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Non-coding RNAs: are they the protagonist  
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Abstract: The idea of functional non-coding RNAs is taking precedence over the previous notion which believed that 
they only comprise the auxiliary and junk material of the genome. Newer technologies and studies have proven their 
importance in regulating and affecting several cellular processes. One such area of research wherein their impor-
tance has started to take light is in cancer research, particularly leukemia. Myeloid leukemia is a blood malignancy 
birthed from mutations in hematopoiesis that disable myeloid progenitor cells from proper differentiation. This 
review will compile the most recent findings regarding the effects of these regulatory non-coding RNAs on the two 
types of myeloid leukemia. In particular, the effects of circular RNAs, micro RNAs and long non-coding RNAs, on the 
pathogenesis and proliferation of Acute and Chronic myeloid leukemia will be revealed in a molecular, cellular and 
prognostic light. The mechanisms of proliferation, gene-to-gene interactions and possible therapeutic effects will 
also be discussed. Finally, an understanding of the overall “goodness” and “badness” of these non-coding RNAs will 
be summarised. This review hopes to provide a platform for easy access to data regarding the current non-coding 
RNAs in myeloid leukemia, for faster and easier research. Finally, the review will summarize a few key players that 
have protagonistic and antagonistic functions, and those that regulate multiple pathways in leukemia simultane-
ously.
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The act

As science progresses the notion that non-cod-
ing RNA (ncRNAs) comprises the “junk” of the 
genetic material is slowly fading away. There is 
now increasing evidence pointing to the regula-
tory effects that these non-coding RNAs may 
have in the cell. Non-coding RNAs such as 
micro RNAs (miRNAs), long non-coding RNAs 
(lncRNAs), and circular RNAs (circRNAs) espe-
cially, have started to emerge as key players in 
epigenetic gene regulation. More research in 
these fields has piqued the interest among 
researchers to find if these non-coding RNAs 
have any effect in causing leukemia.

Leukemia is a disorder of the blood cells (also 
known as hematologic malignancies) that 
causes uncontrolled cell division in cells formed 
from hematopoietic stem cells (HSCs) [1]. 
Leukemia has affected around 474,519 people 
world-wide as of 2020 [2]. The four major types 

of leukemia are acute myelogenous leukemia 
(AML), acute lymphoblastic leukemia (ALL), 
chronic myelogenous leukemia (CML) and 
chronic lymphocytic leukemia (CLL). The acute 
form of leukemia usually affects younger indi-
viduals and is more severe due to its sudden 
onset and rapid proliferation. The chronic form 
usually affects an older age group and may take 
time to be diagnosed. During HSC differentia-
tion, mutations in the blast stage can give rise 
to mutated myeloid and lymphoid cell proge-
nies, which can harbor oncogenes and turn leu-
kemic [3]. ‘Blasts’ are unmatured and undiffer-
entiated cells, and can differentiate to form 
erythrocytes, megakaryocytes, granulocytes, 
monocytes, T-lymphocytes, B-lymphocytes and 
natural killer cells (Figure 1). These differenti-
ated cells can become cancerous and form 
specialized leukemias that can be a subset of 
the original four types of leukemias, such as 
acute megakaryoblastic leukemia, acute biphe-
notypic leukemia, Burkitt’s leukemia, precursor 
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acute T-lymphoblastic leukemia, among many 
other types. Many approaches have been taken 
to understand its cause, such as the effects of 
external disturbances like radiation, smoke and 
alcohol, along with a more molecular approach 
including the effects of oncogenes, tumor sup-
pressor genes, Philadelphia translocations, 
mutations, along with studies on cell cycle reg-
ulators like p53.

