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Abstract: Background: Esophageal cancer (EC) is one of the most common malignant cancers in the world. 
Endoplasmic reticulum (ER) stress is an adaptive response to various stress conditions and has been implicated 
in the development of various types of cancer. Long noncoding RNAs (lncRNAs) refer to a group of noncoding 
RNAs (ncRNAs), which regulate gene expression by interacting with DNA, RNA and proteins. Accumulating evidence 
suggests that lncRNAs are critical regulators of gene expression in development, differentiation, and human dis-
eases, such as cancers and heart diseases. However, the prognostic model of EC based on ER stress-related mRNA 
and lncRNA has not been reported. Methods: Firstly, we downloaded RNA expression profiles from The Cancer 
Genome Atlas (TCGA) and obtained ER stress-related genes from the Molecular Signature Database (MSigDB). 
Next, Weighted Correlation Network Analysis (WGCNA) co-expression analysis was used to identify survival-related 
ER stress-related modules. Prognostic models were developed using univariate and Least absolute shrinkage and 
selection operator (LASSO) regression analyses on the training set and validated on the test set. Afterwards, The 
Receiver Operating Characteristic (ROC) curve and nomogram were used to evaluate the performance of risk pre-
diction models. Differentially expressed gene (DEG) and enrichment analysis were performed between different 
groups in order to identify the biological processes correlated with the risk score. Finally, the fraction of immune cell 
infiltration and the difference of tumor microenvironment were identified in high-risk and low-risk groups. Results: 
The WGCNA co-expression analysis identified 49 ER genes that are highly associated with EC prognosis. Using 
univariate Cox regression and LASSO regression analysis, we developed prognostic risk models based on nine 
signature genes (four mRNAs and five lncRNAs). Both in the training and in the test sets, the overall survival (OS) 
of EC patients in the high-risk group was significantly lower than that in the low-risk group. The Kaplan-Meier curve 
and the ROC curve demonstrate the prognostic model we built can precisely predict the survival with more than 
70% accuracy. The correlation analysis between the risk score and the infiltration of immune cells showed that the 
model can indicate the state of the immune microenvironment in EC. Conclusion: In this study, we developed a novel 
prognostic model for esophageal cancer based on ER stress-related mRNA-lncRNA co-expression profiles that could 
predict the prognosis, immune cell infiltration, and immunotherapy response in patients with EC. Our results also 
may provide clinicians with a quantitative tool to predict the survival time of patients and help them individualize 
treatment strategies for the patients with EC. 
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Introduction

Esophageal cancer (EC) is one of the most com-
mon malignancies worldwide, ranking as the 
eighth most common type of cancer globally 
[1]. Esophageal cancer has two main histologi-
cal types: squamous cell carcinoma and ade- 
nocarcinoma. In China, esophageal squamous 
cell carcinoma is the main subtype of esopha-

geal cancer, accounting for 90% of the total 
number of esophageal cancer [2]. Accordingly, 
esophageal adenocarcinomas count for the 
vast majority esophageal cancer in western 
countries. The five-year survival rate of patients 
with EC is less than 20% [3]. Most cases of EC 
are diagnosed at a late stage, missing the best 
opportunity for treatment and leading to a dis-
mal prognosis [4]. Therefore, it is crucial to iden-
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tify biomarkers that act as both prognosis-pre-
dictive markers and therapy targets for EC.

The Endoplasmic reticulum (ER) is a cellular 
organelle that responsible for protein synthesis 
and trafficking, protein folding, lipid and steroid 
synthesis, carbohydrate metabolism, and cal-
cium storage [5]. Numerous abnormal cellular 
states, such as intracellular calcium abnormali-
ties, disrupted glycosylation modifications, and 
redox disorders, cause ER dysfunction and in- 
duce endoplasmic reticulum stress (ER stress) 
[6]. In response to these abnormal factors, 
cells will initiate adaptive responses to de- 
crease ER stress and restore cellular homeo-
stasis, known as the unfolded protein response 
(UPR) [7]. Increasing evidence suggests that  
ER stress is a double-edged sword during EC 
development and progression [8-11]. During  
ER stress, EC cells either survive by inducing 
adaptive mechanisms or undergo cell death by 
apoptosis. Activation of the IRE1a pathway by 
AURKA can promote esophageal cancer cell 
survival in FLO-1 and OE33 [12]. Up-regulation 
of ATF4 promotes esophageal cancer cell me- 
tastasis by regulating matrix metalloproteina- 
ses [10]. Conversely, ER stress can induce 
autophagy and apoptosis in human esophageal 
cancer EC9706 cells by mediating the PI3K/
Akt/mTOR signaling pathway [11]. These find-
ings indicate that ER stress may play an impor-
tant role in the proliferation and migration of 
EC, and ER stress related genes may serve as 
prognostic markers for EC. However, the spe-
cific functions and immune implications in EC 
have been less studied. 

Long non-coding RNAs are a class of RNAs that 
are more than 200 nucleotides in length and 
the do not encode proteins, but tightly regulate 
gene expression [13]. LncRNAs have important 
roles in cancer, including epigenetic regulation, 
DNA damage and cell cycle regulation, regu- 
lation of microRNAs, involvement in signal 
transduction pathways, and hormone-induced 
cancer mediation [14-17]. Indeed, increasing 
studies have demonstrated that lncRNAs play 
an important role in esophageal cancer [18-
21]. LncRNA SNHG7 can promote esophageal 
cancer cell proliferation and inhibit apoptosis 
by regulating P15 and P16 expression [18]. 
LncRNA UCA1 enhances cell proliferation by 
acting as ceRNA to inhibit miR-498 expression 
and thereby increasing ZEB2 expression in 
esophageal cancer [19]. Furthermore, lncRNAs 

also play a suppressive role in esophageal can-
cer. RPLS1 inhibits proliferation, migration, and 
invasion of esophageal cancer cells by down-
regulating RPL34 expression [21]. Increasing 
evidence indicates that lncRNA-mRNA co-ex- 
pression networks could provide new insights 
into tumorigenesis and tumor development 
[22, 23]. However, to the best of our knowledge, 
a prognostic model for esophageal cancer 
based on ER stress-related mRNA-lncRNA co-
expression network profiles has not been re- 
ported. 

