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Abstract: Cuproptosis is a newly described form of cell death. However, nothing is known about the roles of cupropto-
sis regulators in glioma. First, we explored the characteristics of cuproptosis molecular subtypes and relevant tumor 
microenvironment (TME) immune cell infiltration patterns in glioma. Using unsupervised clustering analysis, we 
identified two cuproptosis subtypes and three gene clusters that exhibited different clinical characteristics and TME 
cell infiltration patterns. Then, we developed and validated a cuproptosis-related prognostic model for predicting 
the overall survival of glioma patients. We established a risk score tool based on a nomogram to assess the clinical 
applicability of the cuproptosis model. A high cuproptosis risk score with high immune cell infiltration level, tumor 
mutation burden, gene alterations, and immunity activation had an unfavorable overall survival. Next, we identified 
possible competing endogenous ribonucleic acid regulatory networks based on significantly differentially expressed 
genes between high-risk and low-risk groups and screened several candidate small molecular compounds that may 
improve chemotherapy. Data from IMvigor and GSE78200 showed that the cuproptosis score affected the prognosis 
of patients who received immunotherapy. Our study indicated that cuproptosis regulators are involved in TME im-
mune infiltration and impact the clinical prognosis in glioma. It is necessary for clinical practice to develop different 
therapeutic strategies according to the different phenotypes associated with immune response. The present find-
ings provide new insight for improving immunotherapy strategies and individualized treatment in glioma.
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Introduction

Glioma is the most common intracranial malig-
nancy, accounting for approximately 50%-60% 
of all intracranial tumors [1]. Although great 
progress has been made in tumor cell biology 
and molecular biology in the last decades, the 
prognosis of patients with malignant glioma 
has not substantially improved [2]. Surgical re- 
section combined with radiation therapy and/or 
chemotherapy continues to be the standard for 
patients with malignant glioma [3]. It is very dif-
ficult to accurately evaluate and predict pro- 
gnosis using clinical characteristics such as 
age, pathologic grade, and recurrence [4]. Glio- 
ma is caused by the mutation and dysregula-
tion of multiple genes [5]. It is more beneficial 

to explore and identify novel genetic prognostic 
markers than to use pathologic classification 
alone; the former can avoid an inaccurate histo-
pathologic diagnosis and classification caused 
by glioma heterogeneity [6]. Accurately evaluat-
ing the prognosis of patients with glioma can 
help clinicians make decisions for individual-
ized treatment, which is of great clinical impor-
tance to improve treatment strategy and the 
ability to predict prognosis.

Recently, Peter et al. discovered a new mode of 
cell death that is dependent on copper ions in 
cells, known as cuproptosis, in which copper 
ions bind directly to fatty acylated constituents 
in the tricarboxylic acid cycle, resulting in abnor-
mal fat acylated protein aggregation and iron-
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sulfur protein loss. This process triggers pro-
teotoxic stress responses, causing cell death 
[7]. They also found that the cytotoxic ability of 
cupric ions on cells was not affected after treat-
ment with related inhibitors, which is very dif-
ferent from previously described programmed 
cell death such as necrosis, pyroptosis, apopto-
sis, and ferroptosis [8-12]. Cuproptosis shows a 
unique regulatory mechanism. Moreover, they 
screened cuproptosis regulators and found 
that Ferredoxin 1 (FDX1) and protein lipoylation 
were key regulators of cupric ion-induced cell 
death. Various modes of cell death are involv- 
ed in glioma tumorigenesis. Since cuproptosis 
is a new form of programmed cell death, noth-
ing is currently known about its functional role 
in tumors. At present, the immunotherapy of 
glioma still faces some challenges, including 
immunosuppression, difficulty in T cell recruit-
ment, and difficulty in drug delivery [13]. Ex- 
ploring the effect of cuproptosis on glioma 
immune regulation may provide a new immu- 
notherapy strategy for glioma. In the present 
study, we first identified two discrete cupropto-
sis subtypes based on the expression levels of 
cuproptosis genes and explored the immune 
landscape of the two cuproptosis subtypes. 
Then, we further classified glioma patients into 
three gene subtypes based on differentially 
expressed genes (DEGs) between the two cu- 
proptosis subtypes. Subsequently, we devel-
oped and validated a prognosis signature for 
predicting overall survival in patients with glio-
ma and profiled the immune landscape using a 
cuproptosis risk score. Finally, we assessed the 
effect of the cuproptosis score on immunother-
apy. Our study provides new insight about glio-
ma progression and immune regulation. 

Materials and methods

Data sources

The gene expression and relevant clinical ch- 
aracteristics and survival data were obtained 
from two databases: The Cancer Genome At- 
las (TCGA) and Chinese Glioma Genome Atlas 
(CGGA). The gene expression profiles of the two 
datasets were adjusted and quantitatively-nor-
malized. The clinical characteristics included 
age, gender, grade (TCGA), isocitrate dehydro-
genase (IDH) mutation, 1p19q codeletion sta-
tus, grade, histology, primary recurrence, sec-
ondary, chemotherapy, and radiotherapy sta- 

tus. Data without follow-up outcomes were 
excluded when we performed survival analy-
ses. Cuproptosis-related genes were obtained 
from a recent study [7], and the lists of cupro-
ptosis genes are provided in Table S1. 

