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Abstract: Objective: Hypoxia promotes tumor progression from multiple aspects, including metabolism, prolifera-
tion, migration and angiogenesis. Therefore, a thorough understanding of the impact of hypoxia on gastric adeno-
carcinoma (STAD) is warranted. The aim of the present study was to find a prognostic model of hypoxia in gastric 
cancer (GC) and its relationship with the immune microenvironment. Methods: Distinct hypoxia-related patterns 
were identified with an unsupervised consensus clustering algorithm in STAD patients from the Gene Expression 
Omnibus (GEO) and the cancer genome atlas (TCGA) cohorts. The different biological processes among different 
hypoxia-related clusters were then explored with the algorithm of single sample gene set enrichment analysis. Then 
hypoxia-related Hub genes were selected by weighted gene co-expression network analysis (WGCNA) prior to the 
construction of a hypoxia-related gene prognostic model. The model was constructed using multivariate Cox regres-
sion analysis, least absolute shrinkage and selection operator (LASSO) regression and univariate Cox regression 
analysis. The relationship between immune infiltration and hypoxia-related features was analyzed. Results: We iden-
tified a hypoxia-related cluster (magenta) by WGCNA and found that different prognosis can be evidently induced 
by various hypoxia response patterns. LASSO analysis found seven hypoxia-related genes CPZ, LBH, NOX4, NRP1, 
NOS3, C3orf36 and CDH6, which were then used for the construction of hypoxia-related gene prognostic model. The 
model was verified by TCGA database and GEO dataset and showing good prognostic value. Conclusions: A novel 
hypoxia-related prognostic signature was constructed to predict prognosis and correlate with immune infiltration in 
STAD. Hypoxia-related prognostic features are expected to be a new prognostic tool for GC.
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Introduction

With the improvement of living standards, hu- 
man dietary structure has changed dramatical-
ly, resulting in a surge in the incidence of diges-
tive tract diseases [1]. Data have shown that 
there are about 1 million patients newly diag-
nosed with gastric cancer (GC) each year, while 
more than 780,000 patients die from it each 
year [2]. Due to the relatively concealed inci-
dence of GC and the low rate of early diagnosis, 
many patients often miss the chance of surgi-
cal treatment due to tumor metastasis at the 
time of diagnosis [3]. In addition, treatments 
fail frequently due to the lack of targeted agents 
and the presence of chemoresistance, which 
are also the main reasons for the poor progno-

sis of GC patients, with a five-year survival rate 
of less than 20% [4, 5]. With the continuous 
improvement of medical care, the survival rate 
of GC patients has ascended. Unfortunately, 
the recurrence and metastasis are still main 
causes of GC-related death [5], and current 
treatment for those remains unsatisfactory [6]. 
Studies have reported that immunosuppressive 
agents have considerable anti-tumor effects 
and are able to control adverse effects [7, 8]. In 
addition, it has been shown that PD-L1-positive 
patients with advanced and metastatic GC are 
very sensitive to immunotherapy.

Tumor microenvironment refers to the biologi-
cal environment in which tumors occur, localize 
and develop [9]. The interaction between the 
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microenvironment and the tumor has a signifi-
cant impact on the survival and metastasis of 
tumor cells [10, 11]. Hypoxia is a major trait of 
tumor microenvironment, which is caused by 
the imbalance of oxygen supply and demand 
because tumor cell proliferation inevitably in- 
creases consumption of oxygen [12]. Tumor 
hypoxia leads to hypoxia-inducible factor (HIF) 
activation, which mediates gene expression, 
pH regulation, metabolic pathways, protein syn-
thesis and DNA replication [11]. Therefore, 
tumor hypoxia not only affects tumor growth 
and metastasis, but also leads to angiogene-
sis, genetic instability, heterogeneous changes 
and resistance to therapy, which are poor prog-
nostic factors for tumor [10]. A growing number 
of studies have shown that hypoxia is associat-
ed with poor prognosis of solid tumors [13]. 
Given the important role of hypoxia in GC, its 
detection and assessment are conceivably cru-
cial. Therefore, further studies on the relation-
ship between hypoxia and immunity in GC are 
needed to develop new therapeutic strategies.

