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Abstract: Constipation is a common gastrointestinal problem worldwide. Its impact on health can range from an 
unpleasant problem to being seriously troublesome. When lifestyle modification fails to deal with constipation, 
laxatives are the mainstay of therapy. There are several types of laxatives currently available; however, there still re-
mains a need for better laxatives because certain currently available laxatives are not appropriate for or accessible 
to some patients. Preclinical experiments to study the laxative potential of substances/products of interest are vital 
to improving that situation. The selection of appropriate experimental models for assessing the laxative activities of 
substances/products under investigation is crucial to achieving valid and meaningful results. This article provides a 
scoping review of the literature, outlining, and summarizing models currently being used in preclinical experiments 
assessing the laxative activities of substances/products under investigation. The review includes both screening 
models, e.g., the isolated organ bath system, in vivo fecal assessment and intestinal transit assay, and confirmation 
models, e.g., in vivo constipation models. Chemical substances/drugs used to induce constipation in in vivo consti-
pation models, e.g., loperamide, diphenoxylate, montmorillonite, and clonidine, as well as standard laxative agents 
used as a positive control in experimental models, e.g., bisacodyl, carbachol, lactulose, sodium picosulfate, castor 
oil, phenolphthalein, and yohimbine, are described in detail. The purpose of this article is to assist researchers in 
the design and implementation of preclinical experimental models for assessing laxative activities of substances/
products under investigation to achieve valid and meaningful preclinical results prior to experimentation in humans.
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Introduction

Constipation is a common and troublesome 
condition, with a rising prevalence worldwide in 
tandem with aging populations [1]. It is charac-
terized by having hard feces and incomplete 
defecation. The pathophysiology of constipa-
tion is complicated and poorly understood. 
Pain, fever, dehydration, food and fluid intake, 
toilet training, drugs or supplements, e.g., cal-
cium, and daily behaviors, may all possibly be 
causes of constipation [2]. Primary constipa-
tion is caused by defects in colonic and/or ano-
rectal function [3]. It can be present in func- 
tional defecation disorder, slow-transit consti-

pation, and constipation-predominant irritable 
bowel syndrome [4]. Secondary constipation, 
i.e., constipation that occurs as a result of an 
underlying health issue or a side effect of me- 
dication use, can be associated with adverse 
drug reactions, bowel obstruction, metabolic 
disorders, neurological disorders, systemic dis-
orders, or psychological disorders [5]. Although 
constipation is not a life-threatening condition, 
it can significantly affect the patient’s quality of 
life and contribute to substantial economic bur-
den [6]. The World Gastroenterology Organi- 
zation provides clinical practice guidelines for 
the management of constipation, including a 
number of interventions that can be used to 
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support defecation through various mecha-
nisms [7].

Laxatives are the mainstay of therapy for con-
stipation when lifestyle modifications, e.g., ch- 
anges in diet and increased physical activity, 
are not sufficient to relieve symptoms. Laxati- 
ves can be classified into several types based 
on modes of action, including bulking laxativ- 
es, osmotic laxatives, and stimulant laxatives 
[8]. Bulking laxatives generally contain a high 
amount of unabsorbable fiber which provides a 
supplementary source of fecal mass, whereas 
osmotic laxatives are a type of stool softener 
that works by increasing water-holding capa- 
city to produce stools that are softer and easi-
er-to-pass [9]. Stimulant laxatives, on the other 
hand, induce intestinal motility via stimulation 
of intestinal nerves and muscles or through 
activation of ion channels of the intestinal epi-
thelium resulting in an influx of fluid and elec-
trolytes into the intestinal lumen [9].

Not all laxatives are safe for long-term use and 
not all patients respond to the currently avail-
able laxatives [10]. For instance, abdominal dis-
comfort is one of the most prevalent adverse 
effects of bisacodyl, a stimulant laxative [8]. 
The development of new laxative agents is ne- 
eded to provide alternative options that offer 
better efficacy, fewer adverse effects, or even 
lower cost [11]. Preclinical experiments which 
provide information on the laxative potential of 
substances/products under investigation prior 

to testing in humans are essential. At present, 
several models have been developed and are 
being used in the assessment of laxative ac- 
tivities of substances/products under investi-
gation [12, 13]. However, many experiments 
are costly, time-consuming and may result in 
unnecessary use of experimental animals. A 
selection of potentially appropriate preclinical 
experimental models for assessing laxative ac- 
tivities of substances/products under investi-
gation could help assure valid and meaningful 
preclinical results prior to experimentation in 
humans.

This article offers a scoping review of the litera-
ture to provide a map and summary of preclini-
cal experimental models used to examine laxa-
tive activities of substances/products under 
investigation.