Gene alteration, copy number variation, meth-
ylation, and immune subtypes were also ob- 
tained from TCGA. Tumor mutation burden 
(TMB, n = 10114) were calculated according  
to the pan-cancer single-nucleotide variation 
profiles. Ethics approval was not applicable 
because all data were obtained from a public 
platform. 

Identification of molecular subtypes and gene 
set variation analysis

We used the consensus clustering method for 
cuproptosis clustering and gene clustering 
based on DEGs from cuproptosis clusters (|log 
fold change (FC)| > 1.5, P < 0.05), and this 
method allowed negative values in gene expr- 
ession profiles. Principal component analysis 
(PCA) was further used for the discrete distribu-
tion of clusters. We performed gene set varia-
tion analysis (GSVA) using the R “GSVA” and 
“GSEABase” packages [14, 15]. 

Differential expression and enrichment analy-
sis

We used the R “limma” package for DEG analy-
sis between tumor and normal samples. We 
carried out gene set enrichment analysis 
(GSEA) for DEGs using the GSEA version 4.2.3 
software from the online database (http://
www.gsea-msigdb.org/gsea/index.jsp). GO fun- 
ction and Kyoto Encyclopedia of Genes and 
Genomes (KEGG) pathway enrichment analy-
ses were performed using the R “clusterProfil-
er” package and the org.Hs.eg.db dataset. We 
built the protein-protein interaction (PPI) using 
the STRING (https://cn.string-db.org/) online 
database [16]. 

Development and validation of a cuproptosis 
prognostic model 

The cuproptosis risk score was calculated for 
each sample. First, we performed univariate 
Cox regression analysis in the CGGA training 
set and identified overall survival (OS) progno-
sis-related cuproptosis regulators. Secondly, 
we performed Lasso regression using the R 
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“glmnet” package to minimize the risk of over-
fitting and identified the optimal number of 
genes included in the final prognostic model. 
We further calculated the cuproptosis risk 
score of each sample using the formula: 
Cuproptosis risk score = gene1expression * coeffi-
cient1 +…+ genenexpression * coefficientn. The risk 
scores of the TCGA validation dataset were al- 
so calculated. Patients were divided into high-
risk and low-risk groups according to the medi-
an risk score in CGGA. Kaplan-Meier analysis 
was performed to compare the OS curve of the 
two risk groups using the TCGA and CGGA data-
sets, followed by PCA to visualize the risk distri-
bution of patients. Finally, we evaluated the 
predictive ability of the cuproptosis score by 
calculating the areas under the curve (AUC) at 
different time points, which were shown using 
receiver operating characteristic (ROC) curves. 
We used the alluvial diagram to represent 
changes in cuproptosis subtypes, gene clus-
ters, cuproptosis risk groups, and survival out- 
comes.

Tumor microenvironment, immune infiltration, 
and tumor mutation burden

The ESTIMATE algorithm was used to evaluate 
the immunologic and stromal scores of each 
sample. Immune cell infiltration levels in glioma 
samples were also evaluated. Immune check-
point-related genes and function were also  
analyzed among different cuproptosis clusters 
and risk groups. The correlations of immune 
infiltration levels and tumor mutation burden 
(TMB) with cuproptosis score were evaluated 
using the Pearson method. TMB was also com-
pared between the two risk groups. 

CeRNA, gene alteration, and methylation 
analysis

Using |logFC| > 0.5, P < 0.05, we screened the 
differentially expressed mRNA, lncRNA, and mi- 
RNA, and built the lncRNA-mRNA-miRNA regu-
lation network. Methylation and gene mutation 
levels and copy number variation (CNV) were 
also evaluated between the two risk groups. 

Clinical relevance and risk scoring system

To investigate the clinical applications of the 
cuproptosis score in glioma, we first evaluated 
the correlations of cuproptosis risk score with 
clinical parameters. Then, were conducted Cox 

regression analyses to determine whether the 
cuproptosis score is an independent prognos- 
tic predictor. A predictive nomogram tool was 
established using the “rms” package. We could 
match a score for each variable and calculate 
the sum score of all variables. Calibration plots 
were used to depict the difference between  
the predicted and observed values, which can 
assess the stability of the scoring system. 

Drug sensitivity and immunotherapy 

Data were obtained from the Genomics of Drug 
Sensitivity in Cancer (GDSC) database. IC50  
of 746 (GDSC: 265) small molecules in 1861 
(GDSC: 860) cell lines were collected along with 
their mRNA expression data from the databas-
es. Pearson correlation coefficients were calcu-
lated to assess the level of correlation between 
drug IC50 and mRNA expression, as previously 
employed by Rees et al. [17]. False discovery 
rate-adjusted P values were obtained. A posi-
tive correlation indicated drug resistance. We 
used two immunotherapy cohorts, including 
IMvigor and GSE78220, to validate the effect  
of cuproptosis score on immunotherapy.

Statistical analysis

For other continuous variables, Mann-Whitney 
U or Kruskal-Wallis H test was used. Category 
variables were expressed as count and per-
cent, and the Chi-square test was used to com-
pare the two risk groups. The survival curve 
comparison used the log-rank test. All analyses 
were completed using R software. P value < 
0.05 was considered significant (two sides).