Biological information plays a crucial role in bio-
logical research. Being utilized in the field of life 
sciences, modern industries driven by comput-
ers greatly alleviates the labor volume of scien-
tific researchers, simplifies the steps of experi-
mental results processing, and is more accu-
rate in the processing of experimental data 
[14]. Early studies have found [15] that con-
structing risk models for related diseases plays 
a critical role in the prediction and diagnosis  
of the diseases and provides a new tool for clin-
ical diagnosis and prognosis observation. In 
this study, we constructed hypoxia-related fea-
tures by bioinformatics methods and valida- 
ted hypoxia-related prognostic features using 
GSE84437 microarray as external data to bet-
ter demonstrate the relationship between risk 
score, overall survival (OS) and immune infiltra-
tion in GC patients.

Materials and methods

Data collection

The discovery cohort comprised 357 GC 
patients retrieved from the Gene Expression 
Omnibus (GEO, https://www.ncbi.nlm.nih.gov/
geo/) database (GSE84437) [16]. Cancer Ge- 
nome Atlas (TCGA) [17] cohort contains 407 
samples from the “TCGA-STAD” project, includ-
ing 32 control samples and 375 tumor sam-

ples, with related level 3 gene expression data 
collected from 11 November 2019, Genomic 
Data Commons (https://portal.gdc.cancer.gov). 
A total of 314 tumor samples remained after 
deleting samples with missing data (age, sex, 
survival time, survival status, T, N, M, clinical 
stage). Informed consent and Institutional Re- 
view Board approval were not entailed for de-
identified data analysis from the TCGA and GEO 
databases. Lima method was used for identifi-
cation of differential genes. Hypoxia-related dif-
ferential genes were considered if an FDR-
adjusted p-value < 0.05 and an absolute value 
of log2 (fold change) > 1.

Identification of hypoxia-related genes

By searching MSigDB database [18] hypoxia 
genome, we found three genomes of M5891, 
M10508 and M641. A total of 311 hypoxia 
genes were found by integration.

Weighted correlation network analysis 
(WGCNA) and feature enrichment analysis

WGCNA R program package was utilized for 
analyses in the present study [19]. By integrat-
ing the content of the TCGA database, 58,938 
genes were analyzed for co-expression net-
works, and 14 co-expression modules were 
finally obtained. Calculating the correlation 
between module feature vectors and gene 
expression sex resulted in MM, we confirmed 
652 genes of high connectivity of modules clini-
cally significant as Hub genes according to the 
cutoff criteria (|MM| > 0.4).

Immune infiltration analysis

ESTIMATE [20], the newly developed algorithm 
(estimating immune and stromal cells expres-
sion data in malignant tumor tissues), utilizes 
features of tumor tissue transcriptome profiles 
to infer the proportions of different infiltrating 
stroma and immune cells. ESTIMATE was used 
in the present study to estimate immune scores 
to represent immune cell infiltration for immune 
status prediction in each GC sample. To quan-
tify the immune cell composition of each sam-
ple, CIBERSORT software [21] was applied to 
assess the proportion of immune cells in the 
GC expression matrix. CIBERSORT, a commonly 
used tool for characterizing the immune cell 
composition of complex gene expression pro-
files [22], was applied to identify immune cell 
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Figure 1. Potential genomes associated with hypoxic stress were analyzed by WGCNA. A. Relationship between scale-free R2 and soft threshold; B. Relationship 
between Average Connectivity and Soft Threshold; C. WGCNA won a total of 14 modules; D. Correlation of 14 modules with hypoxic stress-related gene scores after 
ssGSEA analysis; E. Scatter plot of correlation analysis between magenta module and hypoxic stress-related gene scores. Note: Weighted Gene Co-expression Net-
work Analysis (WGCNA), One Sample Immuno-Infiltrate Analysis (ssGSEA). 
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composition in each sample, and P < 0.05 was 
taken as the significant level.

