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Abstract: Background: Pleomorphic xanthoastrocytomas (PXAs) are rare, accounting for less than 1% of astrocyto-
mas, and commonly occur in young patients. The majority are WHO grade II. A fraction of tumors that present or 
recur with malignant change are classified as anaplastic (APXA, grade III). Limited data are available on their mo-
lecular characteristics. Methodology: Genome-wide expression profiling of 14 PXA and 6 APXAs was performed by 
microarray. Among differentially expressed genes (DEGs), Cyclin-Dependent Kinase 14 (CDK14) and Mitochondrial 
Fission Process 1 (MTFP1) were validated by qRT PCR. Result: Unsupervised hierarchical clustering revealed two 
distinct molecular clusters (Cluster 1: 10 PXA, 3 APXA and Cluster 2: 4 PXA, 3 APXA) with grade II and III tumors dis-
tributed in both highlighting molecular heterogeneity within the same grade. There was an insignificant difference in 
age, sex, immunohistochemical profile, frequency of BRAF mutation, or CDKN2A deletion among the two clusters. 
Significantly, worse progression-free survival was observed in cluster 2 (P=0.003). mRNA profiling-based prediction 
of recurrence was superior to and independent of histological grade, BRAF mutation, or CDKN2A deletion status. A 
total of 10 upregulated and 418 downregulated genes were identified between the PXA clusters. qRT-PCR validation 
of CDK14 (upregulated in cluster 2) and MTFP1 (upregulated in cluster 1) showed strong concordance with expres-
sion array data. Conclusion: This is the first comprehensive study highlighting distinct molecular subgroups of PXA. 
The differentially expressed genes between two clusters may potentially be used for developing histology indepen-
dent classification schemes, prognostication and may serve as prospective therapeutic targets for PXA patients.

Keywords: Expression profiling, PXA/APXA, unsupervised hierarchical clustering, molecular clusters, BRAF, 
CDKN2A, CDK14, MTFP1

Introduction

Pleomorphic xanthoastrocytomas (PXAs) con-
stitute less than 1% of all astrocytic neoplas- 
ms. The entity was formally incorporated in the 
WHO classification system of CNS tumors as a 
grade II neoplasm in 1993 [1, 2]. The overall 
survival rate is nearly 70% at 10 years [1]. The 
majority of cases occur in children and young 
adults and present with long-standing seizures 
[3]. PXAs are typically supratentorial with a pre-
dilection to the temporal lobe [4]. On histology, 

they are composed of highly pleomorphic giant 
bizarre mono and multinucleated cells with or 
without xanthomatous cells. Over the last de- 
cade, a small fraction of these tumors were 
reported to have a shorter progression-free  
survival (PFS) and overall survival (OS) with  
high incidences of recurrence and dissemina-
tion throughout the neuraxis via CSF [5-8]. 
Thus, in 2016, the term “anaplastic PXA 
(APXAs)” WHO grade III was introduced for 
tumors showing more than 5 mitosis/10 hpf 
with or without necrosis [8].
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In the majority of cases, surgical resection is 
the treatment of choice [5, 6]. However, owing 
to rarity, there is scant data on the utilization  
of radio or targeted therapies, and optimal 
management is guided by only case reports 
and a few case series [5, 9, 10]. Histology pro-
vides a diminutive understanding of the funda-
mental biology of PXAs and is unable to identi- 
fy and steer novel molecularly targeted thera-
pies. Various studies have demonstrated sig-
nificant molecular heterogeneity in histologi-
cally similar tumors. Interestingly, an integrat- 
ed analysis of 202 pediatric glioblastomas 
(GBs), 20% of histologically diagnosed GBs de- 
picted methylation profiles akin to either low-
grade gliomas or PXA and displayed favorable 
prognosis [11]. Despite a different prognosis, a 
substantial proportion of PXA and epithelioid 
GBs (eGB) exhibit similar histomorphological 
and molecular characteristics, like wild-type 
IDH1 and MGMT promoter hypermethylation 
[12]. Thus, histology alone is insufficient for 
accurate diagnosis and prognostication.