Preclinical experimental models for determin-
ing laxative activities

An overview of preclinical experimental models 
commonly used to investigate laxative activi-
ties of the substances/products is provided in 
Figure 1. The models can be classified into two 
groups based on their main purpose: screening 
or verification [12, 14]. Screening models prin-
cipally aim to explore the laxative potential of 
substances/products of possible interest for 
further investigation, while confirmation mod-
els are designed to verify the laxative activity of 
substances/products [15]. The screening mod-

Figure 1. The common preclinical 
experimental models for laxative 
assessment.
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els involve experiments conducted under physi-
ological conditions which are used to make an 
initial determination of the laxative potential of 
the substances/products under investigation, 
i.e., whether or not they have a laxative effect 
[12]. In regard to ethical aspects, screening 
models usually provide preliminary data that 
can help justify further experimentation and 
minimize the number of animals necessary in 
confirmation experiments [16].

Isolated organ bath system

The isolated organ bath system is a classical 
model used primarily for screening purposes  
to identify substances/products with stimulant 
laxative activities [17]. With the organ bath sys-
tem, intestinal smooth muscle and intestinal 
cells function like an intact intestine in the body 
[18]. In an excised section of intestine, basal 
contraction occurs through the activity of the 
interstitial cells of Cajal, pacemaker cells locat-
ed within circular and longitudinal muscles, via 
the production of spontaneous bioelectrical 
slow waves [19]. This basal contractile activity 
is modulated by the enteric nervous system 
(ENS), which can be induced by the excitatory 
neurotransmitters [20]. Stimulant laxatives can 
directly stimulate the enteric nerve plexus, le- 
ading to peristaltic contraction [21]. This intes-
tinal contraction can be observed when sub-
stances/products with stimulant laxative activ-
ity are applied. Because this system is simple, 
convenient, and reproducible and because it 
operates in the absence of external influences, 
e.g., circulating hormones or extrinsic nervous 
system, it can effectively respond to the sub-
stances/products under investigation [22].

The main instrumental setup of an isolated 
organ bath system is comprised of an isolated 
section of intestine (approximately 3 cm long), 
an organ bath, and a tension transducer con-
nected to an analog-to-digital converter and 
display systems (Figure 2). Measured concen-
tration-tension curves are increased in the pre- 
sence of contractile inducers or substances/
products that have stimulant laxative activity.

Beyond the basic principles of contractile eval-
uation, this technique can be modified to en- 
hance its versatility. For instance, a perfusion 
system has been developed to measure the net 
fluid absorption and to maintain tissue viability 
so that the section of intestine can be used 

over a prolonged period [23]. Data analysis 
software integrated with computer-based data 
recording and/or an image sensor/processing 
algorithm can help improve contractility analy-
sis [24]. However, an isolated organ system can 
only be used with substances/products that 
are hydrophilic and can dissolve well in water  
to form aqueous solutions because the isolat-
ed intestine sections are entirely submerged 
under a fluidic organ bath system.

The rate of intestinal propulsion differs in the 
various different parts of the gastrointestinal 
(GI) tract due partly to the uneven distribution 
of the various enteric regulatory mechanisms, 
including myogenic and neural control systems 
[25]. Although feces are largely formed in the 
large intestine, the isolated small intestine is a 
preferable model for screening laxative activi-
ties of substances/products under investiga-
tion [26, 27]. The rationale behind this is that 
the spontaneous contractile activity of this seg-
ment is dominant, so contraction of the small 
intestine can be readily observed if the sub-
stances/products have stimulant laxative activ-
ities [26, 27]. Furthermore, intestinal peristal-
sis in the small and large intestines shares a 
similar mechanism, that is, stimulation of the 
intestinal epithelium causes enterochromaffin 
cells to release serotonin, which, in turn, drives 
a cascade of muscle contractions via neuro- 
transmitters, e.g., acetylcholine [28].

Prior to testing substances/products, a refer-
ence level of the maximum intestinal contrac-
tion in the system should be obtained. The iso-
lated intestinal segments should initially be 
tested against known chemical substances for 
induction of maximum intestinal contraction. 
Acetylcholine, a major neurotransmitter of ENS, 
is a standard reference which is commonly 
used for this purpose in an isolated organ bath 
system [26]. It acts by binding to muscarinic 
acetylcholine receptors, including M1 and M3 
subtypes of the intestinal smooth muscles, 
leading to G protein-coupled receptor-mediat- 
ed activation of the cascade involving phos- 
pholipase C [29]. In addition to acetylcholine, 
other drugs that act on muscarinic or serotonin 
receptors, e.g., bethanechol, may also be used 
for the induction of maximum intestinal con-
traction to obtain a reference for each experi-
ment [30]. With the isolated organ bath system, 
a single intestinal segment can be used in mul-
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Figure 2. Instrumental diagram and the concentration-response curve of the isolated organ bath system.

tiple experiments until the tissues lose their 
response to the contractile inducer.