Identification of hypoxia-related gene prognos-
tic markers

Prognostic associated genes were identified 
based on Cox regression analysis. Afterwards, 
LASSO Cox regression was conducted to select 
independent prognostic markers for evaluating 
OS of GC patients (P < 0.05). Risk Score (RS) 
was calculated by the following formula: Risk 
scores = i iX Yi

n
#/  . (X: coefficient of each 

gene, Y: expression of each gene). According to 
median score, GC patients in GEO database 
were grouped into high-risk and low-risk sub-
groups. Kaplan-Meier survival curve analysis 
was used to compare the OS between two 
groups, and time-related ROC was used to 
assess the predictive value of the gene mark-
ers. In addition, the relationship between GC 
and clinical parameters was assessed.

ROC diagnostic curve and clinical correlation 
analysis

We conducted analysis on the relationship 
between risk score, patient clinical data and 

survival using ROC. ROC curves were generated 
with survminer package, survival package, and 
timeROC package. Among them, timeROC pack-
age was used to predict survival in the first, 
second and third year.

Statistical methods

R software (version 4.1; https://www.r-project.
org/) was utilized for all statistical analyses. 
Wilcoxon’s test was used for pairwise compari-
sons. Comparisons of OS were conducted by 
survival and the survminer R package with 
Kaplan-Meier curves of the log-rank test. A sta-
tistical difference was taken when P < 0.05.

Results

WGCNA and key module identification

Three genomes M5891, M10508 and M641 
were found by searching the MSigDB database 
for hypoxic genomes, and 311 hypoxia genes 
by integration. The scores of hypoxia stress 
genes were obtained by analyzing the scores  
of 311 hypoxia genes in TCGA-STAD samples 
using single sample gene set enrichment analy-
sis (ssGSEA). A matrix of 375 TCGA-STAD sam-

Figure 2. Difference analysis of Hub genes. A. Limma analysis of 652 gene volcano maps; B. Heatmap of Top 20 
Differential Genes. Note: Critical genes (Hub genes).
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ples with data was used for WGCNA analysis.  
A total of 14 modules were obtained after an- 
alysis (Figure 1A-C). The correlation between 
modules and hypoxic stress gene scores was 
analyzed by Pearson test, and there was an evi-
dent correlation between magenta module and 
the score (Figure 1D, 1E).

Differential analysis of Hub gene

With the MM threshold of 0.4, the GS threshold 
of 0.1, the weight threshold of 0.1, the Hub 
genes in magenta were extracted, and a total 
of 652 genes were obtained. To further under-
stand the value of Hub gene in GC, we carried 
out differential analysis on the 652 genes 
obtained. Through limma analysis (P < 0.05, log 
FC = 1), we obtained a total of 378 differential 
genes. Among them, there were 353 high-
expressed genes and 25 low-expressed genes 
(Figure 2A, 2B).

Prognosis of hypoxia-related genes

To further comprehend the post-value of hypox-
ia-related genes in STAD patients, we first per-
formed univariate Cox and LASSO regression 
analysis on the 378 Hub genes after differen-
tial analysis. In single factor, we found 54 genes 
associated with STAD prognosis (Figure 3A). 
Then, by LASSO regression, the genes CPZ, 
LBH, NOX4, NRP1, NOS3, C3orf36 and CDH6 
were found to be correlated with STAD progno-
sis (Figure 3B, 3C).