In this study, we identified ER stress-related 
mRNAs that were associated with prognosis of 
EC by using WGCNA. Pearson correlation analy-
sis was conducted to identify lncRNAs highly 
correlated with these ER stress-related mRNA. 
By performing univariate Cox regression and 
LASSO regression analysis, we developed a 
prognostic risk model based on nine signature 
genes (four mRNAs and five lncRNAs). Both in 
the training and the test sets, the overall sur-
vival of EC patients in the high-risk group was 
significantly lower than that in the low-risk 
group. The Kaplan-Meier curve and the ROC 
curve were performed to estimate the sensi- 
tivity and specificity of the prognostic signa- 
ture. According to the pRRophetic algorithm, we 
identified four potential drugs (OSI.906, BI- 
2536, Lenalidomide, Bicalutamide) that might 
have potential therapeutic effect of EC. In con-
clusion, we developed a novel prognostic model 
for esophageal cancer based on ER stress-
related mRNA-lncRNA co-expression profiles. 
Our results will not only provide clinicians with a 
quantitative tool to predict the survival time of 
patients and help them to individualize treat-
ment strategies for the patients with EC, but 
also provide nine ER-stress related biomarkers 
for EC.

Methods

Data acquisition

The Cancer Genome Atlas (TCGA) database 
was created by the National Cancer Institute 
and contains genomic, transcriptomic, pro-
teomic, and methylation data for 20,000 pri-
mary cancers (http://cancergenome.nih.gov/). 
The TCGA platform is publicly accessible, free 
to use and search, and download, in order to 
use the original data for integrated analysis 
[24]. From the TGCA, we collected transcrip-
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tomic (lncRNA and mRNA) and clinicopathologi-
cal data on 185 patients with EC (Supplemen- 
tary Table 1). By searching the keyword “ER 
stress” in the Molecular Signature Data- 
base (MSigDB) database, 419 genes associat-
ed with ER stress were extracted (http:// 
www.gsea-msigdb.org/gsea/msigdb/index.jsp) 
(Supplementary Table 2). 

The weighted correlation network analysis 
(WGCNA) 

In order to identify the new prognostic markers 
and potential therapeutic targets, we per-
formed the WGCNA approach (WGCNA R pack-
age) to recognize gene modules highly correlat-
ed with the clinical phenotypes of patients with 
EC [25]. The analysis process includes: first, 
downloading expression data from the TCGA; 
second, creating gene co-expression networks 
by calculating the connection strength be- 
tween genes; third, using hierarchical cluster-
ing and dynamic tree cutting to identify gene 
modules; fourth, construction of the relation-
ships between gene module and clinical traits. 
Finally, a scale-free topology model was built. 
Power value = 16 and scale-free R2 = 0.90 were 
chosen as soft threshold parameters to obtain 
a good scale-free topology model. Genes with 
high correlations were clustered into the same 
co-expression module for FlashClust analysis 
to generate the cluster dendrogram. Then, we 
transform the cluster dendrogram into a topol-
ogy matrix to form the network heatmap plot. 
The relationships between modules and nine 
EC prognostic factors (survival time, survival 
state, age at initial pathologic diagnosis, gen-
der, grade, stage, T, M, N) were analyzed with 
Pearson correlation coefficient and visualized 
by heatmap. 

Identification of the mRNA-lncRNA co-expres-
sion pairs

We performed correlation analysis using R soft-
ware to identify the mRNA-lncRNA co-expres-
sion pairs with the criteria of Pearson correla-
tion coefficient > 0.6 and p-value < 0.001. 

Identification of ER stress-related hub genes

In order to explore the relationship among the 
genes highly correlated with clinical pheno-
types of patients with EC, we constructed the 
protein-protein interaction (PPI network using 

the Search Tool for the Retrieval of Interacting 
Genes (STRING) online tool (http://string-db.
org) with the parameter of settings the confi-
dence = 0.400 [26]. To identify the hub genes, 
we used the CytoHubba plugin to screen out 
key hub mRNAs and significant modules [27]. 
Maximal Clique Centrality (MCC) and Density of 
Maximum Neighborhood Component (DMNC) 
were developed for exploring and identifying 
key nodes from interactome networks [27, 28]. 
The intersection of hub genes was obtained by 
employing MCC and DMNC which employed the 
above two algorithms. 

Construction and validation of the prognostic 
model

The entire set was randomly divided into train 
set and test set with a ratio of 5:5. According to 
the results of univariate Cox regression based 
on the ER stress-related mRNA and lncRNA, 
LASSO Cox regression was performed to con-
struct a prognostic signature. Risk scores for 
EC patients were calculated as follows: 

risk score = βi * Xj

Xj represents the relative expression levels of 
each selected gene, and βi represents the 
coefficient. Taking the median of risk score as 
the threshold, we classified the samples into 
high-risk and low-risk groups. The test set was 
used to validate the prognostic risk score 
model constructed according the train set. R 
“survival” package is a tool for statistical analy-
sis and visualization of survival data and is 
widely used in scientific research [29, 30]. 
Using the “survival” package in R, we calculat-
ed the overall survival analysis and plotted the 
Kaplan-Meier survival curves. Chi-square tests 
were applied to the calculation of p values [31]. 
ROC curves were drawn using the R package 
“survivalROC” to verify the accuracy of the pre-
dictive model. 