It is noteworthy that the isolated organ bath 
system can also be used to define some under-
lying mechanisms of the substances/products 
under investigation [31, 32]. GI motility is partly 
regulated by the ENS and some hormones [33]. 
Therefore, pretreatment with known intestinal 
receptor agonists or antagonists can potential-
ly help researchers identify additional specific 
mechanisms responsible for stimulant laxative 
activities of the substances/products under 
investigation. For example, following pretreat-

ment with atropine (a muscarinic antagonist) 
[26], mepyramine (a histamine H1 receptor 
antagonist) [31, 32], methysergide (a serotonin 
receptor antagonist) [32], or ondansetron (also 
a serotonin receptor antagonist) [31], the iso-
lated organ bath system can be used to deter-
mine whether or not the laxative effects of the 
substances/products are attributable to that 
receptor-mediated response. Another example 
is calcium channel blockers such as verapamil 
and nifedipine which can be used as a pretre- 
atment in the isolated organ bath system to 
determine whether or not the substances/pro- 
ducts under investigation act through stimula-
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tion of calcium channels resulting in intestinal 
contraction [29, 31]. It should be noted, how-
ever, that some chemical agents with broad-
spectrum agonistic/antagonistic effects, e.g., 
cyproheptadine, should not to be used to pre-
treat a model because it may not be possible to 
differentiate the specific receptors attributable 
to the laxative effects of the substances/prod-
ucts under investigation [34].

In vivo fecal assessment

In vivo fecal assessment in mice or rats under 
physiological conditions can primarily be used 
to determine the bulking and/or osmotic laxa-
tive activities of substances/products under 
investigation [9, 12]. This involves an examina-
tion of fecal parameters, including the amount 
of feces, fecal weight, and fecal water content. 
An increase in any of these parameters follow-
ing administration of substances/products un- 
der investigation may be considered a signal 
indicative of the laxative potential of such sub-
stances/products. The average transit time fr- 
om ingestion to excretion in rodents is approxi-
mately 6-7 hours [35]. The Bristol stool scale 
scoring system is one of the most widely used 
and well-accepted tools for rapid evaluation of 
fecal appearance in rodents and in other spe-
cies whose feces resemble human feces [15, 
36].

For an in vivo fecal assessment to be as valid 
as possible, a metabolic cage is recommended 
for qualitative and quantitative examination of 
fluid intake, fecal parameters, and urine output 
of mice/rats. The feces collected from this type 
of cage can be assumed to be free of environ-
mental contamination, making it suitable for 
valid fecal assessment and for further ad- 
vanced analytical techniques, such as microbi-
ota analysis and metabolomics analysis [37, 
38]. However, on occasion some mice/rats may 
not adapt well to a metabolic cage which may 
result in stress that could interfere with their 
normal physiology [39]. To avoid that possibili-
ty, mice/rats should first be acclimatized in a 
metabolic cage for a period of time prior to 
experimentation.

Intestinal transit assay

The intestinal transit assay is a validated model 
used primarily to determine the GI motility and 
peristaltic response following administration of 
substances/products under investigation [40]. 

In this assay, oral administration of detectable 
and unabsorbable tracers is required, followed 
by direct observation of their first appearance 
in the feces or postmortem measurement of 
their movement speed in the GI tract. Tracers 
commonly used in intestinal transit assays in- 
clude charcoal [41], phenol red [42], India ink 
[43], radiopaque tracers, e.g., barium sulfate or 
chromium 51 [44, 45], carmine red [46], fluo-
rescent tracers [47], and steel beads [48]. 
These tracers can be used to directly track the 
distance of gut motility at a specific time fo- 
llowing euthanasia. For a particular experiment, 
tracers are selected depending on the availa- 
bility of equipment as well as the simplicity, 
sensitivity, and visibility for detection of the dif-
ferent options.

There are numerous types of intestinal transit 
assays, most of which are based primarily on 
the specific area in the GI tract to be observed 
[12, 49]. A whole gut transit assay may best 
represent the overall GI motility along the GI 
tract, but it may require a long observation peri-
od [42, 50]. The small intestine transit assay 
may be a preferable option in certain circum-
stances as it requires a shorter period of time 
to conduct one experiment [49, 51]. Thanks to 
the long length of the small intestine, this type 
of assay can be used to assess substances/
products causing excessive GI motility since 
the tracers may remain in the small intestine 
for up to 5 hours [52]. The small intestine tran-
sit assay is highly accurate and precise in esti-
mating the rate of GI motility at a specific time 
point. The transit ratio can be calculated using 
the distance traveled by the tracer and the to- 
tal length of the intestine. The intestinal transit 
assay is illustrated in Figure 3.