Construction and validation of hypoxia-related 
gene signatures

Based on the 7 hypoxia-related genes we fo- 
und, the coefficient calculation formula was 
obtained using the LASSO algorithm according 
to the TCGA cohort risk score: Risk Score = 
0.00971480914901194 * CPZ + 0.0021059- 
895241986 * LBH + 0.0363619594442472 * 
NOX4 + 0.00283696190155081 * NRP1 + 
0.00519489735745231 * NOS3 + 0.018798- 
3685058255 * C3orf36 + 0.011492639760- 
7483 * CDH6. Afterwards, patients were cate-
gorized into low-risk and high-risk group accord-
ing to their median risk scores (Figure 4A). In 

addition, the sensitivity and specificity of the 
model for predicting the OS of patients were 
validated by applying ROC curve. We found that 
this risk model had good accuracy in predicting 
the 1-year (AUC = 0.72), 3-year (AUC = 0.80) 
and 5-year (AUC = 0.90) postoperative survival 
(Figure 4B). Kaplan-Meier survival analysis 
suggested that the Low-risk group held evident-
ly longer OS than its counterpart (P < 0.001, 
Figure 4C). This suggested that our model had 
certain accuracy in predicting the survival and 
prognosis of STAD patients.

In attempts to verify the generalization of the 
model, we used an external dataset (GSE- 
84437) for validation. Based on the risk score 
calculated from the risk model, patients were 
ranked from low to high, and the median value 
was taken to divide patients into high-risk 
group and low-risk group (Figure 4D). Further- 
more, the specificity and sensitivity of the 
model for predicting OS in patients was validat-
ed by ROC curve, which we analyzed to further 
validate the accuracy of the risk scoring model 
(Figure 4E). Survival was worse in the high-risk 
group and better in its counterpart (P < 0.001, 
Figure 4F). Moreover, we regressed the factors 
affecting patient prognosis in the two datasets 
by Cox regression analysis, and it was suggest-
ed that the risk score was associated with the 
prognosis of STAD and was an independent fac-
tor affecting the prognosis of patients (Figure 
4G, 4H).

Correlation analysis of risk score based on risk 
model in pathological data of patients

We also identified the relationship between risk 
scores and patient pathology data. In our 
results, patients with lower clinical stage (stage 
I) had evidently lower risk scores compared to 
those with high clinical stage (stages II, III, IV) 
(Figure 5A), and patients with T1-T2 stages had 
significantly lower risk scores than patients 
with T3-T4 stages (Figure 5B). However, there 
was no difference identified regarding risk 
scores between patients in N and M stage 
(Figure 5C, 5D), suggesting that our risk score 
may have high clinical value in predicting the 
clinical stage of patients.

Figure 3. Prognostic analysis of hypoxia-related genes. A. Survival analysis of 378 Hub genes in STAD patients using 
univariate Cox regression; B, C. Coefficient distribution for Cox regression analysis with LASSO, and the calculation 
of the tuning parameter (lambda) based on the partial likelihood bias of 10-fold cross-validation. Note: Critical genes 
(Hub genes), gastric adenocarcinoma (STAD), Least Absolute Shrinkage and Selection Operator (LASSO). 
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Immune cell infiltration in different hypoxic 
states in STAD

Previous studies have shown that hypoxia was 
an important feature during tumor progression 
with the ability to modulate tumor immune res- 
ponses. The StromalScore, ImmuneScore and 
ESTIMATEScore were obtained by ESTIMATE 
algorithm, which revealed that ImmuneScore, 
StromalScore and ESTIMATEScore were evi-
dently increased in the high-risk group com-
pared with those in the low-risk group (P < 
0.001, Figure 6A). Furthermore, CIBERSORTx 
algorithm was utilized to RNA-seq data, and the 
abundance of 22 infiltrating immune cells was 
obtained. Results revealed significant differ-
ences between the two groups of patients. 
Compared with the low-risk group, the abun-
dance of Dendritic cells activated in the high-
risk group was evidently higher, while that of 
Macrophages M2 in the high-risk group was 
markedly lower (P < 0.05, Figure 6B). 