Construction of the nomogram for patients 
with EC

The nomogram containing the clinical charac-
teristics was established to predict individual 
survival probability by the “rms” package of  
R software [32]. To assess the consistency 
between actual survival time and predicted 
prognosis in the nomogram, calibration curves 
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for predicting 1-, 2-, and 3-year survival rate 
were plotted. 

Analysis of immune cell infiltration 

The Cell-type Identification by Estimating Re- 
lative Subsets of RNA Transcripts (CIBERSORT) 
method is a general way to measure cell frac-
tions based on the gene expression profiles 
(GEPs), which can accurately estimate the im- 
mune component of tumor biopsies [33]. We 
calculated the abundance of 22 immune cell 
infiltrates using the CIBERSORT deconvolution 
method in high- and low-risk groups, and then 
used the Wilcoxon test to compare the differen-
tial immune density in the two groups [34]. The 
level of statistical significance was set at P < 
0.05. 

Permutation test

The permutation test is a non-parametric meth-
od for analyzing the statistical significance, 
which is a very useful method to estimate the 
sampling distribution for the test statistic in 
situations where a null distribution of test sta-
tistics is unknown [35]. We also evaluated the 
immune infiltration results with a permutation 
test in patients, in order to verify that the statis-
tically significant results have not been pro-
duced due to chance, but because of a sys- 
tematic difference in the infiltration of these 
immune cell types. The sample distribution was 
created by permuting (randomly rearranging) 
the data one thousand times and calculating 
the p-value (the proportion of samples that 
have a test statistic larger than that of our 
observed data) on each permuted version of 
our data. 

Correlation analysis between prognostic model 
and tumor microenvironment

We used “Estimation of STromal and Immune 
cells in MAlignant Tumor tissues using Ex- 
pression data” (ESTIMATE) package in R to pre-
dict the purity of tumors according to the gene 
expression of each tumor sample. These calcu-
lating results indicated that the microenviron-
ment scores of tumors containing stromal, 
immune, and estimate scores. We divided 
patients into high- and low-risk groups based 
on the mean value of the risk scores and con-
ducted the Wilcoxon test to compare the differ-

ences among the stromal, immune, and esti-
mate scores in these two groups. 

Differentially expressed gene (DEG) analysis 
between high and low risk groups

In order to explore the potential molecular 
mechanism underlying the tumorigenesis of 
EC, we obtained differentially expressed genes 
between the high-risk and the low-risk groups. 
We used the “limma” package in R software to 
select differentially expressed genes with |log 
FoldChange| ≥ 1 and false discovery rate (FDR) 
< 0.05. 

Enrichment analysis

The gene ontology (GO) and Kyoto Encyclopedia 
of Genes and Genomes (KEGG) enrichment 
analysis of these differentially expressed genes 
between high and low risk groups were per-
formed to find the enriched biological pathways 
and functions related to the ER stress-Related 
genes by clusterprofiler R package [36, 37]. 
The enriched results for GO and KEGG analysis 
were visualized by the “ggplot2” package. 
Through gene set enrichment analysis (GSEA), 
we identified the signaling pathways and bio-
logical processes (BPs) in which DEGs between 
high-risk and low-risk subgroups were enriched 
(software.broadinstitute.org/gsea). 

Drug screening analysis

PRRophetic is an R package that uses tumor 
gene expression levels to predict clinical che-
motherapy responses [38]. The half-maximal 
inhibitory concentration (IC50) of compounds 
obtained from the Genomics of Drug Sensitivity 
in Cancer (GDSC) website. Using the pRRophet-
ic package in R software, we predicted the drug 
sensitive score of each sample from patients in 
the high-risk group and low-risk group. The sta-
tistical analysis was performed by Wilcox test 
with a P value less than 0.05 as the threshold. 
To visualize the conformation of drugs in 2D, 
PubChem online tool (https://pubchem.ncbi.
nlm.nih.gov/) was used. 

Tissue microarray (TMA) and immunohisto-
chemistry (IHC)

Human Tissue Microarrays (TMA) slides (HEso-
Squ180Sur-02), included 90 ESCC tissues and 
90 paired adjacent non-tumor tissues, which 
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were purchased from Shanghai Outdo Biotech 
Co., Ltd. TMA slides were dewaxed, dehydrated, 
endogenous peroxidase blocked, and were 
antigens retrieved according to standard pro- 
cedures. The sections were incubated with 
diluted SERP1 primary antibody (Proteintech, 
#17807-1-AP) at 4°C overnight and continuous-
ly with the anti-rabbit secondary antibody at 
37°C for 1 h. Immunohistochemical staining 
was evaluated based on the scoring system as 
previously described [39]. High or low expres-
sion was defined based on the score of < 6 and 
≥ 6, respectively. Use of the tissue microarrays 
complied with relevant regulations and was 
approved by the Ethics Committee of Xinxiang 
University. 

Results

Construction of ER stress-related mRNA and 
lncRNA co-expression modules by WGCNA

The flow chart shows the overall experimental 
design of this study (Figure 1). In order to iden-
tify the ER Stress-Related mRNA, we perform- 
ed WGNCA analysis based on the expression 
profile of 415 ER stress-related mRNAs from 
87 EC samples with the complete clinical data 
(Figure 2A). We selected the power of β = 16 
(scale-free R2 = 0.90) as the soft thresholding 
to construct a scale-free network (Figure 2B 

and 2C). Ultimately, there were 4 gene modules 
generated, and each one was represented in 
different color, including blue, brown, turquoise 
and grey (Figure 2D). As the brown module was 
the most relevant to the survival status, age 
and gender, we selected this module as candi-
date gene set for further research. 