The non-coding RNAs focused on in this review 
are the miRNAs, lncRNAs and cirRNAs. These 
have distinct physical characteristics as well as 
distinct modes of action in the cell. It has been 
observed that many of these ncRNAs do not act 
independently, instead they sponge other 
ncRNAs, regulate the expression levels of other 
proteins by different pathways, or inhibit other 
non-coding RNAs from being expressed. Com- 
plex relationships among them give rise to a 
wide variety of epigenetic modifications that 
eventually lead to tumorigenesis. Up-regulation 
of certain ncRNAs promotes leukemogenesis, 
while some others inhibit it. Some lncRNAs and 
miRNAs are found to have dual roles in AML 
and CML pathogenesis. Many serve prognostic 

roles and are a means of identifying the stage 
of leukemia while targeting others can give rise 
to therapeutic biomarkers. There are already 
several commercial drugs in the market for cur-
ing CML, however, a wide population of patients 
have drug resistance against these verified 
drugs. Several ncRNAs are seen to be overex-
pressed in such patients who suffer from drug 
resistance. These are gaining the spotlight for 
being potential therapeutic targets in the 
attempt to reverse multi drug-resistance. This 
review will bring forth all of the recent ncRNAs 
that have been studied in an attempt to 
increase the understanding of their roles in 
AML and CML. Finally, a general overview sum-
marizing the positive and negative effects of 
the RNAs will be made to find potential thera-
peutic targets among the wide and varied RNA 
pool.

The backstory of hematopoietic stem cell dif-
ferentiation

Everything has an origin. True to this state- 
ment, all blood cells originate from a common 
precursor known as hematopoietic stem cells. 

Figure 1. A schematic of the differentiation of hematopoietic stem cells. This figure gives an overview of the pathway 
of differentiation of HSC’s that gives rise to the different types of HSC progenies in the body. Different cell types are 
depicted with different shapes and colors, and are described inside the boxes next to them.
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Hematopoietic stem cells, referred to as HSCs 
have the properties of self-renewal, differentia-
tion, quiescence and apoptosis. Careful regula-
tion of these properties can give rise to all the 
different types of the blood cells in the body [4]. 
HSCs differentiate in the bone marrow of the 
adult vertebrate [5], though initially they repli-
cate in the embryonic yolk sac in the first week 
of development. Studies on hematopoiesis 
have revealed the different paths they undergo 
for differentiation. This is pictorially shown in 
Figure 1 [6].

It is at this stage, when the myeloid progenitor 
cell and lymphoid progenitor cell differentiates, 
that any genetic or epigenetic changes in the 
blast cell differentiation can give rise to myeloid 
leukemia or lymphoid leukemia, respectively 
[7]. Affecting the chromatin accessibility and 
structure is one of the ways by which the HSC 
self-renewal and differentiation properties can 
be controlled. This is done by DNA modifying 
enzymes like the DNA methyltransferases 
(DNMTs) and ten-eleven translocation methyl-
cytosine dioxygenases (TETs). Histone modifi-
ers like histone acetyl transferase (HATs), his-
tone methyltransferases (HMTs), histone 
demethylases (HDMS) and histone deacety-
lases (HDACs) are enzymes that change his-
tone structures and thereby modify chromatin 
accessibility [8, 9]. It has also been observed 
that signals from the microenvironment also 
determine the differentiation patterns of the 
HSCs [10]. Recent research has delved into the 
effects that ncRNAs have over HSC differentia-
tion. It is now known that ncRNAs have major 
roles to play in the post-transcriptional regula-
tion of HSC differentiation [11, 12].

The key players: non-coding RNAs

miRNAs

MicroRNAs (miRNAs) are a type of regulatory 
ncRNA that take part in post-transcriptional 
modifications, by regulating target mRNAs that 
have been transcribed from genetic material. 
miRNAs are short RNA sequences which typi-
cally consist of 19-25 nucleotides. The seed 
region of miRNAs is a nucleotide stretch from 
2-7 nucleotides upstream of the 3’UTR. This is 
a unique sequence which binds complementa-
ry to the mRNA of interest [13]. The miRNA, 
which in conjugation with the RISC complex 
[14], binds to the 5’ end of the mRNA and can 