Results

Identification of cuproptosis subtypes in 
glioma

This study consisted of 13 cuproptosis genes. 
The overall flow diagram of data analyses is 
presented in Figure 1. First, we built a PPI  
network, which indicated complex connections 
among these cuproptosis regulators, and GC- 
SH, DLST, PDHA1, LIPT1, and DLD were the top 
5 hub genes (Figure 2A). Second, we evaluated 
the expressions of cuproptosis genes between 
tumor and normal samples and found that 
FDX1, LIPT1, GCSH, DLST, SLC31A1, ATP7A, 
and ATP7B were upregulated, and PDHA1 was 
downregulated in tumor tissues (Figure 2B, 
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Figure 1. Flow diagram of the whole data analyses.

2C). The gene alteration analysis indicated that 
the main gene alterations of cuproptosis regu-
lators were missense and nonsense mutations. 
The frequency of ATP7A mutation was 1%, and 
that of other genes was zero (Figure 2D). The 
copy number variation results showed that DLD 
had higher gain frequency, while the other 
genes had higher loss frequencies (Figure 2E, 
2F). 

Pearson analysis showed positive correlations 
among most of the cuproptosis genes, and  
several negative associations among genes 
were also observed, such as FDX1-ATP7B, 
GCSH-ATP7A, ATP7B-LIPT1, ATP7A-PDHB, and 
FDX1-PDHA1 (Figure 3A). 

DLD, LIPT1, FDX1, ATP7A, SLC31A, DLAT, DLST, 
AND, and GCSH were risk factors for overall 
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Figure 2. Landscape of cuproptosis regulators. A: Protein-protein interaction network among cuproptosis regulators. 
B: Expression of cuproptosis genes between normal and tumor samples. C: Principal component analysis indicated 
the distributions of tumor and normal tissues. D: Frequency of cuproptosis genes. E: Location of cuproptosis regula-
tors in chromosomes. F: Copy number variation (CNV) frequency of cuproptosis regulators in TCGA (Gain and Loss).

survival in glioma, while DBT, LIAS, ATP7B, 
PDHB, and PDHA1 were favorable factors for 
prognosis (Figure 3B).

To explore the molecular subtype of cupropto-
sis in glioma, 629 glioma samples that ex- 

pressed 13 cuproptosis-related genes were 
evaluated using unsupervised clustering analy-
sis. As shown in Figure 3C, two distinct clu- 
sters were obtained: A, B. Cluster A consisted 
of 450 samples, and cluster B consisted of  
224 samples. PCA indicated a clear and sharp 
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Figure 3. Molecular clusters of gliomas based on cuproptosis genes. A: The correlations among 13 cuproptosis 
genes. B: Correlations of cuproptosis regulators with prognosis. C: The consensus matrix indicated the optimal 
number (k = 2) of clustering in TCGA. D: Principal component analysis showed clear and sharp distributions of two 
cuproptosis clusters. E: The Kaplan-Meier curve indicated that the two subtypes had different survival outcomes. 
F: Heatmap showed the correlations of cuproptosis cluster with clinical measures and cuproptosis regulator ex-
pression. G: Heatmap of GSVA identified differential pathways of the two cuproptosis clusters. H-K: Differences of 
stromal score, immune score, estimate score, and tumor purity of the two cuproptosis clusters. L, M: Immune cell 
infiltration levels of the two cuproptosis clusters. N: Expression of immune checkpoint genes of the two cuproptosis 
clusters.

distribution for two cuproptosis clusters (Figure 
3D). Kaplan-Meier analysis revealed that cu- 
proptosis cluster 1 had a favorable prognosis, 
while Cluster 2 had a poor prognosis (Figure 
3E). A clinical correlation analysis indicated 
that age and survival outcome were signifi- 
cantly different in the two clusters (Figure 3F). 
Among these cuproptosis regulators, PDHB, 
LIPT1, SLC31A1, GCSH, FDX1, DLST, DLAT, 
DLS, and ATP7A were significantly elevated, 
while ATP7B was reduced in cluster A (Figure 
S1).

Biological function and immune infiltration in 
cuproptosis subtypes

To explore biological function, we performed 
GSVA between cuproptosis clusters A and B. 
GSVA revealed that cuproptosis cluster A was 
mostly concentrated on olfactory transduction, 
while cluster B was mainly concentrated on 
metabolism, mismatch repair, DNA replication, 
cell cycle, and the p53 pathway (Figure 3G).  
We further explored the immune characteris-
tics of the two cuproptosis clusters. The stro-
mal, immune, and estimate scores in cluster B 
were significantly higher than those in cluster A 
(Figure 3H-J), while the tumor purity of cluster B 
was markedly lower than that of cluster A 
(Figure 3K). We also found that cluster B had 
higher CD8+ T cells, iDCs, macrophages, mast 
cells, pDCs, Tfh, and Th2 cells than cluster A 
(Figure 3L). Immune function measures were 
all higher in cluster B than in cluster A (Figure 
3M). Levels of immune checkpoint-related 
genes were compared between the two cupro-
ptosis clusters, and the results indicated that 
cluster B had a higher immune background 
than cluster A (Figure 3N). Therefore, cluster B 
was called hot tumor, while cluster A was call- 
ed cold tumor. Coupled with the prognosis and 
immune content of glioma patients, the cupro-
ptosis clustering could successfully classify the 
glioma patients. Finally, we explored the corre-
lations of cuproptosis-related genes with pro-
grammed cell death-Ligand 1 (PD-L1) (Figure 

S2A) and found that PD-L1 was positively as- 
sociated with PDHB, DBT, DLST, DLS, DLAT, 
FDX1, SLC31A1, and ATP7A (P < 0.001), and 
PD-L1 was significantly upregulated in cupro-
ptosis cluster 2 (Figure S2B).