Identification of ER stress-related hub genes

In order to obtain key genes used as a tumor 
marker for prognosis and potential target for 
the therapy of EC, we performed the hub gene 
analysis using cytohubba plug-in Cytoscape 
software. Firstly, we uploaded the gene list in 
brown module to STRING database and down-
load the analysis result of protein-protein inter-
action relationships (Figure 2E). Next, the top 
10 genes with the highest score of MCC and 
DMNC were identified, respectively (Figure 2F 
and 2G). Finally, after intersecting genes from 
these two methods, we screened out 6 genes 
as the hub genes including ERN1, ERN2, OS9, 
CLGN, ERLEC1 and DNAJB9 (Figure 2H). These 
hub genes might be potential biomarkers and 
new drug targets for EC. 

Identification of mRNA-lncRNA co-expression 
profiles 

In order to obtain the lncRNA highly correlated 
with ER stress-related mRNA, we first per-

Figure 1. A flowchart of the major steps in this study. WGCNA: Weighted Correlation Network Analysis. 
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formed univariate Cox regression analysis (P < 
0.05) with the 49 ER stress related genes 
belonging to the brown module and screened 
out 11 genes that were significantly associat- 
ed with the prognosis of EC patients in TCGA 
dataset (Figure 3A). Then, we carried out the 
lncRNA-mRNA correlation analysis with these 
11 mRNAs from the brown module and the 
total lncRNAs. With the threshold of correlation 
> 0.60 and P < 0.001, we obtained a network 
consisting 263 nodes and 821 connections, 
including 255 lncRNAs and 8 mRNAs (Supple- 
mentary Table 3). Subsequently, univariate Cox 
regression analysis was performed again with 
the lncRNAs in the network and 142 lncRNAs 
were obtained (Supplementary Table 4). We 
selected the top 11 significant lncRNA as repre-
sentative terms shown in Figure 3B. 

Construction of the prognostic model based on 
ER stress-related mRNA-lncRNA co-expression 
profiles

In order to construct the prognostic model  
and evaluate its performance, we divided the 
entire set randomly into training set and test 
set with a ratio of 1:1. Based on univariate  
Cox regression analysis with mRNA and lncRNA, 
we conducted the LASSO regression to build 
the ER stress-related mRNA and lncRNA prog-
nostic model for EC (Figure 3C, 3D). Then, we 
developed a prognostic model based on four 
mRNAs and five long noncoding RNAs. The risk 
score for each patient was calculated by the  
following formula: risk score = (0.75428 × 
SERP1) + (-0.13435 × LRRC8D-DT) + (-0.00630 
× AL133520.1) + (-0.09910 × T20-AS1) + 
(-0.16841 × U47924.2) + (-0.10655 × YTHDF3-
AS1) + (-0.20987 × TSPYL2) + (-0.03666 × 
PPP1R10) + (-0.06753 × ATP2A3). Based on a 
median risk score threshold, we classified EC 
patients into high- (n = 44) and low-risk (n = 45) 
groups. Next, we divided the patients in the 
training set into high-risk (n = 44) and low-risk 

groups (n = 45) according to the median of risk 
score. Patients were assigned to high-risk (n = 
50) and low-risk groups (n = 51) according to 
the threshold of the median risk score (Figure 
4A). EC Patients in the high-risk group were 
more likely to have a poor prognosis than tho- 
se in the low-risk group (Figure 4C). The heat-
map was used to visualize the expression lev-
els of the 9 ER stress-related mRNA and lnc- 
RNA in the high- and low-risk groups (Figure 
4E). Survival curves indicated that patients 
with EC in the high-risk group had a significantly 
lower survival probability compared to the 
patients in low-risk group (P < 0.05) (Figure 
4G). ROC analysis revealed that the area under 
the curves (AUCs) for 1-, 3-, and 5-year OS were 
0.711, 0.724, and 0.882, respectively (Figure 
4I). The density plots was plotted to appropri-
ately depict the distribution of low and high  
risk patients according to their survival time 
(Supplementary Figure 1A, 1B). These data 
suggested that our model has an acceptable 
capacity to predict the prognosis of EC patients. 

Validation of the prognostic model in test set

In order to validate the prognostic model in the 
test set, we calculated the risk score of each 
patient in the test set according to the same 
risk score formula we constructed. The patients 
in the test set were divided into the high-risk 
group (n = 50) and low-risk group (n = 38) 
based on the cutoff value of the training set 
(Figure 4B). The survival status and the heat-
map of these 9 prognostic genes in the test set 
are shown in Figure 4D, 4F. Consistent with the 
results of the training set, patients from the 
high-risk group in the test set showed a worse 
prognosis compared to the patients from the 
low-risk group (Figure 4H). Furthermore, ROC 
analysis revealed that the area under the 
curves (AUCs) for 1-, 3-, and 5-year OS were 
0.690, 0.756, and 0.959, respectively (Figure 
4J). These data suggested that our prognostic 

Figure 2. Network analysis of Weighted Correlation Network Analysis (WGCNA) and identification of hub gene. A. 
The dendrogram was produced by clustering dissimilarity from the colored blocks based on topological overlap. 
Modules are represented by the colored horizontal bars below the dendrogram. B. Scale-free fit indexes for various 
soft-threshold powers (β). C. Various soft-thresholding powers and their mean connectivity. D. Heatmap of module-
trait correlation. Abscissa represents clinical features and ordinate represents modules of different colors. Each 
cell displays the correlation coefficient and p-value associated with it. The blue, brown, turquoise and grey module 
were identified as clinical related modules. E. Protein-protein interactions (PPI) network of ER stress-related genes. 
F. Top 10 genes associated with ER stress as determined by the MCC (Maximal Clique Centrality) algorithm. G. Top 
10 genes associated with ER stress as determined by the DMNC (Density of Maximum Neighborhood Component) 
algorithm. H. Venn diagram showing the intersection of top 10 hub genes by MCC and DMNC algorithms.
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model could also accurately predict prognosis 
of EC patients from test set. 