Discussion

Previous report showed [23] that a risk model 
for predicting the prognosis of triple-negative 
breast cancer was successfully constructed by 
analyzing the characteristics of 21 hypoxia-
related genes. It provides a basis for prognosis 
prediction, risk stratification and personalized 
treatment for triple-negative breast cancer. 
Other study has also revealed hypoxia-related 
signatures (PDSS1, CDCA8, and SLC7A11) to 
be potential biomarkers for HCC diagnosis, 
prognosis and recurrence, providing an immu-
nological perspective for the development of 
personalized therapy [24]. In this study, we also 
explored the hypoxia signature of STAD and 
constructed a hypoxia-related prognostic risk 
score to confirm the relationship between 
hypoxia and genetic alterations, tumor micro-
environment, and immunotherapy.

We identified a total of 54 differential genes 
associated with the prognosis of patients, and 

7 prognostic genes (CPZ, LBH, NOX4, NRP1, 
NOS3, C3orf36 and CDH6) were identified as 
components of risk characteristics by Lasso 
regression. Among them, four genes have been 
found to be related to GC. NOX4 is considered 
to be related to GC proliferation and drug resis-
tance. By targeting NOX4, cocoa can block GC 
cell proliferation [25]. Previous study revealed 
that [26] overexpression of NOX4 could pro-
mote the resistance of GC cells to 5-fluoroura-
cil. NRP1 can be involved in several different 
types of signaling pathways that control cell 
migration. A lot of literature has reported that 
inhibiting NRP1 expression by regulating NRP1 
upstream target genes markedly inhibits the 
growth and metastasis of GC [27]. In the study 
of Zou et al. [28], it was reported that NOS3 
was highly expressed in GC and is an indepen-
dent prognostic factor for STAD. Their drug 
response analysis report indicated that NOS3 
was inhibited in GC patients after treatment, 
suggesting that NOS3 may be a new target for 
GC treatment. Research has also shown that 
[29] CDH6 is up-regulated in GC, and its high 
expression indicates that the proportion of 
patients with T stage was relatively large, and 
usually with poor prognosis. However, CPZ, LBH 
and C3orf36 are less studied in GC. By and 
large, these results suggested that our research 
protocol can identify novel oncogenic-related 
genes that are potential therapeutic targets.

To further identify the relationship between the 
seven prognostic genes and STAD, we grouped 
patients into low-risk and high-risk groups 
according to risk scores. Risk signatures based 
on 7 prognostic genes performed well in the 
stratification of major STAD risk groups in the 
TCGA and GEO datasets, as confirmed by ROC 
curve, KM curve and risk map analysis. Fur- 
thermore, we found that prognostic features 
regarding 3- and 5-year survival showed com-
parable accuracy in both external (GEO) and 
internal (TCGA) validation cohorts. Not only 
that, we found that risk score was a risk factor 

Figure 4. Construction and validation of the prognostic signature of hypoxia-related genes in TCGA and GSE84437 
datasets. (A) Risk score, OS, OS distribution and heatmap of 7 hypoxia-related genes in the TCGA dataset; (B) ROC 
curves of risk score predicting patient 1-, 3- and 5-year survival in TCGA dataset; (C) Survival in high-risk versus low-
risk patients in the TCGA dataset; (D) Risk score, OS, OS distribution and heatmap of 7 hypoxia-related genes in the 
GEO dataset; (E) ROC curves of risk score predicting patient 1-, 3- and 5-year survival in GEO dataset; (F) Survival of 
high- versus low-risk patients in (F) GEO Dataset; (G) Relationship analysis between patient risk score and OS in the 
TCGA dataset by Cox regression; (H) Relationship analysis between patient risk score and OS in the GEO dataset by 
Cox regression. Note: The Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO), Receiver Operating Curve 
(ROC), Overall Survival (OS). 
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Figure 5. Relationship between risk score and patient pathological data. A. Risk score expression in patients with stage I, II, III and IV; B. Expression of risk scores 
in patients with T1-T2 and T3-T4; C. Expression of risk scores in patients with N0 and N1-N3; D. Expression of risk scores in patients with M0 and M1. Note: ns 
indicates that there is no difference between the two groups; * indicates P < 0.05 for inter-group comparison; ** indicates P < 0.01 for inter-group comparison.
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affecting patient prognosis in both internal and 
external data through multivariate Cox regres-
sion analysis. In addition, we found that risk 
scores were differentially expressed in patients 
at different clinical stages and T stages, which 
suggests that our risk score may have a role in 
diagnosing the clinical stage of patients.