Identification of gene clusters

To explore the molecular characteristics of  
different cuproptosis clusters, we performed 
unsupervised cluster analysis on all the glioma 
patients based on 4,945 DEGs, and then all the 
glioma patients were categorized into three dif-
ferent clusters (A: n = 266; B: n = 147, C: n = 
216). PCA confirmed the result of the unsuper-
vised cluster analysis (Figure 4A, 4B). Kaplan-
Meier analysis indicated that gene cluster B 
had better prognosis, while gene cluster C had 
worst prognosis (Figure 4C). The cuproptosis-
related genes PDHA1 and PDHB were signifi-
cantly upregulated in gene cluster B; LIAS, 
ATP7B, and ATP7A were upregulated in gene 
cluster A; and LIPT1, SLC31A1, FDX1, DLST, 
DLAT, and DLD were upregulated in gene clus-
ter C (Figure 4D). We investigated the correla-
tions of cuproptosis clusters with gene clusters 
and clinical characteristics, and highly signifi-
cant distributions were observed (Figure 4E, 
4F). 

Then, we analyzed the immune content differ-
ences among the different gene clusters. The 
results indicated that gene cluster C had the 
highest stromal, immune, and estimate scor- 
es, followed by gene cluster A, while gene clus-
ter B had the lowest (Figure 4G-I). On the con-
trary, gene cluster B had the highest tumor 
purity level, followed by gene cluster A, while 
gene cluster C had the lowest (Figure 4J). 
Furthermore, gene cluster C had the highest 
immune infiltration level, while gene cluster B 
had the lowest (Figure 4K). Similarly, gene clus-
ter C showed the highest levels in immune-
related checkpoint genes, inhibition, stimula-
tion, and inflammation promotion, followed by 
gene cluster A, while gene cluster B showed  
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Figure 4. The gene clustering based on DEGs in the two cuproptosis clusters. (A, B) PCA and t-SNE indicated three 
gene clusters (A-C). (C) The Kaplan-Meier curve showed the overall survival of the three gene clusters. (D) Cupro-
ptosis-related gene expression levels among the three gene clusters. (E) Heatmap showed the correlations of cu-
proptosis subtypes with clinical characteristics, gene clusters, and cuproptosis-related genes. (F) Alluvial diagram 
showing the changes of cuproptosis subtypes, gene clusters, and survival outcomes. (G-J) Comparisons of stromal, 
immune, estimate scores, and tumor purity among the three gene clusters. (K-M) Immune cell, immune functions, 
and immune-related checkpoint expression levels among the three gene clusters. (N-P) GSVA for gene cluster (A, 
B), (A-C) and (B, C).
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the lowest (Figure 4L, 4M). Gene cluster C had 
a higher immune content level and was con-
sider as an immune-inflamed phenotype, gene 
cluster A had a low immune content level and 
was considered as an immune-excluded phe-
notype, and gene cluster B had the lowest 
immune content level and was considered as 
an immune-desert phenotype. 

GSVA revealed that gene cluster A was mainly 
enriched in olfactory transduction, oxidative 
phosphorylation, and butanoate and pyruvate 
metabolism (Figure 4N). Gene cluster B was 
mainly enriched in alpha linolenic acid metabo-
lism, taste transduction, long-term depression, 
ascorbate and adorate metabolism, olfactory 
transduction, and steroid hormone biosynthe-
sis (Figure 4O). Gene cluster C was mainly 
enriched in mismatch repair, DNA replication, 
homologous recombination, N glycan biosyn-
thesis, cell cycle, and p53 signaling pathways 
(Figure 4P). 

The GO and KEGG analyses suggested that 
there were significant differences in neutro- 
phil degranulation and activation involved in 
immune response, focal adhesion, antigen pro-
cessing, and molecular binding; proteoglycans; 
spliceosome; cell cycle; carbon metabolism; 
and DNA replication between the two cupropto-
sis subtypes (Figures S3, S4).