In vivo constipation models

To verify the laxative activities of substances/
products under investigation, in vivo constipa-
tion models should be used as a confirmation 
model. A mouse/rat constipation model in- 
volves inducing constipation in experimental 
mice or rats and evaluating the therapeutic 
effects of the substances/products under 
investigation [14, 15]. There are a number of 
chemical substances/drugs that can be used 
to induce constipation in mice/rats (see Sec- 
tion 3). Changes in phenotypic characteristics 
of experimental mice/rats following administra-
tion of a constipation inducer can be observed 
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through alterations in the amount of feces, 
fecal weight, and/or fecal water content of the 
animals [43, 53]. Histological alterations in 
drug-induced constipated mice/rats can be 
observed under a microscope. The changes 
may include, e.g., a decrease in the thickness 
of the mucosa and the muscular layers and 
mucin secretion in the transverse colon [13, 
44]. The molecular patterns of mRNA and/or 
protein expression as well as any downstream 
signaling pathways associated with constipa-
tion can also be explored to identify mecha-
nisms associated with the action of the sub-
stances/products [54].

In vivo constipation models can also be devel-
oped using techniques other than the drug-
induced technique, e.g., low-fiber diet-induced 
constipation and intestinal irritation with ice-
cold saline [15, 55-58]. The latter technique 
can cause GI dysfunction, delayed intestinal 
transit time, and reduced fecal weight because 
ice-cold saline can cause an intestinal irrita- 
tion which interferes with the ENS in the small 
and large intestines [15]. This alteration sub- 
sequently increases the level of intestinal ni- 
tric oxide, one of the gut inhibitory neurotrans-
mitters, which leads to a decrease in GI motili-

needs to be elucidated and further validation 
studies of this novel model are needed.

Summary of the preclinical experimental mod-
els with examples of implementation

The models mentioned above are useful for 
screening or verifying the laxative potential of 
substances/products under investigation. To 
facilitate the selection of optimal models, the 
advantages, disadvantages, and limitations of 
each model are summarized in Table 1.

Previously, development of laxative drugs regu-
larly required preclinical models for determin-
ing laxative mechanisms prior to conducting 
clinical trials. For instance, in 1998 a novel pro-
kinetic drug R093877 (prucalopride) developed 
by the Janssen Research Foundation was test-
ed using an isolated organ bath assay in gu- 
inea pig and rat colonic segments [59]. This 
demonstrated a stimulant effect of prucalo-
pride on the intestinal contraction and verified 
its selective targeting of the 5-HT4 receptor 
when the selective 5-HT4 antagonist GR 
113808A was added. The experiment was ex- 
panded to include testing of isolated guinea-
pig, canine, and human intestinal sections, 

Figure 3. Schematic diagram of intestinal transit assay.

ty. Such models may be con-
sidered as an alternative for 
confirmation of the in vivo lax-
ative activities of the substan- 
ces/products, including their 
laxative potential.

In a recent publication, Kim  
et al. observed obesity-indu- 
ced constipation in CRISPR-
Cas9-mediated leptin knock-
out mice [13]. The knockout 
mice displayed distinct consti- 
pation phenotypes in GI motil-
ity, histopathological changes, 
and protein expression asso-
ciated with constipation in the 
transverse colon. This obser-
vation suggests the possibility 
for in vivo investigation of lax-
ative activities of substances/
products against obesity-in- 
duced constipation using CR- 
ISPR-Cas9 techniques. How- 
ever, the link between leptin 
deficiency and the molecular 
mechanism of constipation 
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Table 1. Advantages, disadvantages, and limitations of laxative models
Model Advantages Disadvantages and limitations
Isolated organ bath system Uses very small amounts of substances/products Requires many instrument setups

Can be used to test many substances/products in multiple 
experiments until the tissues become unresponsive

May show no contractile response when spontaneous contraction 
of the intestines is greater than that induced by the substances/
products

Can be modified to evaluate receptor-mediated intestinal 
contraction

Cannot test substances/products that do not dissolve in water

Mimics an intact intestine in the body without interfering with 
external influences

Cannot evaluate bulking and osmotic activities

Can use several intestinal sections from one animal
In vivo fecal assessment Simple to observe fecal parameters Requires many animal cages per experiment (one animal per cage)

Affordable instruments Requires to keep track of the amount of food and water  
consumption

Can be used in multiple experiments using the same set of 
animals

Requires workforce to observe wet feces as soon as possible to 
avoid water evaporation

Not necessary to euthanize animals which can be trans-
ferred to other experiments after a washout period of 7 days

Intestinal transit assay Easy to track an ingested tracer in the GI tract Provides only one result from each animal
Requires a short period of time for one experiment to be 
done