Hypoxia is a tumor microenvironment marker 
that plays a substantial role in tumor initia- 
tion, progression, metastasis and metabolism 
[30]. The immune microenvironment can be 
rearranged under hypoxia to induce abnormal 
angiogenesis, connective tissue formation and 

inflammation, all of which lead to therapy resis-
tance and tumor progression [31]. Hypoxia-
induced biological functions are facilitated 
through a series of signaling pathways that 
include Wnt, Notch, and, especially, HIF-1 sig-
naling pathway [32]. To this end, the relation-
ship between risk scores and immune profiles 
were analyzed. Patients in high-risk group we- 
re observed with higher immune and stromal 
scores compared with the low-risk group. 
Furthermore, CIBERSORT also found that the 
abundance of activated Dendritic cells was  
evidently higher in high-risk patients. Also, M2 
macrophages declined in the high-risk group, 

Figure 6. Expression levels of immune cell infiltration in patients in the high and low risk groups. A. Expression 
of StromalScore, ImmuneScore and ESTIMATEScore in high and low risk groups; B. Abundance of 22 infiltrating 
immune cells in high and low risk groups. Note: ns indicates there is no difference between the two groups; *** 
indicates P < 0.0001 for inter-group comparison.
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suggesting that the risk model constructed in 
present study can predict the immune microen-
vironment effectively.

However, our study has several limitations that 
need to be addressed. First, as a credit analy-
sis, we did not verify our results through clinical 
data. Second, there is an absence of disease-
free survival data in this study, so the relation-
ship between disease-free survival and the risk 
model could not be analyzed. Therefore, it is 
reasonable to validate the STAD risk stratifica-
tion and prognostic model with more factors 
and data.

Taken together, a hypoxia-related prognostic 
signature associated with STAD was identified 
by our study, which can be used to predict 
patient survival and is associated with immune 
infiltration. It is expected to be a potential regi-
men for clinical STAD treatment and prognosis 
prediction.

Disclosure of conflict of interest

None.

Address correspondence to: Zuming Pang, Depart- 
ment of Gastroenterology, Xianyang First People’s 
Hospital, No. 10, Biyuan Road, Qindu District, 
Xianyang 712000, Shaanxi, China. E-mail: pang-
ming118@126.com

References

[1] Poblocki J, Jasinska A, Syrenicz A, Andrysiak-
Mamos E and Szczuko M. The neuroendocrine 
neoplasms of the digestive tract: diagnosis, 
treatment and nutrition. Nutrients 2020; 12: 
1437.

[2] Bray F, Ferlay J, Soerjomataram I, Siegel RL, 
Torre LA and Jemal A. Global cancer statistics 
2018: GLOBOCAN estimates of incidence and 
mortality worldwide for 36 cancers in 185 
countries. CA Cancer J Clin 2018; 68: 394-
424.

[3] Sexton RE, Al Hallak MN, Diab M and Azmi AS. 
Gastric cancer: a comprehensive review of cur-
rent and future treatment strategies. Cancer 
Metastasis Rev 2020; 39: 1179-1203.

[4] Song Z, Wu Y, Yang J, Yang D and Fang X. Prog-
ress in the treatment of advanced gastric can-
cer. Tumour Biol 2017; 39: 10104283177- 
14626.