Functional analysis of differentially expressed 
genes between high- and low-risk groups

To indicate the biological functions and path-
ways that were associated with the risk score, 
we obtained the differentially expressed genes 
between the high- and low-risk groups with a 
cutoff value of |log2fold change| > 1 and false 

discovery rate (FDR) < 0.05, including 34 up-
regulated genes and 517 down-regulated gen- 
es (Supplementary Table 5). Then, we per-
formed GO and KEGG enrichment analysis of 
these DEGs to identify the biological processes 
correlated with the risk score (Supplementary 
Table 6). GO enrichment analysis involving the 
biological process (BP) category indicated that 
these DEGs are predominantly associated with 
signal release, hormone transport and insulin 
secretion (Figure 5A, 5B). For the cellular com-

Figure 3. Identification of the endoplasmic reticulum (ER) stress-related mRNAs and lncRNAs by univariate Cox re-
gression and Lasso regression analysis in TCGA esophageal cancer cohort. (A) Univariate Cox regression analysis of 
ER stress-related mRNAs. (B) Univariate Cox regression analysis of ER stress-related lncRNAs. We selected the top 
11 significant lncRNA as representative terms shown in (B). (C) Partial likelihood deviance with changing of log (λ) 
plotted through LASSO Cox regression in 10-fold cross-validations. (D) Coefficients with changing of log (λ) plotted 
through LASSO Cox regression in 10-fold cross-validations. TCGA: The Cancer Genome Atlas. 

http://www.ajtr.org/files/ajtr0145040suppltab5.xlsx
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Figure 4. Correlation between the risk score and overall survival of EC patients in the training and test set. A. The 
distribution of risk scores in the training set. B. The distribution of risk scores in the validation set. C. The survival 
status of patients in the training set. D. The survival status of patients in the test set. E. Heat map of 9 genes ex-
pression in the training set. F. Heat map of 9 genes expression in the test set. G. Kaplan-Meier curves of survival in 
training set. H. Kaplan-Meier curves of survival in test set. I. Time-dependent receiver operating characteristic (ROC) 
curve of the risk score model for predicting 1, 3, and 5 years in training set. J. Time-dependent ROC curve of the risk 
score model for predicting 1, 3, and 5 years in test set. EC: Esophageal Cancer. 
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ponent (CC) category, enriched DEGs were 
mainly related to transport vesicle, synaptic 
vesicles and exocytosis vesicles. For the mo- 
lecular function (MF) category, enriched DEGs 
were largely related to G protein-coupled rece- 
ptor binding, hormone activity and neuropep-
tide receptor binding. KEGG pathway analysis 
showed that Insulin secretion, cAMP signaling 
pathway and dopamine synapses were signifi-
cantly enriched with the DEGs (Figure 5C, 5D). 

In the TCGA cohort, GSEA was used to analyze 
pathways significantly enriched in high-risk and 
low-risk groups. We found that high-risk groups 
were significantly enriched in proteasomes, 
starch and sucrose metabolism and pentose 
phosphate pathways. We found that low-risk 
populations were significantly enriched in neu-
roactive ligand receptor interactions, calcium 
signaling pathways, vascular smooth muscle 
contraction and mTOR signaling pathways 
(Figure 5E). GSEA results suggest that these 
pathways may contribute to EC involvement in 
tumorigenesis and the progression of these ER 
stress-related mRNAs and lncRNAs. 

Identification of independent prognostic indi-
cators 

To verify whether our prognostic model risk 
score could be an independent prognostic fac-
tor to predictor the prognosis of patients with 
EC, we performed univariate and multivariate 
Cox regression analyses in training set and test 
set. In the training set, the univariate and multi-
variate Cox regression analysis showed that 
Grade and risk score were independent prog-
nostic factors (Supplementary Figure 2A, 2B). 
In the test set, independent univariate regres-
sion analysis showed Age and risk Score we- 
re independent prognostic factors (Supple- 
mentary Figure 2C, 2D). ASNS, DNAJB9 and 
HERPUD1 are well known transcriptional ER 
stress markers. We also detected the possibili-
ty that these genes could be independent prog-
nostic factors. Interestingly, we found that 
these three genes were not associated with OS 
of EC patients from both training and test set 
(Supplementary Figure 2A-D). These data indi-
cated that the risk score calculated based our 
prognostic model was an independent prog-
nostic indicator in EC. 

Construction of nomogram and calibration 
curves

In order to accurately estimate survival for  
individual patients with EC, we established a 

nomogram to evaluate the survival probability 
at 1, 3, and 5 years based on risk scores  
and other clinicopathological characteristics 
(Figure 6A). Our results demonstrated that 
nomograms could serve as an effective tool for 
the prognostic evaluation of patients with EC. 
Moreover, calibration curves for OS indicat- 
ed that the predicted prognosis was in good 
agreement with the actual mortality at 1, 3, 
and 5 years (Figure 6B-D). These findings 
revealed that the nomogram we built could 
accurately assess the OS of patients with EC. 