BRAF mutation is seen in 70% of PXAs and 
17-65% of APXAs [13-16]. Although a superior 
survival and good response to BRAF targeted 
therapies is seen in mutant cases, no com- 
parative prospective trials have yet been con-
ducted in these patients [14, 16]. Recently, 
studies have described the homozygous dele-
tion of CDKN2A/B (8-83%) and its association 
with poor prognosis in PXAs/APXAs [17, 19]. 
Further, BRAF mutation or CDKN2A deletion 
cannot be used as a diagnostic biomarker as 
these alterations are seen across several CNS 
tumors including eGBs [20-22]. Thus, the- 
se two markers alone or in combination with 
histologic features have limited success in 
diagnosis, prognostication, and overall biologi-
cal understanding of these tumors [23].

Large-scale gene expression profiling can be 
used to identify tumor subtypes with distinct 
clinical phenotypes and offer an array of path-
ways that can be specifically targeted [23-25]. 
Our understanding of the pathogenesis of  
PXAs has been limited owing to rarity and as 
only a few studies have explored their molecu-
lar characteristics [11, 19, 26]. Hereby, our  
goal was to evaluate a gene expression-based 
histology independent classifier and check 
whether this tool is predictive of survival and 
develop a minimal robust gene signature panel 
for prognostication and designing effective 
therapeutic strategies.

Materials and methods

Case selection

PXA and APXA cases were histologically diag-
nosed over 13 years (2006-2019) and acquir- 
ed from the files of four tertiary care hospitals. 
Approval to perform experiments with human 
patient samples was obtained from the institu-
tional ethics committee (IEC-724/04.10.2018). 
Cases with sufficient tissue were identified in 
paraffin blocks. A total of fourteen PXA and six 
APXA were involved in the study. Histopatho- 
logical characteristics were re-evaluated by 
three independent pathologists (CS, MCS, VS) 
following the WHO classification of CNS tumors 
from 2016. Patient information, signs and 
symptoms, tumor location and size, radiologi-
cal imaging, and histopathological findings 
were recorded along with the clinical results.

RNA isolation

RNA was extracted from FFPE blocks using 
Recover All™ Total Nucleic Acid Isolation Kit as 
per manufacturer’s protocol (Thermo Scienti- 
fic). RNA quality was checked via Agilent 2100 
Bioanalyzer (M/s Agilent Technologies) using 
the RNA 6000 Nano Chip kit. Samples with 
RNA integrity number (RIN) above 5 were used 
for further analysis.

Microarray

The whole-transcriptome expression profiling 
was performed using SurePrint G3 Human  
CGH Microarray 8×60K kit (Agilent Technolo- 
gies, Santa Clara, CA, USA), containing 60-mer 
high-quality probes. Each microarray contains 
over 55,077 distinct biological probes includ- 
ing mRNA, lncRNAs, and snoRNAs probes. 
Briefly, 100 ng quality-checked total RNA sam-
ples were selected for profiling through a Low 
Input Quick Amp labeling kit and then tran-
scribed to Cy3-labeled cRNA according to the 
manufacturer’s protocol. Cy3-labeled cRNA 
samples (0.8 µg) were hybridized onto whole 
human SurePrint G3 8×60K arrays using 
Agilent’s Surehyb Chambers in an Agilent 
hybridization oven set at 65°C for 17 hours. 
Post hybridization slides were washed using 
wash buffers provided by manufacturers and 
subsequently scanned by an Agilent G4900DA 
SureScan Microarray Scanner. Images from  
the scanned array were extracted using 
Agilent’s Feature Extraction software (version 
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13.0) (Agilent Technologies, Santa Clara, CA, 
USA). The data have been submitted to www.
ncbi.nlm.nih.gov/geo/ with the accession num-
ber GSE168904.

Data normalization and statistical analysis

The normalization of data and transformation 
steps were performed using GeneSpring GX 
(version-13.0) software for one-color oligonu-
cleotide microarrays (Agilent Technologies, 
Santa Clara, CA, USA). Low-quality data were 
filtered out using principal component analy- 
sis. Differential genes were identified using 
moderated t-test between experimental sam-
ples. Benjamini and Hochberg false discovery 
rate (FDR) multiple testing corrections were 
applied to the differentially expressed genes 
(P<0.05) with cutoff logFC ≥2. Hierarchical 
clustering of significantly expressed genes was 
performed by average linkage and Euclidean 
distance as a measurement of similarity using 
GeneSpring GX (version-13.0).