Development and validation of a cuproptosis 
prognostic model

We identified 10 prognosis-related cuproptosis 
genes using univariate Cox regression (Figure 
5A). The LASSO regression obtained the opti-
mal number of genes in the prognostic model 
(Figure 5B, 5C). Finally, nine cuproptosis genes 
entered the prognostic signature (six risk-asso-
ciated genes and three protective genes for 
OS). We obtained each cuproptosis risk score: 
cuproptosis risk score = 0.804 * ATP7A - 0.386 
* ATP7B - 0.377 * DLAT + 0.135 * DLST + 
0.793 * FDX1 - 0.992 * GCSH - 0.264 * LIAS + 
0.224 * LIPT1 + 0.705 * SLC31A1 (Table S2). 
The patients were divided into cuproptosis 
high- and low-risk groups according to the 
median cuproptosis score from the CGGA 
cohort. Survival analyses indicated that the 
high-risk group had a poorer prognosis than  
the low-risk group in the CGGA and TCGA data-
sets (Figure 5D, 5E, 5G, 5H), and PCA also  
confirmed these findings (Figures S5, S6). The 
time-dependent ROC curves showed that the 

AUCs of cuproptosis risk score for predicting 
1-year, 2-year, and 3-year OS were 0.692, 
0.756, and 0.754 in CGGA, and 0.773, 0.766, 
0.784 in TCGA, respectively (Figure 5F-I). We 
also investigated the effects of clinical mea-
sures and treatment on OS in patients with gli-
oma, and the stratified analyses further con-
firmed the results (Figure S7A-T).

Cuproptosis cluster B had a higher risk score 
(Figure 5J), and the cuproptosis score risk 
group was associated with age, gender, grade, 
chemotherapy status, 1p19q codeletion sta-
tus, and IDH mutation status (Figure S8A). The 
cuproptosis GCSH, ATP7B, and LIAS genes 
were negatively associated with cuproptosis 
risk score, and ATP7A, DLAT, DLST, FDX1, LIP- 
T1, and SLC31A1 were positively associated 
with cuproptosis risk score (Figure S8B). The 
risk score of patients with WHO III, recurrent, 
IDH wildtype, 1p19q non-codeletion, and che-
motherapy was also higher (Figure S8C-H). We 
also observed significant differences in cupro-
ptosis risk score among the three gene clus-
ters. Gene cluster C had the highest risk score, 
followed by gene cluster A, while gene cluster B 
had the lowest risk score (Figure 5K). Fur- 
thermore, the percentages of high-risk patients 
also showed significant differences in different 
cuproptosis subtypes and gene clusters (Fi- 
gure 5L). They were 59% vs 41% for the cu- 
proptosis subtypes, 18% in gene cluster A, and 
41% in gene cluster C (P < 0.001) (Figure 5M). 
Alluvial diagram further showed the changes in 
cuproptosis subtypes, gene clusters, cupropto-
sis risk groups, and survival outcomes (Figure 
5N). 

Biological function and immune infiltration in 
different cuproptosis risk groups

We performed DEG analysis between the two 
risk groups and identified 42 DEGs in CGGA 
and 721 DEGs in TCGA. GO enrichment analy-
sis indicated that the high-risk group was main-
ly enriched in extracellular matrix, structure, 
collagen fibril organization, B cells and its re- 
ceptor signaling pathway, extracellular matrix 
structural constituents, and immunoglobulin 
receptor binding (Figure S9). KEGG pathway 
analysis showed that the high-risk group was 
enriched in extracellular matrix-receptor inter-
action, protein metabolism, p53 pathway, PI3K-
Akt pathway, toll-like receptor pathway, hypox-
ia-inducible factor-1 pathway, NOD-like recep- 
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Figure 5. Building and validation of the prognostic model based on cuproptosis-related genes. A: Univariate Cox 
regression in the Chinese Glioma Genome Atlas (CGGA) cohort. B, C: Least absolute shrinkage and selection opera-
tor regression. D, E: Overall survival curves of two risk groups in CGGA. F: ROC curves of risk score in CGGA. G, H: 
Overall survival curves of two risk groups in TCGA. I: Receiver operating characteristics curve (ROC) of risk score in 
TCGA. J, K: Comparison of cuproptosis risk score for different cuproptosis and gene clusters. L, M: Ratio distribu-
tions of cuproptosis and gene clusters between cuproptosis risk groups. N: Alluvial diagram showing the correlations 
of cuproptosis clusters, gene clusters, and risk groups with survival outcomes.
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tor pathway, and tumor necrosis factor path- 
way (Figure S10). Then, we built the lncRNA-
miRNA-mRNA network by screening 731 DEGs, 
78 lncRNAs, and 197 miRNAs between the two 
risk groups (Figure S11). We identified the 
FAM181A-AS1/miR-200a/EPHA2/DPY19L1 re- 
gulation axis according to the prognosis- 
related lncRNAs, mRNA, and miRNA (Figures 
S12, S13).

We further evaluated the immune content of 
different risk groups. Our results indicated that 
the high-risk group had higher stromal, immune, 
and estimate scores than the low-risk groups 
(Figure 6A-C), and the corresponding tumor 
purity level was low in the high-risk group 
(Figure 6D). We also observed a difference in 
the distribution of immune subtypes in the dif-
ferent risk groups. The high-risk group percent-
age was 1% of C3, 53% of C4, and 46% of C5, 
while the low-risk group percentage was 2% of 
C3, 12% of C4, and 54% of C5 (Figure 6E). The 
high-risk group was highly infiltrated by B ce- 
lls, T cells, neutrophils, macrophages (M0, M1, 
M2), myeloid dendritic cells, and cancer-associ-
ated fibroblasts (Figure 6F). The low-risk group 
was mainly enriched in monocytes, mast cells, 
and NK cells. Moreover, macrophages (M0, M1, 
M2), neutrophils, naïve B cells, memory acti-
vated CD4 T cells, CD8 T cells, and gamma 
delta T cells were found to be positively associ-
ated with risk score, while monocytes, activat-
ed NK cells, eosinophils, and activated mast 
cells were negatively associated with risk score 
(Figure 6G). The high-risk group also showed 
higher scores in multiple immune functions 
(Figure 6H). All immune checkpoint-related ge- 
ne expressions showed an increasing trend in 
the high-risk group (Figure 6I). A markedly posi-
tive association between PD-L1 and risk score 
was also observed (Figure S14). The high cu-
proptosis risk score had an elevated immune 
background in glioma.