Correlation between tumor immune cell infil-
tration and risk score

The CIBERSORT algorithm was performed to 
indicate the infiltration proportion of 22 types 
of immune cells in the high-risk and low-risk 
groups. As shown in Figure 7A and 7B, Barplot 
and heatmap showed the composition of 22 
subpopulations of immune cells in the high-risk 
and low-risk groups. Furthermore, the propor-
tion of TME cells in EC samples varies signifi-
cantly between high-risk and low-risk groups 
(Figure 7C). The fraction of B cells naïve was 
higher in the low-risk group than high-risk 
group. On the contrary, the proportion of mac-
rophage M1 in the low-risk group was higher 
than that in high-risk group (Figure 7C). In addi-
tion, to determine whether these significant 
results are caused by the separation of sam-
ples in low and high-risk groups, and not pro-
duced by random groups of patients, we per-
formed permutation tests. The results of the 
permutation test showed that only B cells naive 
had a P value < 0.05, while macrophage M1 
had a P value > 0.05 (Supplementary Table 7). 
The histogram of random permutation tests of 
mixed change proportions among naive B cells 
and M1 macrophages are shown in Supple- 
mentary Figure 3. These results confirmed that 
the proportion of B cells naive was higher in the 
low-risk group than high-risk group. 

Correlation between tumor microenvironments 
and risk score

To understand the immunological evaluation 
value of the model, we performed quantitative 
analysis of TME of tumors belonging to the 
high- and low-risk groups, respectively. We 
found that the immune score, stromal score, 
and ESTIMATE score of the low-risk group were 
significantly higher than those of the high-risk 
group (Supplementary Figure 4A, 4C, 4E). 

http://www.ajtr.org/files/ajtr0145040suppltab7.xlsx


ER stress-related prognostic model for EC

8074 Am J Transl Res 2022;14(11):8064-8084

Figure 5. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Set Enrichment Analy-
sis (GSEA) analysis of differentially expressed genes between the high- and low-risk groups. A. The bar plot of GO 
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Moreover, Kaplan-Meier survival curves dem-
onstrated that patients with a high score of 
immune score, stromal score or ESTIMATES 
cores exhibited a worse prognosis in compari-
son to those patients with a low score 
(Supplementary Figure 4B, 4D, 4F). These 
results reveal that the immune proportion in 
the tumor microenvironment is a key factor in 
the prognosis of patients with EC. 

Assessment of response of high-risk and low-
risk patients with EC to candidate drugs

To further evaluate the response of EC patients 
to candidate drugs in the high-risk and low-risk 

groups, we assessed the sensitivity score for 
each compound for each patient in the high-
risk and low-risk groups. We identified 23 com-
pounds with IC50 values that differed between 
the high-risk and low-risk groups (Supplemen- 
tary Figure 5). We chose the top four (OSI.906, 
BI-2536, Lenalidomide, Bicalutamide) of the 
most divergent compounds for analysis and 
permutation testing of them. The results  
of the permutation test showed that the P val-
ues of the four drugs were less than 0.001 
(Supplementary Table 8), demonstrating that 
our findings that came out of these four dru- 
gs are significant. Histograms of the permuta-

enrichment analysis. The top 5 terms were significantly enriched in GO categories for BP, CC, and MF, respectively. 
B. The circos plot of interconnection between GO terms and genes. C. The bubble plot for KEGG enrichment analy-
sis. D. The circos plot of interconnection between KEGG terms and genes. E. GSEA pathway enrichment of DEGs 
between high and low risk groups. DEG: Differentially Expressed Gene. 

Figure 6. Establishment of the nomogram to predict overall survival of esophageal cancer patients based on TCGA 
cohort. A. The nomogram for predicting survival proportion of patients in 1-, 2-, and 3-year. B-D. The calibration plots 
for predicting patient survival at 1-, 2- and 3-years. TCGA: The Cancer Genome Atlas. 

http://www.ajtr.org/files/ajtr0145040suppltab8.xlsx
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tion tests for the four drugs we placed in 
Supplementary Figure 6. In addition, using the 
PubChem website, 2D conformations of the 
four compounds with the most significant dif-
ferences in susceptibility between the high- 
and low-risk groups were visualized, including 
OSI.906 (Figure 8A), BI-2536 (Figure 8B), 
Lenalidomide (Figure 8C) and Bicalutamide 
(Figure 8D). Among them, IC50 values of 
BI-2536 (Figure 8B) and Bicalutamide (Figure 
8D) were higher in the low-risk group than in 
the high-risk group, while IC50 values of 
OSI.906 (Figure 8A) and Lenalidomide (Figure 
8C) were higher in the high-risk group than in 
the low-risk group. These data suggest that 
high-risk patients are more sensitive to BI-2536 
and Bicalutamide, whereas low-risk patients 
are more sensitive to OSI.906 and Lenalido- 
mide. 

The expression level of SERP1 was significant-
ly higher in EC tissues 

To verify the expression level of these genes 
used to construct a prognosis model, we evalu-
ated SERP1 protein expression in a tumor tis-
sue microarray (TMA) with 90 pairs of tumor 
and para-tumor tissues from patients with EC. 
High SERP1 protein expression was detected  
in 58.89% (53/90) of EC tissues, significantly 
higher than 21.11% (19/90) detected in adja-
cent noncancerous tissues (χ2 = 26.76, P < 
0.001). Consistent with the mRNA transcription 
levels, SERP1 protein expression level was sig-
nificantly elevated in tumor tissues relative to 
their paired non-tumor tissues (Figure 9). 

Discussion

EC usually has a poor prognosis with a five-year 
survival rate of less than 20%. Therefore, con-
struction of a robust prognostic model for pre-
dicting prognosis of patients is urgently need-
ed. lncRNAs play an important role in many 
biological processes, including tumorigenesis, 
cellular differentiation and metabolism [40].  
In recent years, these novel non-coding tran-
scripts have gained considerable attention 
because of their extensive and complicated 

roles in cancer migration and progression  
[41]. It has become possible to identify tens of 
thousands of lncRNAs across the mammalian 
genome using RNA sequencing technologies 
[42]. The prognostic models integrating lncRNA 
expression profiles with coding gene expres-
sion profiles have drawn increasing attention 
[43-47]. 