cDNA conversion and qRT-PCR

Total RNA (1 µg) isolated from each sample was 
used to synthesize cDNA using SuperScript 
VILO cDNA Synthesis Kit as per manufacturer’s 
instructions (Thermo Fisher Scientific). Real-
time PCR was carried out with CFX96 Touch 
Real-Time PCR Detection System (Bio-Rad, 
Hercules, CA, USA) using SYBR Green chemis-
try (iTaq SYBR master mix, BioRad). Briefly, the 
reactions were cycled at 95°C for 4 minutes, 
40× (95°C for 8 s, 60°C for 20 s) with fluores-
cence measurements at the end of each cycle 
followed by melting curve analyses at the end 
of all amplification cycle to ensure PCR product 
specificity. All samples were analyzed in tripli-
cates. Finally, fold change expression was cal-
culated by using 2-ΔΔCt method.

Immunohistochemistry

Immunostaining was conducted on 5 micron-
thick tumor sections of formalin-fixed paraffin-
embedded (FFPEs) blocks using automatic im- 
munostainer (Benchmark XT, Ventana, Tucson, 
AZ, USA). The standard operating protocol in- 
volves pretreatment by using cell conditioning 
buffer 1 (Ventana) for 52 min and the Ventana 
Signal Amplification standard. Immunohisto- 
chemistry (IHC) was carried out by using anti-
bodies against glial fibrin acid proteins epithe-
lial membrane antigen (EMA, Cell Marque, 
mouse monoclonal, 1:100), GFAP (DAKO, Poly- 
clonal Rabbit, 1:1000), CD34 (DAKO, Poly- 

clonal Rabbit, 1:100), synaptophysin (Spring 
monoclonal, Rabbit, 1:100), vimentin (San- 
tacruz, mouse monoclonal, 1:100), Isocitrate 
dehydrogenase 1 (IDH1R32H, Dianova, mouse 
monoclonal, 1:50), P53 (Santa Cruz Biotech- 
nology, Inc., CA, USA; dilution, 1:200), alpha-
thalassemia/psychiatric retardation syndrome 
X linked (ATRX, Sigma Aldrich, St. Louis, MO, 
USA dilution 1:400), KI67 (DAKO, Glostrup, 
Denmark, Dilution 1:200), INI1 (Cell Marquee, 
monoclonal mouse, 1:100) and mutation in the 
27th amino acid of histone H3 (H3K27M, 
Millipore, Billercia, MA, USA, Dilution 1:1000). 
The chromogen used in the experiment was 
diaminobenzidine. The presence and lack of 
markers, characteristics like intensity, staining 
pattern, and distribution, were also observed 
diligently. P53 staining was given a score of  
0 if no cells were stained; 1+ if 0-10% stained; 
2+ if 10-50% stained and 3+ if >50% stained. 
Grade 2+ and above was considered positive 
[27]. For the expression of H3K27M, intense 
nucleus staining in greater than 80% of cells 
was regarded as positive [27]. For IDH, both 
cytoplasmic and nuclear staining was con-
strued as immune-positive. Only nuclear stain-
ing was taken into account for evaluation of 
ATRX expression. Cases with more than 10% 
positive tumor cells were scored positive. In- 
ternal positive controls taken were endothelial 
cells, cortical neurons, and infiltrating inflam-
matory cells which are generally positive for 
ATRX.

Fluorescence in situ hybridization

Fluorescence in situ hybridization (FISH) assay 
was conducted to test CDKN2A deletion on 
FFPEs. The controls used in this study involved 
sections from non-neoplastic cortical tissue 
obtained from epilepsy surgery specimens for 
each probe pair. The signals were scored in a 
minimum of 200 non-overlapping intact nuclei. 
For CDKN2A assay, locus-specific probes were 
used and paired with centromere probes for 
chromosomes 9 (Vysis LSI CDKN2A Spectrum 
orange/CEP9 Spectrum green probes, Down- 
ers Grove, IL). The loss of both green signals in 
each nucleus seen in a minimum of 20% nuclei 
indicated homozygous deletion of the CDKN2A. 
For EGFR assay, locus-specific probes paired 
with centromere probes for chromosomes 7 
(CEP7, Vysis, Downers Grove, IL) were used. 
EGFR amplification was taken into account 
when more than 10% of tumor cells had either 
an EGFR: CEP7 ratio of >2 or countless tight 
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clusters of signals of the probe. The threshold 
value was obtained by calculating the mean  
+3 SD of deletion observed in non-neoplastic 
brain tissue [28].