[5] Tan Z. Recent advances in the surgical treat-
ment of advanced gastric cancer: a review. 
Med Sci Monit 2019; 25: 3537-3541.

[6] Zeng D, Wu J, Luo H, Li Y, Xiao J, Peng J, Ye Z, 
Zhou R, Yu Y, Wang G, Huang N, Wu J, Rong X, 
Sun L, Sun H, Qiu W, Xue Y, Bin J, Liao Y, Li N, 
Shi M, Kim KM and Liao W. Tumor microenvi-
ronment evaluation promotes precise check-
point immunotherapy of advanced gastric can-
cer. J Immunother Cancer 2021; 9: e002467. 

[7] Li K, Zhang A, Li X, Zhang H and Zhao L. Ad-
vances in clinical immunotherapy for gastric 
cancer. Biochim Biophys Acta Rev Cancer 
2021; 1876: 188615.

[8] Gu L, Chen M, Guo D, Zhu H, Zhang W, Pan J, 
Zhong X, Li X, Qian H and Wang X. PD-L1 and 
gastric cancer prognosis: a systematic review 
and meta-analysis. PLoS One 2017; 12: 
e0182692.

[9] Arneth B. Tumor microenvironment. Medicina 
(Kaunas) 2019; 56: 15. 

[10] Wu T and Dai Y. Tumor microenvironment and 
therapeutic response. Cancer Lett 2017; 387: 
61-68.

[11] Vitale I, Manic G, Coussens LM, Kroemer G 
and Galluzzi L. Macrophages and metabolism 
in the tumor microenvironment. Cell Metab 
2019; 30: 36-50.

[12] Jing X, Yang F, Shao C, Wei K, Xie M, Shen H 
and Shu Y. Role of hypoxia in cancer therapy by 
regulating the tumor microenvironment. Mol 
Cancer 2019; 18: 157.

[13] Boutilier AJ and Elsawa SF. Macrophage polar-
ization states in the tumor microenvironment. 
Int J Mol Sci 2021; 22: 6995. 

[14] Chen C, Hou J, Tanner JJ and Cheng J. Bioinfor-
matics methods for mass spectrometry-based 
proteomics data analysis. Int J Mol Sci 2020; 
21: 2873.

[15] Long J, Wang A, Bai Y, Lin J, Yang X, Wang D, 
Yang X, Jiang Y and Zhao H. Development and 
validation of a TP53-associated immune prog-
nostic model for hepatocellular carcinoma. 
EBioMedicine 2019; 42: 363-374.

[16] Barrett T, Wilhite SE, Ledoux P, Evangelista C, 
Kim IF, Tomashevsky M, Marshall KA, Phillippy 
KH, Sherman PM, Holko M, Yefanov A, Lee H, 
Zhang N, Robertson CL, Serova N, Davis S and 
Soboleva A. NCBI GEO: archive for functional 
genomics data sets-update. Nucleic Acids Res 
2013; 41: D991-995.

[17] Blum A, Wang P and Zenklusen JC. SnapShot: 
TCGA-analyzed tumors. Cell 2018; 173: 530.

[18] Liberzon A, Birger C, Thorvaldsdottir H, Ghandi 
M, Mesirov JP and Tamayo P. The molecular 
signatures database (MSigDB) hallmark gene 
set collection. Cell Syst 2015; 1: 417-425.

[19] Langfelder P and Horvath S. WGCNA: an R 
package for weighted correlation network anal-
ysis. BMC Bioinformatics 2008; 9: 559.

[20] Yoshihara K, Shahmoradgoli M, Martinez E, 
Vegesna R, Kim H, Torres-Garcia W, Trevino V, 

mailto:pangming118@126.com
mailto:pangming118@126.com


Prognostic value and risk model construction of hypoxic stress-related features

8610 Am J Transl Res 2022;14(12):8599-8610

Shen H, Laird PW, Levine DA, Carter SL, Getz G, 
Stemke-Hale K, Mills GB and Verhaak RG. In-
ferring tumour purity and stromal and immune 
cell admixture from expression data. Nat Com-
mun 2013; 4: 2612.