ER is a highly dynamic organelle where secret-
ed and transmembrane proteins are synthe-
sized, folded and modified [48]. ER stress is  
a cellular process that occurs when several 
stress circumstances occur in cancer cells or 
tumor microenvironment, such as the accu- 
mulation of unfolded or misfolded proteins, 
energy or nutrient depletion and disturbances 
in calcium homeostasis. In order to relieve ER 
stress in tumors or TME, cells in the tumor and 
stroma will activate an adaptive response, 
called UPR, that aims to restore ER homeosta-
sis [7, 48]. ER stress not only modulates tumor 
growth and anti-tumor immunity, but also plays 
an important role in cancer immunotherapy 
[49]. Although an EC prognostic model based 
on ER stress-related mRNA was established, 
the model integrated ER stress-related lncRNA 
and mRNA expression has not been reported. 
Therefore, it is necessary to establish a higher 
quality model based on the co-expression pro-
file of ER stress-associated mRNA-lncRNA in 
esophageal cancer to help clinical decision-
making in pursuit of individual patient care. 

In this study, we developed a reliable esopha-
geal cancer prognostic model based on ER 
stress-related mRNA-LncRNA co-expression 
profiles through univariate and LASSO regres-
sion analyses. These nine mRNA and lncRNAs 
were used to develop an ER stress-related 
prognostic model that plays an important role 
in progression and metastasis of many types of 
cancer. It has been reported that lncRNA 
AL133520.1 is defined as a protective effector 
in pancreatic cancer [50]. Additionally, another 
study reported lncRNA ST20-AS1 is identified 
as a protective gene in glioma [51]. These 
results are consistent with our results that 
AL133520.1 and ST20-AS1 have a higher 

Figure 7. The immune infiltration of 22 immune cell types in high and low risk patients with esophageal cancer. A. 
The comparison of the proportion of immune cells infiltrating in high- and low-risk patients. B. The heatmaps plot of 
immune cell infiltrating in high- and low-risk groups. C. The violin plot of immune cell infiltrating in high- and low-risk 
patients.
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expression level in the low-risk group compared 
with the how-risk group, respectively. YTHDF3-
AS1 was expressed highly in the high-risk group 
according to a model based on Ferroptosis-
Related lncRNAs in breast cancer, suggesting 
that this lncRNA might be a high-risk oncogene 
[52]. However, our study showed that YTHDF3-
AS1 exhibits the opposite effect in EC, suggest-
ing that the same gene may have a completely 
opposite role in different cancers. The underly-
ing mechanism needs to be studied in the 

future. SERP1 is a protein coding gene involved 
in preventing unfolded target proteins from 
degradation during ER stress [53]. It is suggest-
ed that SERP1 is a novel marker of poor prog-
nosis in pancreatic ductal adenocarcinoma and 
glioblastoma patients [54, 55], which is consis-
tent with our study. 

Next, we screened and identified six ER stress-
related hub genes: ERN1, ERN2, OS9, CLGN, 
ERLEC1 and DNAJB9. ERN1 (endoplasmic retic-

Figure 8. Drug sensitivity correlated with high- and low-risk patients in esophageal cancer. A. IC50 value of OSI.906 
in high- and low-risk patients with EC. B. IC50 value of BI-2536 in high- and low-risk patients with EC. C. IC50 value 
of Lenalidomide in high- and low-risk patients with EC. D. IC50 value of Bicalutamide in high- and low-risk patients 
with EC. IC50: Half Maximal Inhibitory Concentration; EC: Esophageal Cancer. 

Figure 9. Representative immunohistochemistry (IHC) staining of SERP1 in EC tissue microarrays (TMA). A, B. Rep-
resentative IHC staining of SERP1 in EC tissue. C, D. Representative IHC staining of SERP1 in normal esophageal 
tissue. 
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ulum requiring to nucleus signaling 1), also 
known as IRE1α (inosital-enzyme-1 α) is a 
transmembrane protein localized in the en- 
doplasmic reticulum that has both protein 
kinase and ribonuclease activities [56]. ERN1 
acts as an ER stress sensor, and it has been 
demonstrated that blocking the expression of 
ERN1 leads to reduced tumor growth by inhibit-
ing angiogenic and pro-proliferative processes 
[57]. ERN2 (endoplasmic reticulum requiring  
to nucleus signaling 2), also known as IRE1β 
(inosital-requiring enzyme-1 β), is a paralog of 
the ER sensor ERN1/IRE1α [58]. It has been 
shown that inhibition of ERN2 expression pro-
motes colorectal carcinogenesis [59]. Whereas 
DNAJB9 can suppress metastasis in triple-neg-
ative breast cancer by activating FBXO45 and 
decreasing ZEB1 levels [60]. These hub genes 
are likely to be new potential biomarkers and 
may provide new therapeutic targets for EC 
patients.

The tumor microenvironment, comprising im- 
mune cells and secreted chemokines, has 
important roles in the biological behavior of 
cancer [61]. Previous studies have shown that 
tumor cells may attract naive B cells into the 
tumor microenvironment, promoting tumor me- 
tastasis in breast cancer [62]. Our results 
showed that the fraction of naive B cells was 
significantly higher in the low-risk group com-
pared with low-risk group. The function of naive 
B cells in EC needs to be elucidated in the 
future.