Mutation analysis of BRAF-V600E

The DNA was extracted from FFPE tissue sec-
tions by using the Recover All nucleic acid 
extraction kit (Invitrogen, Carlsbad, CA) and 
was quantitatively as well as qualitatively test-
ed using Qubit (Invitrogen, Carlsbad, CA) and  
on the agarose gel. A total of 50 ng DNA was 
amplified by PCR for detection of BRAF V600E. 
The PCR reactions were conducted using the 
Taq DNA polymerase (Invitrogen, Carlsbad, CA) 
in an overall 20 microliter reaction mixture with 
the following conditions: [95°C for 10 min fol-
lowed by 42 cycles (95°C for 30 s, 60°C for 35 
s, 72°C for 90 s), and 72°C for 10 min]. The 
primer sequences for BRAF (codon 600) are 
provided in the Supplementary Table 1. The bi-
directional sequencing was conducted using 
the Big Dye Terminator v3.1 Cycle Sequencing 
Kit (Applied Biosystems, Courtaboeuf, France) 
and the ABI 3500xL sequencer (Applied Bio- 
systems, Foster City, CA) [28, 29].

Statistical analysis

The distribution of overall survival (OS) and 
Progression-free survival (PFS) were calculated 
according to the Kaplan-Meier method, and a 
log-rank test was used to assess the signifi-
cance of differences in survival. A P-value of 
less than 0.05 was considered statistically  
significant. OS was calculated to the date of 
death from any cause, or to the last follow-up 
date if the patient was alive and PFS included 
the time of first documentation of recurrence 
from the date of surgery or last follow-up date 
of the patient.

Results

Patient characteristics and histopathological 
findings

Fourteen PXAs and six APXAs were obtained  
for this study, including 16 male and 4 female 
patients. Three (15%) were pediatric and the 
remaining seventeen (85%) were adult. The 
mean age of PXAs and APXAs was 26 (range 
10-52) and 28 (range 21-42) years, respective-
ly. All PXAs/APXAs occurred in the cerebral 
hemispheres.

The radiological images depicted similar non-
specific characteristics that were well delineat-

ed, contrast-enhancing, and localized superfi-
cial cerebral masses with single and/or multi-
ple cysts.

On histological examination, PXA cases showed 
large pleomorphic and frequently multinucleat-
ed cells, spindle and lipidized cells, a dense 
pericellular reticulin network, lymphocytic infil-
trate, and numerous eosinophilic granular bod-
ies. However, two of the PXA cases showed a 
sheet of rhabdoid-looking cells comprising 
more than 50% of the tumor area resembling 
eGB, and no mitosis or necrosis was noted. 
APXAs in addition showed more than five mito-
sis/10 HPF, and microvascular proliferation 
with necrosis. The cases, which were histologi-
cally representing classical PXA, were exten-
sively positive for synaptophysin, GFAP, and 
EMA while these markers displayed patchy and 
variable positivity in APXA. CD34 positivity was 
seen in 25% of cases (5/20, all grade II). 
Vimentin immunostaining was diffusely posi-
tive in all the cases. MIB-1 labeling index was 
high in APXA (mean =17%) as compared to clas-
sical PXA (mean =3.83%). All tumors had wild-
type IDH1 (R132H), and retained ATRX and INI1 
expression. None of the tumors expressed 
H3K27M mutant protein. P53 expression was 
observed in 14.28% PXA (2/14) and 16.66% 
APXA (1/6) cases. The histopathological and 
immunohistochemical findings of all cases are 
summarized in Figure 1.

Molecular analysis

There was no association of BRAF V600E muta-
tion with tumor grade as it was detected in 
57.14% (8/14) PXA’s and 33.33% (2/6) APXAs 
(P=0.3847). There were complete (100%) con-
corded results observed in the detection of 
BRAF V600E mutation by both IHC and Sanger 
sequencing. CDKN2A deletion was observed in 
64.28% (9/14) PXA and 50% (3/6) APXA cases 
(P=0.5924). Though only a small subset of 
cases (15%, 3/20 all grade II) harbored both 
the alterations, none of the cases showed 
EGFR amplification.