Can only be performed on euthanized animals (except when using 
radiopaque or fluorescent tracers, which require advanced imaging 
techniques for live animals)
Should be done within a specific time before the tracer moves into 
the large intestine

In vivo constipation model Verifies the overall laxative effects on constipation Mimics secondary constipation but not primary constipation
Appropriate for experiments in various dimensions, e.g.,  
fecal parameters, molecular assays, signaling pathways, and 
pathology

Takes time to induce constipation which may result in different 
symptom levels of constipation in each animal

Requires model optimization to avoid the strong symptoms of  
constipation that cannot be relieved by substances or products
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which confirmed the role of prucalopride as  
the selective 5-HT4 receptor agonist [60, 61]. 
An intestinal transit assay in rats was conduct-
ed by tracking the distance moved by an acti-
vated charcoal suspension in the small intes-
tine and showed a significant acceleration of 
gut motility [62]. These preclinical findings pro-
pelled prucalopride research into clinical trials 
ranging from healthy volunteers to patients 
with constipation [63, 64]. In 2018, prucalo-
pride was approved by the US FDA for chronic 
constipation treatment.

Notably, there was no in vivo constipation 
model used in the early research on prucalo-
pride. Similar to the study of the novel selective 
5-HT4 receptor agonist YH12852, the preclini-
cal experiment was conducted with intestinal 
transit assays in guinea pigs involving tracking 
of a charcoal mixture in the small intestine to 
assess the upper GI transit [65]. The lower GI 
transit was also evaluated by assessment of 
fecal parameters. A second publication con-
firmed YH12852 as a selective 5-HT4 receptor 
agonist by using organ bath assay in guinea pig 
isolated distal colons [66]. Later, clinical trial 
experiments were conducted after preclinical 
assays [67, 68]. In summary, the intestinal tran-
sit assay is currently one of the best available 
models and provides sufficient preliminary in- 
formation about the laxative potential of sub-
stances/products under investigation prior to 
conducting further research in clinical trials. In 
addition, the organ bath assay is a confirma- 
tion method for determining the specific target 
receptor of a novel drug.

The development of preclinical models for laxa-
tive assessment has recently been growing.  
In vivo constipation models have been devel-
oped to determine the potential of substan- 
ces/products in counteracting constipation. 
For instance, in vivo drug-induced constipation 
models were initially characterized in 2009 
[69]. Since then, the CRISPR-Cas9-mediated 
leptin knockout mice model has been able to 
create constipation characteristics [13]. It is 
noteworthy that the most recent methodology 
to investigate laxative activities of substances/
products regularly includes constipation mod-
els together with intestinal transit assay to 
obtain various dimensions of results, including 
gut motility and underlying mechanisms [70-
73]. As a result, future preclinical constipation 

models will be able to imitate any aspect of 
constipation in a way that is close to the 
condition of human in both phenotypic and 
genotypic characteristics and are expected to 
become a critical tool for gathering information 
prior to conducting research in humans.

Constipation-inducing substances

Chemical substances/drugs commonly used  
to induce constipation in animal experiments 
include loperamide, diphenoxylate, montmoril-
lonite, and clonidine [53, 54, 72, 74-77]. De- 
tails of each chemical substance/drug and  
representative examples of their use in animal 
experiments are summarized in Table 2. It 
should be noted that such chemical substanc-
es/drugs can be applied not only in a drug-
induced constipation model but also in intesti-
nal transit assays for the purpose of slowing 
gut motility [78-80].

Loperamide, a potent μ-opioid receptor ago-
nist, is the most common drug used to indu- 
ce constipation in animal models [72, 74-78, 
81-92]. It acts to decrease GI motility and peri-
stalsis, and reduce intestinal fluid, resulting in 
a reduction in the amount of feces, fecal wei- 
ght, and fecal water content [93, 94]. Histo- 
pathological changes in the transverse colon, 
i.e., a decrease in the length of both muc- 
ous membrane and muscular layers, are also 
observed following loperamide administration 
[54].

Diphenoxylate is another opioid receptor ago-
nist that is often used to induce constipation in 
experimental animals [79, 95-100]. It stimu-
lates μ-opioid receptors in the GI tract, result-
ing in a decrease in GI motility, fecal parame-
ters, and intestinal fluid as well as a delay in 
intestinal transit time [101]. It has been ob- 
served that rats treated with diphenoxylate 
have decreased fecal parameters and delayed 
intestinal transit time, even at a hundred days 
post-treatment [79]. Another feature of dip- 
henoxylate-induced constipation is that the 
drug can contribute to a decrease in short-
chain fatty acid levels in the colon [102]. For 
that reason, this model may be preferable for 
experiments searching for bulking laxatives 
such as substances/products with high dietary 
fiber content [96].