KEGG pathway analysis showed that differen-
tial genes between high and low risk groups 
were significantly enriched for cAMP signaling 
pathways. cAMP plays a critical role in cell sig-
naling and regulates many physiological and 
pathological processes. Many studies have 
shown that ER stress is often accompanied by 
activation of the cAMP pathway [63-65]. cAMP 
regulates transcription of a variety of target 
genes primarily via protein kinase A (PKA), and 
aberrant cAMP-PKA signaling has been impli-
cated in various types of human tumors [66]. It 
has been shown that cAMP-PKA signaling can 
regulate the growth, migration, invasion and 
metabolism of cancer cells [66, 67]. However, 
in esophageal cancer, the cAMP signaling path-
way has not been fully investigated.

ER stress also plays an key role in promoting 
chemotherapeutic efficiency in various cancers 

[68]. There were 23 drugs with significant dif-
ferences between high-risk and low-risk groups 
according to estimated IC50s. OSI-906 has 
been found to inhibit colorectal cancer growth 
by increasing apoptosis in vivo and in vitro [69]. 
BI2536 inhibits tumor growth in vitro by block-
ing polo-like kinase 1 [70]. Bicalutamide is an 
effective drug that has been proved by FDA for 
the treatment of prostate cancer [71]. However, 
further studies are still needed to evaluate the 
effectiveness of these drugs in the treatment 
of EC. Our results may provide new insights into 
the treatment of patients with EC.

Validation of the prognostic model in external 
test set is an important part of evaluating its 
reproducibility and accuracy. In this study, we 
used ER stress-related mRNAs and lncRNAs to 
construct the prognostic models, which is dif-
ferent from the former prognostic model in EC. 
Furthermore, the prognostic model based on 
mRNA and lncRNA may not only provide new 
insight into survival-related biomarkers and 
therapeutic targets, but also offer a more accu-
rate prognostic prediction of EC patients and 
improving clinical decision-making for individu-
alized treatment. In order to validate our model 
in external test sets, we have to get an extra 
transcriptional set containing lncRNA profiling, 
mRNA profiling and survival data. However, to 
the best of our knowledge, we haven’t found  
a dataset meeting the demand for this to  
be analyzed. These transcriptional data sets 
(GSE179267, GSE137867, GSE103373, GSE- 
173475, GSE130078, GSE43732, GSE53624, 
GSE54995, GSE54994, GSE13937, GSE212- 
93) are all excluded either because they lack 
mRNA or lncRNA expression data. So we divid-
ed the TCGA set into internal train set and test 
set. Although the results of internal validation 
are not as solid as external validation, internal 
validation remains an effective method to veri-
fy the reproducibility of prognostic models as 
previous literature has mentioned [72-74]. Our 
model still has certain significance in offering 
biomarkers and therapeutic targets of EC and 
helping clinical decision-making. 

In this study, we used univariate and LASSO 
regression analyses to construct the prognos-
tic models [75-77]. Lasso regression has been 
widely used in the construction of prognostic 
model in various cancers in order to shrink mul-
ticollinearity and improve the accuracy of linear 
regression [78-84]. Although some mRNA or 
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lncRNA in our model may have certain correla-
tions, the prognostic model we constructed still 
has the positive value for predicting prognosis 
of EC patients.

This study needs to be improved in the future 
for the following reasons: first, external valida-
tion is still needed to verify the reproducibility 
of the prognostic model. Second, more re- 
search is needed to unravel the potential role 
of ER stress-related genes in EC.

Conclusion

In our study, we developed a prognostic predic-
tion model based on nine ER stress mRNA-
lncRNA co-expression signatures (LRRC8D-DT, 
AL133520.1, ST20-AS1, U47924.2, YTHDF3-
AS1, SERP1, TSPYL2, PPP1R10 and ATP2A3). 
Our study suggests that these nine ER stress-
related mRNAs and lncRNAs are potential bio-
markers for EC. Furthermore, 4 drugs closely 
related to the treatment of EC patients were 
also screened out. Our results may provide a 
reliable tool for clinicians to assess prognoses 
and make treatment decisions. 
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Supplementary Figure 1. Risk score and survival time distribution for low and high risk patients. Blue represents 
patients in low risk group (A), red represents patients in high risk group (B).
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Supplementary Figure 2. An independent prognostic analysis of clinical parameters and risk scores. A. The uni-
variate Cox regression analysis of the associations between the risk scores and clinical parameters and the OS of 
patients in training set. B. The multivariate Cox regression analysis of the associations between the risk scores and 
clinical parameters and the OS of patients in training set. C. The univariate Cox regression analysis of the associa-
tions between the risk scores and clinical parameters and the OS of patients in test set. D. The multivariate Cox 
regression analysis of the associations between the risk scores and clinical parameters and the OS of patients in 
test set. OS: Overall Survival. 
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Supplementary Figure 3. The Histogram plots show the permutation test results of naive B cells (A) and macrophage M1 (B). 
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Supplementary Figure 4. The immune microenvironment analysis of the high- and low-risk groups. A. The box plot 
shows the difference of immune scores between the low- and high-risk group. B. Kaplan-Meier curves of OS for 
the high-risk and low-risk groups according to the immune scores. C. The box plot shows the difference of stromal 
scores between the low- and high-risk group. D. Kaplan-Meier curves of OS for the high-risk and low-risk groups 
according to the stromal scores. E. The box plot shows the difference of ESTIMATE scores between the low- and 
high-risk group. F. Kaplan-Meier curves of OS for the high-risk and low-risk groups according to the ESTIMATE scores. 
OS: Overall Survival. 
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Supplementary Figure 5. Drug sensitivity correlated with high- and low-risk patients in esophageal cancer. 
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Supplementary Figure 6. The Histogram plots show the permutation test results of OSI.906 (A), BI-2536 (B), Lenalidomide (C) and Bicalutamide (D). 