Gene expression profiling

Initial exploratory analyses of the protein-cod-
ing gene expression profiles were carried out. 
Principal Component Analyses (PCA) and unsu-
pervised hierarchal clustering analysis showed 
a clear separation of PXA and APXA samples 
from the controls (Figure 2).

http://www.ajtr.org/files/ajtr0137250suppltab1.xlsx
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Figure 1. Clinical and histological (A), and immunohistochemical and molecular features (B) of cases in two clusters.

Unsupervised hierarchal clustering depicted 
two distinct molecular clusters. PXA and APXA 
were seen in both clusters, suggesting the 
presence of molecular heterogeneity within the 

same grade. Cluster 1 comprised 77% PXA 
(10/13) and 23% APXAs (3/13) cases, while 
cluster 2 was composed of 57% PXAs (4/7) and 
43% APXAs (3/7).
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Figure 2. PCA plot (A) and unsupervised hierar-
chal clustering (B) of expression array depicting 
two distinct PXA clusters.

DEGs in two clusters

A total of 10 differentially upregulated and 418 
downregulated genes were identified between 
the PXA clusters (Supplementary Table 1). The 
10 most significantly up- or down-regulated 
DEGs are shown in Figure 3A. The majority of 
these genes are known to play important role in 
neurological disorders, cell growth, division, 
immune response, and cell cycle. The box plots 

of some of the top candidate DEGs are shown 
in Figure 3B.

qRT-PCR validation of Mitochondrial Fission 
Process 1 genes (MTFP1, upregulated in  
cluster 1) and Cyclin-Dependent Kinase 14 
(CDK14, upregulated in cluster 2) expression 
was performed. On qRT PCR analysis, MTFP1 
(P=0.0485) was significantly up-regulated in 
PXA cluster 1 and CDK14 (P=0.0424) in clus- 

http://www.ajtr.org/files/ajtr0137250suppltab1.xlsx
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Figure 3. Top 10 differentially ex-
pressed genes among two cluster (A), 
box plots representation of some top 
deregulated genes (B), and scatter 
plot of MTFP1 and CDK14 expression 
by qRT PCR (C).
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ter 2, highlighting a strong concordance with 
expression array (Figure 3C).

Correlation of gene expression profiling based 
clusters with age, sex, immunohistochemical 
and molecular markers

Patients in cluster 2 were slightly younger as 
compared to those in cluster 1 (mean age 
22.14 years versus 29 years). There was a male 
preponderance with an M:F ratio of 6:1 in clus-
ter 2 and 3.3:1 in cluster 1. There was no differ-
ence in immunohistochemical profile or fre-
quency of BRAF mutation (53.84%, 7/13 vs. 
42.85%, 3/7) (P=0.6749) and CDKN2A dele-
tion (61.5%, 8/13 vs. 57.14%, 4/7) (P=0.8591) 
in two clusters.

Survival analysis

In the current study, the patient follow-up peri-
od varied from 17 to 176 months with a mean 
follow-up of 55.33 months. Based on histologi-
cal grading, tumor recurrence was observed in 
14.28% (2/14) of grade II versus 66.66% (4/6) 
of grade III tumors. Based on the expression 
array, only 7.69% (1/13) cases in cluster 1 while 
71.42% (5/7) cases in cluster 2 recurred. 
Among grade II tumors, none in cluster 1 (0/10) 
while 50% (2/4) in cluster 2 recurred. Similarly, 
among APXAs, only 33.33% (1/3) in cluster 1 
while all the cases (3/3) in cluster 2 recurred. 
Further, there was no difference in frequency of 
BRAF mutation (33.33%, 2/6 vs. 57.14%, 8/14) 
(P=0.3847) or CDKN2A deletion (50%, 3/6 vs. 
64.27%, 9/14) (P=0.5924) in recurrent versus 
non recurrent tumors. Among 3 PXAs with con-
comitant BRAF and CDKN2A deletion, only one 
case (33%) recurred. Thus, mRNA profiling-
based prediction of recurrence is superior to 
and independent of histological grade, BRAF 
mutation, or CDKN2A deletion status.