Montmorillonite, a naturally adsorbent clay 
mineral isolated from bentonite, is an antidiar-
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Table 2. Summary of chemical substances/drugs commonly used to induce constipation in experimental animals

Agent Animal strain Route of  
administration Dose and period of usage References

Loperamide Sprague-Dawley rats s.c. 3-4 mg/kg BW, twice daily, for 3-7 days [53, 54, 72, 74-77, 109, 111, 133-135]
16 mg/kg BW, twice daily, for 1 week followed by once daily, for 1 week [136]

p.o. 3-5 mg/kg BW, once daily, for 6-7 days [81-83]
2-4 mg/kg BW, twice daily, for 1-2 weeks [44, 84, 85]

i.g. 1.5 mg/kg BW, twice daily, for 7 days [110]
Wistar rats p.o. 5-10 mg/kg BW, single dose [107, 137, 138]

3 mg/kg BW, once daily, for 3 days [80]
3 mg/kg BW, twice daily, for 5 days [89]

i.p. 1-4 mg/kg BW, twice daily, for 3-6 days [88, 90, 139]
i.g. 5 mg/kg BW, single dose [140]

Unspecified rat strains p.o. 4 mg/kg BW, once daily, for 2 weeks [141]
i.p. 5 mg/kg BW, twice daily, for 5 days [142]

BALB/c mice s.c. 10 mg/kg BW, twice daily, for 14 days [87]
p.o. 5-10 mg/kg BW, single dose [78, 86]
i.p. 5 mg/kg BW, single dose [32]
i.g. 10 mg/kg BW, once daily, for 17 days [43]

ICR mice s.c. 4 mg/kg BW, twice daily, for 4 days followed by 8 mg/kg BW, twice daily, for 
4 days

[92]

p.o. 10 mg/kg BW, single dose [143]
5 mg/kg BW, once daily, for 3 days [144]

Kunming mice i.g. 1.5 mg/kg BW, once daily, for 15 days [145]
Swiss albino mice p.o. 5 mg/kg BW, single dose [146]

3-5 mg/kg BW, once daily, for 3-6 days [93, 94, 147]
Diphenoxylate Sprague-Dawley rats p.o. 5 mg/kg BW, single dose [95]

i.g. 10 mg/kg BW, once daily, for 20 days [148]
Wister rats i.g. 8 mg/kg BW, single dose [79]

C57BL/6J mice i.g. 5 mg/kg BW, for 1 week [96]
ICR mice p.o. ICR mice (6-8-week-old; 18-22 g): 50 mg/kg BW, single dose [149]

i.g. ICR mice (18-22 g): 50 mg/kg BW, once daily, for 7 days [100]
Kunming mice p.o. 30 mg/kg BW, once daily, for 3 days [99]

i.g. 10 mg/kg BW, once daily, for 5-14 days [97, 98]
10 mg/kg BW, twice daily, for 2 weeks [150]

Montmorillonite Kunming mice Unspecified 30 mg/kg BW, once daily, for 3 days [103, 104]
Clonidine Wistar rats i.p. 2 mg/kg BW, single dose [107]

Slc:ddY mice s.c. 0.03 mg/kg BW, single dose [106]
Abbreviations: BW, body weight; i.g., intragastric administration; i.p., intraperitoneal injection; p.o., per oral; s.c., subcutaneous injection.
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rheal agent that is sometimes used to induce 
constipation in animal experiments [103]. A 
high dosage of montmorillonite can coat the 
surface of the gut lumen and interact with the 
mucosal proteins, thereby lessening the mois-
ture content in the GI tract. This feature leads 
to a decrease in GI motility and an increase in 
stool hardness [104].

Clonidine, an α2 adrenergic receptor agonist, 
affects the sympathetic nervous system and 
leads to relaxation of intestinal smooth muscle 
[105]. Mice/rats treated with clonidine mani-
fest signs of constipation such as a diminish- 
ed amount of feces, decreased fecal weight, 
and delayed intestinal transit time [91, 106, 
107]. Due to its mechanism of action which 
involves the nervous system, clonidine is some-
times the drug of choice to mimic constipation 
associated with neurological diseases [108].

Positive controls for laxative assessment

The use of standard laxative drugs as a positive 
control in any experimental models is critical in 
light of the fact that any model should demon-
strate that it is valid. Drugs commonly used for 
this purpose include bisacodyl, carbachol, lact-
ulose, sodium picosulfate, castor oil, phenol-
phthalein, and yohimbine (Table 3). Neverthe- 
less, it is not uncommon to see experiments in 
which no standard laxative agent was applied 
as a positive control [54, 72, 97, 103]. In those 
cases, it might be acceptable for the study to 
substantiate the laxative activity of certain  
substances/products under investigation if th- 
ose substances/products demonstrate potent 
laxative effects against constipation [104, 
109-111].