regulate the mRNA by either cleaving it, through 
endonucleases, or by changing its conforma-
tion, thereby preventing mRNA binding proteins 
from accessing the mRNA and translating it. 
RNA Pol II enzyme forms the primary transcript 
of the miRNA (100 s of nucleotides long) in the 
nucleus, which is then further processed by the 
Drosha enzyme to form a pre-miRNA which is 
70-100 nucleotides long and has a stem-loop 
structure. The HASTY enzyme transports this 
pre-miRNA to the cytoplasm after which the 
Dicer enzyme converts the pre-miRNA to a dou-
ble stranded miRNA. When miRNA combines 
with RISC it forms miRNP, which binds to the 
mRNAs [15-19]. In case of a double stranded 
miRNA, the guide (mature strand) miRNA is 
used for binding the mRNA, while the passen-
ger strand is cleaved off [20]. Though miRNAs 
make up only 1% of the entire human genome, 
it is responsible for regulating around 30% of all 
human protein synthesis [21, 22]. This is due to 
the fact that miRNAs do not have 100% 
sequence complementarity with the target 
mRNA of humans, giving rise to flexibility of the 
miRNA to bind to different mRNAs that have 
some sequence complementarity. Hence, miR-
NAs are important post-transcriptional modifi-
ers, and as will be discussed, they have impor-
tant roles in the occurrence of AML and CML.

lncRNAs

Long non-coding RNAs (lncRNAs) are another 
type of regulatory ncRNA which are usually 
classified as having more than 200 nucleo-
tides. The GENECODE project lists that there 
are 17,957 lncRNAs in our entire genome as of 
2019 [23, 24]. lncRNAs are very similar to 
mRNAs in that they too can be polyadenylated 
by RNA Pol II, spliced, capped, and transcribed 
[25-30]. Essentially, they are just like mRNAs, 
but the main difference is that they do not con-
tain reading frames necessary for encoding 
proteins. Their functions include regulating 
transcription by cis- and trans-acting pathways, 
proteins and RNA molecules in the organisation 
of nuclear domains. They also participate in 
regulating cell division, stability and translation 
of mRNAs, along with maintaining the cytoplas-
mic factors and protein scaffolding pathways 
required for the cell [31-33]. They are usually 
localised in the nucleus, but they have also 
been seen to have important functions in the 
cytoplasm. Some lncRNAs also have specific 
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localised functions, like the lncRNA RMRP, 
which is transported out of the nucleus via the 
exportin CRM1, which is then localised to the 
mitochondria and regulates mitochondrial DNA 
replication, mitochondrial function and struc-
ture maintenance [34].

circRNAs

These are covalently closed, circular RNA mol-
ecules (circRNA) that are formed via a back-
splicing method. They are formed when the 3’ 
end of an exon of a gene, covalently links to its 
own 5’ upstream exon, thereby forming a 3’-5’ 
phosphodiester bond. They are formed by the 
spliceosome machinery and are transcribed by 
RNA Pol II. Two models have been proposed to 
explain circRNA synthesis. These are the intron-
interaction driven circularization model and the 
lariat driven circularization model [35]. Due to 
this closed structure, they do not have 3’ poly A 
tails or 5’ 7-methylguanosine caps and they are 
resistant to the action of RNase R present in 
the cytoplasm [36-40]. circRNAs such as the 
exonic circRNAs (ecircRNAs) are usually located 
in the cytoplasm, though certain circRNAs such 
as the circular intronic RNAs (ciRNAs), and 
exon-intron circRNAs (EIcircRNAs) are localised 
in the nucleus [41]. They mainly serve as regu-
latory roles. It has been found that many cir-
cRNAs have miRNA binding sites on their sur-
faces, and they can act as miRNA sponges. This 
prevents the miRNA from binding to the mRNA, 
thereby preventing silencing of that target 
mRNA by that miRNA [42]. circRNAs can also 
act as transcriptional regulators, by binding to 
their parent genes in the nucleus followed by 
up-regulating or down-regulating the gene of 
interest [43, 44]. Similarly, they can also act as 
spicing regulators, they are involved in protein-
protein interactions, in ribosomal RNA process-
ing and they are also involved in recruiting pro-
teins to certain locations [35].