There was no significant difference in OS 
between grade II and grade III (mean OS 62.45 
vs. 44.14 months, P=0.08) tumors, however, a 
statistically significant difference in PFS (mean 
PFS 60.90 vs. 40.14 months, P=0.019) was 
noted. A relatively better OS was observed in 
PXA cluster 1 (mean OS 70.5 months in cluster 
1 vs. 25.5 months in cluster 2), however, it did 
not reach statistical significance (P=0.09). The 
difference in PFS between the two clusters was 
definitively more significant (mean PFS 69.33 

months in cluster 1 vs. 19.8 months in cluster 
2, P=0.003) as compared to histology. There 
was no significant difference in OS or PFS 
between BRAF mutant and wild type cases 
(P=0.8995, P=0.3022) or CDKN2A deleted ver-
sus non deleted (P=0.0977, P=0.4999) (Figure 
4).

Discussion

PXA is a rare astrocytic tumor, described for  
the first time by Kepes et al. in 1979 [9, 30]. 
The current histopathological approach for the 
classification of PXA/APXAs is subjective with 
interobserver variability. It offers a minimal 
understanding of the underlying biology and 
plays no role in determining potential treat- 
ment strategies, or likely responses to treat- 
ment.

As discussed previously, several high through-
put studies have highlighted the morphologic 
and molecular similarities within the PXA, 
APXAs, and eGBs [19, 26]. Further, PXAs can 
even be misdiagnosed as eGBs [11]. Thus, 
there is a need to gain a better insight into 
molecular markers for prognostication of the- 
se entities irrespective of histological subtype 
or grade. In the present study, unsupervised 
hierarchal clustering of mRNA expression pro-
files uncovered two distinct molecular clusters 
(cluster 1 and cluster 2) with both grades of 
PXA in each cluster implicating heterogeneity 
within the same grade. Discrete gene expres-
sion signatures and survival (poor PFS in clus-
ter 2) were observed between the two clusters. 
Expression profiling provided a more powerful 
prediction of recurrence, independent of histo-
logical grade, BRAF mutation, or CDKN2A dele-
tion status.

There were 428 dysregulated genes (10 up and 
418 down-regulated) between the two clusters. 
Kyoto Encyclopedia of Genes and Genomes 
(KEGG) analyses demonstrated that these 
genes are mainly associated with the following 
pathways: ABC transporters, mTOR signaling 
pathway, P13K-Akt signaling pathway, and Ras 
signaling pathway. Further, among the most sig-
nificantly dysregulated genes across two clus-
ters, MTFP1 and CDK14 were validated by qRT 
PCR. A high level of concordance between ex- 
pression profiling and qRT PCR was observed. 
MTFP1 was up-regulated in PXA cluster 1 (P= 
0.0485). MTFP1, a nuclear-encoded protein 
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promotes mitochondrial fission, induces the 
progression of the cell cycle, and suppresses 
cell apoptosis [31, 32]. Its overexpression 
mediates mitochondrial fragmentation and 
subsequent reactive oxygen species (ROS) pro-
duction. Increased expression of mitochondrial 
fission proteins and their association with 
tumor progression has been documented in 
several cancers [33-36]. MTFP1 has been 
known to play a critical oncogenic role in oral 
squamous cell carcinoma (OSCC) carcinogene-
sis and may be a potential candidate for thera-
peutic target [36].

CDK14 expression was raised in PXA cluster 2. 
CDK14 is a known cell cycle regulator and it 
has been shown to be linked with poor progno-
sis in gliomas and is also being explored as a 
potential therapeutic target [37, 38]. CDK14 
upregulation is associated with poor prognosis 
in GB patients [39]. CDK14 acts as an onco-
gene by deregulating several molecular signal-
ing pathways, including the phosphoinositide 3 
kinase (PI3K)/Akt and Wnt/β-catenin signaling 
pathway and cellular mechanisms [40, 41]. 
Thus, CDK14 expression could be explored 
across various platforms for its efficacy as a 
prognostic and therapeutic biomarker.