Relationship between cuproptosis risk score 
and TMB, CNV, methylation, and mutation

Further analyses indicated that cuproptosis 
risk score was positively associated with tu- 
mor mutational burden (TMB) (Figure 7A, 7B). 
We further evaluated the CNV level of cupropto-
sis regulators and found higher low-risk muta-
tion frequencies in FDX1, LIPT1, and DLAT 
(Figure 7C). The methylation levels of the high-
risk group were also elevated in DLD, DLAT, 

PDHB, and ATP7B, while the methylation level 
was low in DBT (Figure 7D). Then, we evaluated 
the overall gene alterations of different risk 
groups. According to the results, the high-risk 
group had higher gene alterations in TP53, 
TTN, ATRX, PTEN, PIK3CA and FLG. The low-risk 
group had higher gene alterations in IDH1,  
CIC, IDH2, and DNMT3A (Figure 7E, 7F) and 
was similar in variant classification to the low-
risk group (Figure S15A, 15B). The high-risk 
group showed more co-occurrence pairs (Figure 
S15C, 15D).

Independent analysis and nomogram predict-
ing system

To validate whether cuproptosis score was in- 
dependently associated with prognosis in glio-
ma, we conducted univariate and multivariate 
Cox regression in the CGGA and TCGA cohorts, 
respectively. Both results indicated that cupro-
ptosis score was positively related to poor OS in 
glioma (CGGA: HR 2.818, 95% CI: 2.411-3.294, 
Figure 8A; TCGA: HR 1.455, 95% CI: 1.216-
1.742, Figure 8B). Similar results were con-
firmed in TCGA (Figure 8C, 8D). Then, we evalu-
ated the fitting lines between predicted values 
and observed values at three OS time-points 
using calibrations plots (CGGA: Figure 8E-G; 
TCGA: Figure 8H-J), and the plots showed good 
fitting efficiency. Moreover, we built a nomogr- 
am tool using the cuproptosis risk score and 
clinical characteristics and found that the 
1-year, 3-year, and 5-year OS rates were 96.1%, 
89.2%, and 48.4%, respectively (Figure 8K). 
The multiple time-dependent ROC curves sh- 
owed that cuproptosis risk score has the best 
predictive ability for 5-year OS in patients with 
glioma (AUC = 0.782, Figure 8L).

Correlations of cuproptosis risk score with che-
motherapy sensitivity and immunotherapy 

First, we screened some different risk groups 
that underwent chemotherapy. The IC50 of 
axitinib was high in the high-risk group, indicat-
ing that the high-risk group might have had che-
motherapy resistance. The IC50 of AKT inhi- 
bitor VIII, A.770041, roscovitine, vinorelbrine, 
docetaxel, rapamycin, pyrimethamine, metfor-
min, blenomycin, cisplatin, roscovitine, and sa- 
lubrinal were significantly decreased in the 
high-risk group compared to the low-risk group, 
indicating that patients in the high-risk group 
were sensitive to this chemotherapy (Figure 
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Figure 6. Tumor microenvironment and immune infiltration in different risk groups. A-D: Stromal score, immune 
score, estimate score, and tumor purity in the the high- and low-risk groups. E: Risk scores of different immune 
subtypes. F: Immune infiltration levels from different calculation methods in the two risk groups. G: Immune func-
tion differences in the two risk groups. H: Immune subtypes in the two risk groups. I: Expression levels of immune 
checkpoint genes in the two risk groups.
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Figure 7. Tumor mutation burden, copy number mutation, methylation, and gene mutation profiling in the two risk 
groups. A: Tumor mutation burden in the two risk groups. B: The correlation of cuproptosis risk score with tumor 
burden mutation level. C: CNV levels of cuproptosis-related genes in the two risk groups. D: Methylation levels of 
cuproptosis-related genes in the two risk groups. E, F: Gene mutation profiling of the two risk groups.

