cytochrome P450 5.55076E-05
KEGG_PATHWAY hsa05033 Nicotine addiction 0.000143148
KEGG_PATHWAY hsa04964 Proximal tubule bicarbonate reclamation 0.000464464
KEGG_PATHWAY hsa05204 Chemical carcinogenesis 0.000536946
KEGG_PATHWAY hsa04024 cAMP signaling pathway 0.000714667
KEGG_PATHWAY hsa04723 Retrograde endocannabinoid signaling 0.000743243
KEGG_PATHWAY hsa00830 Retinol metabolism 0.002623913
KEGG_PATHWAY hsa04727 GABAergic synapse 0.003439928

Supplementary Table 4. Gene set enrichment analysis (GSEA) of breast cancer samples
Description ES P value
go_blood_microparticle -0.684973713 7.56556E-08
go_chromosome_centromeric_region 0.510126928 7.56556E-08
go_cornification -0.738682009 7.56556E-08
go_humoral_immune_response -0.591086935 7.56556E-08
go_immunoglobulin_complex -0.77718297 7.56556E-08
go_intermediate_filament_cytoskeleton -0.625770202 7.56556E-08
go_keratinization -0.645482527 7.56556E-08
go_keratinocyte_differentiation -0.593230188 7.56556E-08
go_mitotic_sister_chromatid_segregation 0.523549156 7.56556E-08
go_kinetochore 0.553538662 9.73932E-08
kegg_antigen_processing_and_presentation 0.619550907 1.15747E-07
kegg_graft_versus_host_disease 0.75359945 3.54466E-07
kegg_drug_metabolism_cytochrome_p450 -0.706974918 1.61982E-05
kegg_natural_killer_cell_mediated_cytotoxicity 0.47439649 1.61982E-05
kegg_cell_cycle 0.461369722 2.08361E-05
kegg_retinol_metabolism -0.701874909 0.000119487
kegg_neuroactive_ligand_receptor_interaction -0.51619541 0.0007227
kegg_metabolism_of_xenobiotics_by_cytochrome_p450 -0.655231647 0.001453848
kegg_dna_replication 0.612598844 0.002222122
kegg_allograft_rejection 0.601829389 0.004042925
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Supplementary Figure 3. Visualization of the protein-protein interaction 
(PPI) and competing endogenous RNA (ceRNA) networks. A. Visualized 
PPI network of DEGs found in the MACF1-MT groups. Pink nodes repre-
sent MCODE component 1 and green nodes represent MCODE compo-
nent 2. B. Functional enrichment analysis of DEGs from the PPI network. 
C. MCODE component 1. The size of the nodes indicates the MCODE 
score. D. Functional enrichment analysis of genes in MCODE component 
1. E. MCODE component 2. The size of nodes indicates MCODE score. 
F. Functional enrichment analysis of genes in MCODE component 2. G. 
Visualized ceRNA network. The miRNAs, mRNAs, and lncRNAs were rep-
resented by nodes in blue, red, and yellow, respectively. 
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Supplementary Table 6. Cox multivariate analysis
character p.value HR HR.confint.lower HR.confint.upper
groupwt 0.817061 0.8947163 0.348600459 2.2963750
raceASIAN 0.142087 6.67855892 0.529266530 84.273512
raceBLACK OR AFRICAN AMERICAN 0.000299 20.413514 3.97925576 104.72098
raceWHITE 0.007243 8.511090 1.7833290 40.61991
age60+ 0.061575 1.663025 0.97564381 2.834697
lymph10+ 0.327405 0.621204 0.2395732 1.610760
ERIndeterminate 0.428915 0.245458 0.007560351 7.969197
ERNegative 0.885386 0.856086 0.10350131 7.080911
ERPositive 0.555375 0.535115 0.066978373 4.275234
stage_MM1 0.282870 0.206818 0.01165388 3.670358
stage_MMX 0.408839 0.651632 0.23584544 1.800436
stage_NN1 0.085155 2.075941 0.90378423 4.768318
stage_NN2 0.180352 2.341400 0.67441314 8.128783
stage_NN3 0.00386 6.485180 1.82412461 23.05630
stage_NNX 0.007978 11.90927 1.91005113 74.2549
stage_TT2 0.302841 1.657782 0.6337812 4.33626
stage_TT3 0.401120 1.680156 0.500386 5.641487
stage_TT4 0.203205 2.2492347 0.6453616 7.83910
stage_TTX 0.430341 0.3195711 0.018760 5.443651
tumor_stagestage I 0.756241 0.7101584 0.0818133 6.1643333
tumor_stagestage II 0.346206 0.4408707 0.0802100 2.423224
tumor_stagestage III 0.465136 0.55594518 0.1150434 2.686594
tumor_stagestage IV 0.007949 33.319392 2.5020144 443.71523

Supplementary Table 5. Cox univariate analysis
character p.value HR HR.confint.lower HR.confint.upper
MACF1 0.579 0.932 0.727 1.2
group 0.0484 0.48 0.218 0.96
gender 0.413 2.29 0.315 16.7
race 0.184 0 0 0
age 0.113 1.49 0.91 2.43
lymph 0.0572 0.554 0.302 1.02
ER 0.00398 0.212 0.163 0.74
PR 0.687 0.302 0 1.181
HER2 0.726 15.8 0 0
stage_M 1.01e-06 0.321 0.19 0.621
stage_N 0.00034 1.794 1.03 2.02
stage_T 0.118 0.752 0.71 0.776
tumor_stage 7.31e-10 0.54 0.107 0.654