GBA3, TMEM79, and UPK1A were found to be 
downregulated in PXA cluster 2 akin to some 
studies that have reported reduced expression 
of these genes in cancer patients. The low lev-
els of expression of GBA3 were shown to be 
associated with a worse prognosis in hepato-
cellular carcinomas [42]. TMEM79 showed de- 
creased expression and loss of immunoreactiv-
ity in prostate cancer as compared to normal 
prostate and was thus considered as a diag-
nostic marker [43]. UPK1A downregulation has 
been known to inhibit proliferation and promote 
apoptosis of bladder transitional cell carcino-
ma cells, signifying its potency as a therapeutic 
target [44].

ICMT, RAB5A, and KMT2C were upregulated in 
PXA cluster 2 and these genes have been previ-
ously documented to have elevated levels of 
expression in various cancers. ICMT is associ-

ated with tumor aggressiveness, chemoresis-
tance via multiple oncogenic pathways and 
possibly has a therapeutic role in Ras-Driven 
Acute Myeloid Leukemia [45, 46]. RAB5A is 
overexpressed in breast cancer patients and 
promotes aggressiveness through regulation of 
the Wnt/β-catenin pathway. It also promotes 
migration and invasion in hepatocellular carci-
noma [47]. Further, KMT2C promoter methyla-
tion has been stated as a prognostic biomarker 
in plasma-circulating tumor DNA in non-small 
cell lung cancer [48].

Next-generation sequencing-based studies 
have documented BRAF V600E and loss of 
CDKN2A as the most common genetic altera-
tions in PXA and APXAs [19, 26]. BRAF, a part of 
the RAS-RAF-MEK-ERK-MAP kinase pathway, is 
frequently activated in many human tumors 
[49]. BRAF V600E mutation has been observed 
in approximately 17-70% of PXA/APXAs. BRAF 
mutant cases have a better prognosis and 
good response to targeted therapies [14, 15, 
50]. In our study, 50% (10/20) of PXA/APXAs 
cases harbored BRAF V600E mutation. There 
was no significant difference in frequency of 
mutation between two WHO grades or mRNA 
profiling-based clusters. We also could not elu-
cidate any association of BRAF status with OS 
or PFS.

Homozygous deletion in CDKN2A/2B, a tumor 
suppressor gene, results in cellular prolifera-
tion and the deregulation of the cell cycle. 
CDKN2A/2B is as common as BRAF V600E 
and has been reported in 8-83% of PXA and 
APXAs [17]. Vaubel et al. observed CDKN2A/B 
deletions in a similar proportion of PXA (83%) 
and APXA (93%) cases [18]. In the present 
study overall, 60% (12/20) cases showed 
CDKN2A deletion. However, there was no sig-
nificant difference in its frequency between two 
histological grades, expression profiling-based 
clusters, or association with OS/PFS.

Thus, summarizing expression profiling pro-
vides definitive insights into PXAs biology as we 

Figure 4. Kaplan Meier survival estimates showing that patients with histological diagnosis of APXA had a relatively 
poorer OS (A) and significantly poorer PFS (B) as compared to PXA (P=0.0804, P=0.0194). The cases in cluster 2 
had a poor OS (C) and significantly worse PFS (D) as compared to cluster 1 (P=0.0973, P=0.003). The difference 
in OS (E) and PFS (F) among BRAF mutant and wild type cases was not significant (P=0.8995, P=0.3022). There 
was no significant difference in OS (G) and PFS (H) in cases with CDKN2A deletion versus no deletion (P=0.0977, 
P=0.4999).
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could identify unrecognized heterogeneity with-
in the same grade. It is possibly a better plat-
form for risk stratification as we observed dis-
tinct survival in two molecular clusters and 
slightly better prediction of recurrence as com-
pared to histology. The study is however limited 
by the number of cases available for evalua-
tion. Gene signatures like CDK14 and other top 
dysregulated DEGs identified in the present 
study can be explored for their use as prognos-
tic and therapeutic biomarkers. Further studies 
analyzing their expression on other platforms 
like qRT-PCR, Nanostring, and IHC with long-
term clinical follow-up and functional character-
ization are warranted to explicate their robust-
ness and applicability in the routine clinical 
workup of PXAs.

Conclusion

This is the first comprehensive analysis high-
lighting the distinct molecular repertoire of 
PXAs which lays the foundation for future devel-
opment of a robust and cost-effective panel of 
biomarkers to facilitate risk stratification and 
suggest novel drug targets.
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