9A-L). We further evaluated the effect of cu- 
proptosis score on immunotherapy in the 
IMvigor and GSE78200 datasets and found 
that a high cuproptosis score led to an unfavor-

able prognosis in the IMvigro cohort (Figure 
9M). In contrast, the GSE78200 cohort show- 
ed that a high cuproptosis score led to a favor-
able prognosis (Figure 9N). These results need  
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Figure 8. Independent correlation analysis. A, B: Univariate and multivariate Cox regression of cuproptosis score in 
CGGA. C, D: Univariate and multivariate Cox regression of cuproptosis score in TCGA. E-G: Calibration plots of risk 
score at 1-, 3-, and 5-year in the CGGA. H-J: Calibration plots of risk score of OS at 1, 3, and 5 years in the TCGA 
cohort. K: Nomograph predicting overall survival probabilities based on cuproptosis score. L: Predictive ability of 
cuproptosis score and clinical measures for 5-year overall survival.
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Figure 9. Correlations of risk score with chemotherapy sensitivity and immune therapy. A-L: The IC50 of axitinib, AKT 
inhibitor VIII, A.770041, roscovitine, vinorelbrine, docetaxel, rapamycin, pyrimethamine, metformin, blenomycin, 
cisplatin, and salubrinal in the two risk groups. M, N: Effect of cuproptosis score on immunotherapy in the IMvigor 
and GSE78200 datasets.

to be verified in a large sample. Overall, we  
found that cuproptosis regulators can affect 
immunotherapy. 

We identified 16 small molecular compounds 
associated with signature genes included in 
the cuproptosis risk score using the CMap-02 
tool. These molecules included the following 
resistance pairs: ATP7A-Acetalax, DLAT-Evero- 
limus, ATP7B-Ifosfamide, DLAT-Staurosporine, 
LIPT1-Everolimus, ATP7A-Dasatinib, ATP7A-Tri- 
ciribine phosphate, SLC31A1-Denileukin, Difti- 

tox, and Ontak; and sensitivity pairs: ATP7A-
Ethinyl estradiol, GCSH-Chelerythrine, LIAS-Pa- 
lbociclib, ATP7A-Estramustine, ATP7B-E-7820, 
GCSH-Palbociclib, LIAS-Nelarabine, LIAS-Che- 
lerythrine (Figure S16A-P). 

Discussion

In the current study, we first investigated the 
clinical significance and immunological fea-
tures of cuproptosis molecular patterns in glio-
ma. Then, we developed a cuproptosis risk 
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score tool to assess the prognosis of each 
patient, and further evaluated the correlations 
of cuproptosis score with immune content,  
clinical characteristics, gene alterations, and 
potential chemotherapy. Finally, we found that 
the cuproptosis score could affect immunother-
apy response. Our study elucidates the role of 
the cuproptosis molecular pattern and its tu- 
mor microenvironment (TME) cell infiltration 
profile in glioma and provides insight about the 
TME anti-tumor immune response as a basis 
for developing immunotherapy for glioma. 

Patients with glioma could be categorized into 
two different subtypes based on the expression 
of cuproptosis genes, and there was a marked 
difference in TME infiltration levels. Cuproptosis 
cluster 2 showed a higher immune cell infiltra-
tion and stromal score, which was considered 
“cold” tumor, while cluster 1 had lower immune 
infiltration levels [18-21]. Furthermore, cluster 
2 was mainly enriched in mismatch repair, DNA 
replication, cell cycle regulation, primary im- 
munodeficiency, and p53 pathway, which are 
important in tumorigenesis [22-25], whereas 
cluster 1 was mainly enriched in olfactory tr- 
ansduction. Patients from cluster 2 had a poor-
er prognosis than those in cluster 1. Results 
from the consensus clustering also indicated 
that two distinct components were obtained, 
suggesting that cuproptosis molecular patterns 
exert a strong impact on TME immune charac-
teristics in glioma. We further explored the 
characteristics of transcriptome levels between 
cuproptosis subtypes. We obtained three gene 
clusters from DEGs between the two cupropto-
sis subtypes using consensus clustering analy-
sis. The survival curve indicated that the prog-
nosis of gene cluster C was the worst among 
the three gene clusters, followed by cluster A. 
Cluster B had a better prognosis. Clusters B 
and C showed higher immune infiltration and 
stromal levels and were called “hot” tumors, 
while cluster A had the lowest immune stromal 
level, so was considered as “cold” tumor. These 
results indicate that we may develop different 
therapy strategies for different phenotypes of 
glioma using cuproptosis regulator patterns. 

Previous studies had established different 
types of programmed cell death-related risk 
score models in glioma [26-32]. We first built a 
cuproptosis risk score tool based on nine cup- 
roptosis regulators. This cuproptosis risk score 

showed a close correlation with the cuproptosis 
subtype and gene cluster. The risk score of 
cluster 2 was higher than that of cluster 1, 
while the risk scores of gene clusters B and C 
were higher than that of cluster A. The high-risk 
group also had immune infiltration and stromal 
levels, and the expressions levels of immune 
checkpoint-related genes (such as PD-L1) were 
also significantly elevated. Positive correlations 
of cuproptosis risk score with some immune 
cells such as macrophages, neutrophils, naïve 
B cells, activated CD4 memory T cells, CD8 T 
cells, and gamma delta T cells were also ob- 
served. These immune cells and function were 
associated with high immune content [33, 34]. 
The cuproptosis high-risk group a had poorer 
prognosis than the low-risk group, which was 
consistent with the results of cuproptosis sub-
types and gene clusters. Besides, the high-risk 
group had a higher TMB than the low-risk group, 
and the risk score showed a positive associa-
tion with TMB level. These results further high-
light the role of cuproptosis regulators in the 
immune regulation of glioma.