Bisacodyl is a stimulant laxative drug which 
works by stimulating the ENS to enhance the 
peristaltic contractions of the GI tract [112]. It 
also has an osmotic laxative property as the 
drug can decrease the expression of aquapo-
rin-3 water channels in the colon, resulting in a 
decrease in water absorption and, as a result, 
an increase in fecal water content [113]. No- 
tably, bisacodyl is the drug most commonly 
used as a positive control in experimental mo- 
dels for laxative assessment [56, 84, 85, 114, 
115].

Carbachol is a parasympathomimetic agent 
which acts as an agonist on intestinal musca-

rinic receptors, particularly M2 and M3, and on 
nicotinic receptors [116-118]. Carbachol can 
be used in an intestinal transit assay as a po- 
sitive control to enhance GI motility [78]. It is 
also considered an alternative drug for use as a 
positive control in in vivo laxative models [86].

Lactulose is a type of osmotic laxative. It helps 
to soften the stool and pass the stool out dur-
ing a bowel movement [119]. Lactulose is a 
galactose- and fructose-based synthetic disac-
charide, so it can be metabolized by colonic 
bacteria [120]. This results in an increase in GI 
motility through gas formation and osmolality, 
which activates intestinal osmoreceptors in the 
intestinal lumen leading to an increase in intes-
tinal motor activity [121]. Recent studies have 
shown that lactulose is effective against lo- 
peramide-induced constipation and that it can 
restore normal fecal parameters and the intes-
tinal transit rate in a few weeks [87, 93].

Sodium picosulfate is known as a colorectal 
cleansing agent [122]. It is an unabsorbable 
prodrug and requires colonic gut microbiota to 
metabolize it into the active compound bis-(p-
hydroxyphenyl)-pyridyl-2-methane (BHPM) whi- 
ch can stimulate peristalsis in the GI tract 
[123]. However, the stimulant laxative effect of 
sodium picosulfate is sometimes unpredictable 
because the conversion of sodium picosulfate 
into its active metabolite depends largely on 
the gut flora of experimental animals [8].

Castor oil is effective at relieving constipation 
and is regarded as a stimulant and irritant laxa-
tive [124]. The laxative activity of castor oil is 
primarily mediated by ricinoleic acid, the main 
fatty acid in castor oil [125]. Evidence has sh- 
own that ricinoleic acid can activate E-type 
prostanoid receptors and stimulate intestinal 
peristalsis [124]. Owing to its potent effect on 
gut motility, castor oil is also commonly used as 
a diarrhea inducer in animal experiments, and 
castor oil-induced diarrhea is one of the stan-
dard methods used to investigate anti-diarrhe-
al activities of substances/products of interest 
[126-128].

Phenolphthalein had been used to treat chronic 
constipation due to its stimulant laxative activ-
ity [129]. The drug affects production of eico-
sanoids and acts on the Na+/K+-ATPase pu- 
mp on the surface of enterocytes leading to a 
reduction of fluid absorption in the GI tract [8]. 
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Table 3. Summary of standard laxative drugs commonly used as a positive control in constipation models
Experimental model Positive control Animal strain Dose and period of usage References
Screening models

    Isolated organ bath system None [31, 32, 151-154]

Bisacodyl Isolated rat colon 0.025 mg/ml [56]

Carbachol Isolated rat ileum 0.001-100 μM [94, 155, 156]

Isolated rat colon 10 μM [142]

Isolated mouse colon 1 μM [144]

Isolated rabbit jejunum 0.3 μM [29]

    In vivo fecal assessment None [74, 109, 137, 142, 145]

Bisacodyl Wister rats 0.25 mg/kg BW, i.g. [114]

Swiss albino mice 5 mg/kg BW, p.o., single dose [115]

Carbachol BALB/c mice 1 mg/kg BW, p.o., single dose [29, 78]

1 mg/kg BW, i.p., single dose [86]

Swiss albino mice 1 mg/kg BW, i.p., single dose [157]

Lactulose BALB/c mice 30 mg/kg BW, p.o., single dose [158]

Sodium picosulfate Sprague-Dawley rats 25 mg/kg BW, p.o., single dose [159]

Swiss albino mice 5 mg/kg BW, p.o., single dose [146]

Castor oil Swiss albino mice 0.3 ml/animal, p.o., single dose [160]

Unspecified mouse strain 10 ml/kg BW, i.g., single dose [154]

    Intestinal transit assay None [54, 72, 74, 77, 81, 94-97, 103, 104, 109, 111, 142, 143, 
145, 161, 162]