[21] Chen B, Khodadoust MS, Liu CL, Newman AM 
and Alizadeh AA. Profiling tumor infiltrating im-
mune cells with CIBERSORT. Methods Mol Biol 
2018; 1711: 243-259.

[22] Zhang B, Tang B, Gao J, Li J, Kong L and Qin L. 
A hypoxia-related signature for clinically pre-
dicting diagnosis, prognosis and immune mi-
croenvironment of hepatocellular carcinoma 
patients. J Transl Med 2020; 18: 342.

[23] Yang X, Weng X, Yang Y, Zhang M, Xiu Y, Peng 
W, Liao X, Xu M, Sun Y and Liu X. A combined 
hypoxia and immune gene signature for pre-
dicting survival and risk stratification in triple-
negative breast cancer. Aging (Albany NY) 
2021; 13: 19486-19509.

[24] Tang CT, Lin XL, Wu S, Liang Q, Yang L, Gao YJ 
and Ge ZZ. NOX4-driven ROS formation regu-
lates proliferation and apoptosis of gastric can-
cer cells through the GLI1 pathway. Cell Signal 
2018; 46: 52-63.

[25] Qin Y, Ma X, Guo C, Cai S, Ma H and Zhao L. 
MeCP2 confers 5-fluorouracil resistance in 
gastric cancer via upregulating the NOX4/
PKM2 pathway. Cancer Cell Int 2022; 22: 86.

[26] Mei B, Chen J, Yang N and Peng Y. The regula-
tory mechanism and biological significance of 
the Snail-miR590-VEGFR-NRP1 axis in the an-
giogenesis, growth and metastasis of gastric 
cancer. Cell Death Dis 2020; 11: 241.

[27] Pang W, Zhai M, Wang Y and Li Z. Long noncod-
ing RNA SNHG16 silencing inhibits the aggres-
siveness of gastric cancer via upregulation of 
microRNA-628-3p and consequent decrease 
of NRP1. Cancer Manag Res 2019; 11: 7263-
7277.

[28] Zou D, Li Z, Lv F, Yang Y, Yang C, Song J, Chen 
Y, Jin Z, Zhou J, Jiang Y, Ma Y, Jing Z, Tang Y and 
Zhang Y. Pan-cancer analysis of NOS3 identi-
fies its expression and clinical relevance in 
gastric cancer. Front Oncol 2021; 11: 592761.

[29] Zhao Z, Li S, Li S, Wang J, Lin H and Fu W. High 
expression of oncogene cadherin-6 correlates 
with tumor progression and a poor prognosis 
in gastric cancer. Cancer Cell Int 2021; 21: 
493.

[30] Mayer A and Vaupel P. Multiparametric analy-
sis of the tumor microenvironment: hypoxia 
markers and beyond. Adv Exp Med Biol 2017; 
977: 101-107.

[31] Wei X, Chen Y, Jiang X, Peng M, Liu Y, Mo Y, Ren 
D, Hua Y, Yu B, Zhou Y, Liao Q, Wang H, Xiang 
B, Zhou M, Li X, Li G, Li Y, Xiong W and Zeng Z. 
Mechanisms of vasculogenic mimicry in hy-
poxic tumor microenvironments. Mol Cancer 
2021; 20: 7.

[32] Hajizadeh F, Okoye I, Esmaily M, Ghasemi 
Chaleshtari M, Masjedi A, Azizi G, Irandoust M, 
Ghalamfarsa G and Jadidi-Niaragh F. Hypoxia 
inducible factors in the tumor microenviron-
ment as therapeutic targets of cancer stem 
cells. Life Sci 2019; 237: 116952.