In recent years, immunotherapy has been more 
widely available. However, glioma immunoth- 
erapy still faces many challenges [35]. The im- 
munosuppressive microenvironment of glioma 
consists of a variety of components. First, 
tumor cells highly express certain immunosup-
pressive factors, such as PD-L1, and downre- 
gulate major histocompatibility complexes, the- 
reby reducing self-antigen presentation [36]. 
Second, cells in the tumor microenvironment, 
such as microglia and tumor-associated macro-
phages, can induce decreased T cell activity, 
inhibit T cell proliferation, and cause T cell 
exhaustion. Besides, regulatory T cells in the 
microenvironment of glioma cells can modulate 
the immune response and express immuno-
suppressive cytokines, thereby aggravating 
immunosuppression at the tumor site [37]. 
Finally, studies have suggested that tumor-infil-
trating lymphocytes (TILs) are present in the 
glioma microenvironment; however, these TILs 
also express high depletion, which is associat-
ed with T-cell immunoglobulin domain mucin 
domain protein-3 and lymphocyte activation 
gene-3 [38]. Molecular markers, when regulat-
ed by other cells in the glioma microenviron-
ment, lose their proliferative and effector capa-
bilities. In addition, certain physical features  
of gliomas also play an important role in the 
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immunosuppressive response. Tissue hypoxia 
caused by vascular disorder in glioma induces 
tumor necrosis, and the necrotic tumor tissue 
increases the concentration of potassium ions 
in the tumor microenvironment, which in turn 
leads to the inactivation of T cells infiltrating 
the tumor site, limiting the effect of immuno-
therapy [39, 40]. Thus, it is urgent to explore 
and identify new anti-tumor immune drugs. 

In conclusion, cuproptosis regulators are in- 
volved in TME immune infiltration and affect 
the clinical prognosis in glioma. It is necessary 
for clinical practice to develop different the- 
rapeutic strategies according to the different 
phenotypes associated with immune response. 
The present findings provide new insights on 
improving the immunotherapy strategy and in- 
dividualized treatment in glioma.
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Table S1. 13 cuproptosis-associated genes used for classification
Gene Symbol Entrez ID Description
ATP7A 538 ATPase Copper Transporting Alpha
ATP7B 540 ATPase Copper Transporting Beta
DBT 1629 Dihydrolipoamide Branched Chain Transacylase E2
DLAT 1737 Dihydrolipoamide S-Acetyltransferase
DLD 1738 Dihydrolipoamide Dehydrogenase
DLST 1743 Dihydrolipoamide S-Succinyltransferase 
FDX1 2230 Ferredoxin 1
GCSH 2653 Glycine Cleavage System Protein H
LIAS 11019 Lipoic Acid Synthetase
LIPT1 51601 Lipoyltransferase 1
PDHA1 5160 Pyruvate Dehydrogenase E1 Subunit Alpha 1
PDHB 5162 Pyruvate Dehydrogenase E1 Subunit Beta
SLC31A1 1317 Solute Carrier Family 31 Member 1

Figure S1. Expression levels of cuproptosis regulators between different subtypes.
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Figure S2. The correlations of PD-L1 expression with cuproptosis regulators. A: Heatmap indicates the correlation 
between PD-L1 with cuproptosis genes. B: Expression level of PD-L1 between Cluster A and Cluster B.
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Figure S3. GO enrichment analysis of differential gene expression (DGE)s between cluster A and cluster B.

Figure S4. GO enrichment analysis of DGEs between cluster A and cluster B.
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Table S2. 9 identified cuproptosis-related signature genes in the prognostic model
Gene Coefficient HR
ATP7A 0.80421 2.234929
ATP7B -0.385954 0.679802
DLAT -0.376516 0.686248
DLST 0.134705 1.144199
FDX1 0.792566 2.209057
GCSH -0.991877 0.37088
LIAS -0.264472 0.767611
LIPT1 0.224289 1.251433
SLC31A1 0.705167 2.024185

Figure S5. PCA of high- and low-risk groups in CGGA.

Figure S6. PCA of high- and low-risk groups in CGGA.
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Figure S7. Stratified analyses of prognostic model using the CGGA database.
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Figure S8. The correlations of cuproptosis risk score with clinical characteristics. A: Correlations of risk score with 
clinical characteristics. B: The expression levels of cuproptosis-related genes between high- and low-risk groups. 
C-H: Comparisons of risk score in different clinical characteristics, including cuproptosis clusters, grade, PRS type, 
IDH mutation status, 1p19q codeletion, and chemotherapy status.
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Figure S9. GO enrichment analysis using genes differentially expressed between high- and low-risk groups.
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Figure S10. KEGG pathway analysis using differentially expressed genes between high- and low-risk groups.
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Figure S11. lncRNA-miRNA-mRNA regulation network based on risk groups.
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Figure S12. Kaplan-Meier survival curve of lncRNAs in the ceRNA network.
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Figure S13. Kaplan-Meier survival curve of miRNAs in the ceRNA network.
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Figure S14. Correlation of curproptosis risk score with PD-L1 expression.
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Figure S15. Summary and interactions of gene mutations from high-risk (A and C) and low-risk groups (B and D).
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Figure S16. Top 16 of sensitivity drugs using identified prognostic signature genes.