Bisacodyl Sprague-Dawley rats 5 mg/kg BW, p.o., single dose [56]

3.3-5.5 mg/kg BW, p.o., once daily, for 2-4 weeks [44, 82, 84, 85]

Wister rats 0.21 mg/kg BW, p.o., once daily, for 7 days [80]

20 mg/kg BW, p.o., once daily, for 30 days [79]

Kunming mice 100 mg/kg BW, p.o., once daily, for 14 days [163]

Swiss albino mice 5 mg/kg BW, p.o., single dose [115]

Carbachol BALB/c mice 1 mg/kg BW, p.o., single dose [78]

1 mg/kg BW, i.p., single dose [29]

Swiss albino mice 1 mg/kg BW, i.p., single dose [157]

Lactulose Sprague-Dawley rats 4-8% in drinking water for 4 weeks [134]

BALB/c mice 10 mg/ml in drinking water for 2 weeks [87]

ICR mice 500 mg/kg BW, p.o., once daily, for 14 days [144]

Sodium picosulfate Sprague-Dawley rats 5 mg/kg BW, p.o., once daily, for 6 days [83]

Castor oil Swiss albino mice 0.3 ml/animal, p.o., single dose [146, 160]

Phenolphthalein BALB/c mice 70 mg/kg BW, i.g., once daily, for 17 days [43]

Kunming mice 70 mg/kg BW, i.g., once daily, for 14 days [98]

Yohimbine Wistar rats 1-2 mg/kg BW, i.p., single dose [89, 90, 107, 138]
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Confirmation models

    Loperamide-induced constipation None [32, 53, 54, 72, 74-77, 81, 86, 88, 92, 94, 109-111, 138, 
141, 143, 161]

Bisacodyl Sprague-Dawley rats 3.3-5.5 mg/kg BW, p.o., once daily, for 2-4 weeks [44, 82, 84, 85]

Wistar rats 0.21 mg/kg BW, p.o., once daily, for 7 days [80]

Lactulose Sprague-Dawley rats 4-8% in drinking water for 4 weeks [134]

BALB/c mice 10 mg/ml in drinking water for 2 weeks [87]

ICR mice 500 mg/kg BW, p.o., once daily, for 14 days [144]

Sodium picosulfate Sprague-Dawley rats 5 mg/kg BW, p.o., once daily, for 6 days [83]

Castor oil Wistar rats 2 ml/kg BW, i.g., once for 9 hours [140]

Phenolphthalein BALB/c mice 70 mg/kg BW, i.g., once daily, for 17 days [43]

Yohimbine Wistar rats 2 mg/kg BW, i.p., once daily, for 5 days [89, 90]

    Diphenoxylate-induced constipation None [95-97]

Bisacodyl Wister rats 20 mg/kg BW, p.o., once daily, for 30 days [79]

Kunming mice 100 mg/kg BW, i.g., once daily, for 14 days [99]

Phenolphthalein Kunming mice 70 mg/kg BW, i.g., once daily, for 14 days [98]

400 mg/kg BW, i.g., twice daily, for 14 days [150]

    Montmorillonite-induced constipation None [103, 104]

    Clonidine-induced constipation None [91]

    Low-fiber diet-induced constipation None [55]

Bisacodyl Sprague-Dawley rats 2.5 mg/kg BW, p.o., once daily, for 3 days [56]

    Ice-cold saline-induced constipation None [15, 57, 58]
Abbreviations: BW, body weight; i.g., intragastric administration; i.p., intraperitoneal injection; p.o., per oral; s.c., subcutaneous injection.
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However, phenolphthalein is no longer used as 
a laxative agent in humans due to its carcino-
genic potential; presently, its use is limited to 
animal experiments [8, 130].

Yohimbine, an alkaloid found in numerous bo- 
tanic sources, is an α2 adrenergic receptor 
antagonist [131]. It increases the release of 
acetylcholine by the presynaptic neurons, lead-
ing to an increase in colonic contraction [132]. 
Yohimbine can be used as a positive control  
in loperamide-induced constipation as it can 
increase GI motility and stool amounts in exper-
imental rats [89, 90].

Conclusions

This article provides a scoping review of pre-
clinical experimental models commonly used 
for assessing laxative activities of substances/
products under investigation. The isolated or- 
gan bath system, in vivo fecal assessment, 
and/or intestinal transit assays can aid in the 
selection of substances/products of interest 
for further investigation in confirmation mod-
els. Substances/products with laxative poten-
tial should be further investigated in in vivo 
constipation models, where each substance/
product under investigation can be tested ag- 
ainst constipation in an entire living organism. 
Exploration of the mechanisms and/or path-
ways responsible for laxative activities can pro-
vide support for further development of laxa-
tive candidates in clinical trials.
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