Setting the stage for leukemia

Leukemia can be broadly classified into two 
types: Myeloid leukemia and lymphoid leuke-
mia. Myeloid leukemia is a clonal expansion of 
myeloid progenitor cells, which if left untreated 
can cause bone marrow deformations, and 
eventually death [45]. Acute myeloid leukemia 
occurs mainly in the younger age groups, while 
chronic myeloid leukemia is more prevalent 
among older patients. The acute myeloid leuke-
mia is considered to be more vigorous due to 

its aggressively proliferating nature, while the 
chronic form is considered to be long lasting 
and requires years of treatment [46].

Acute myeloid leukemia

Acute myeloid leukemia has become a central 
research focus because it is prevalent in high 
numbers across the world. When more than 
20% of the cells in the bone marrow or blood 
become myeloblasts then it is diagnosed as 
AML [47]. Many years of research has now con-
cluded some key factors that are the causes for 
this leukemia. Some of the primary reasons 
are: point mutations in the genes responsible 
for differentiation of myeloid progenitor cells, 
translocations, inversions, non-specific muta-
tions, gene regulators and more recently, non-
coding RNAs, which are the main focus of this 
review [48, 49].

Learning about the classification of AML is nec-
essary to learn about the methods by which 
AML is clinically studied. This can help research-
ers to find a cure for certain causative agents in 
a very systematic and globally accepted way. 
AML can be broadly sub-divided into three 
types of leukemias: Acute promyelocytic leuke-
mia, acute myeloblastic leukemia and acute 
megakaryoblastic leukemia [50]. However, to 
classify AML there have been two broad sys-
tems of classification, which are based on 
structural and genetic factors. The earlier 
method of classifying AML was through the 
French-American-British classification method 
which took into account the different cell 
shapes, sizes, immuno-phenotyping and patho-
logic mechanisms used to identify them. In 
2016, WHO came up with a new system of clas-
sifying AML based on a more molecular and 
genetic approach. This approach focused on 
classifying AML based on the genetic abnor-
malities that come in hand with the disease 
and molecular changes that are associated 
with it and has given researchers an easier way 
to study particular aspects of the disease. An 
overview of both classifications is shown in 
Figure 2.

AML studies now-a-days focus on identifying 
any biomarkers that can be used to find out the 
different stages that the patient is in. These 
can also serve as a prognostic tool and help to 
determine life expectancy and possible routes 
to save the individual.
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Effects of non-coding RNAs in acute myeloid 
leukemia

As discussed earlier, it has been found that 
several regulatory ncRNAs are being found to 
have significant effects on the pathogenesis of 
AML. This review will primarily focus on cir-
cRNAs, miRNAs and lncRNAs. These have been 
shown in Tables 1-3.

circRNAs and AML

Table 1 summarizes an overview of the differ-
ent types of circRNAs that have been found to 
affect AML. Some of these act by sponging 
miRNAs, which then in turn leads to either over-
expression or down-regulation of genes neces-
sary for AML. Others may bind to RNA binding 
proteins (RBPs) and similarly affect the transla-
tion of necessary AML pathogenesis proteins. 
Some fusion circRNAs are showing prevalence, 
wherein, they are formed by the translocation 
of certain genes and their transcripts to form 
the circRNAs. These are important because 
they can be of many types and can have differ-
ent functions based on the translocations. Few 
circRNAs will be discussed in brief here.

Circ-PVT1 (hsa_circ_001821): The 8q24 ampli-
cons usually generate chimeric genes and can 
generate oncogenic lncRNAs that result in leu-
kemia (Figure 4). One such chimeric gene prod-
uct formed from the exon 2 of PVT1 present on 
chromosome 8 gives rise to circ-PVT1. This cir-
cular RNA sponges the miRNAs of let-7 family 
and miRNA let-125 family. These miRNAs are 
tumor suppressors, hence sponging those 
results in AML proliferation. These circRNAs 
are abundant in those AML patients wherein 
the 8q24 amplicons are more. Circ-PVT1 can 
be used as therapeutic targets against AML 
[51-53].

CircNPM1 75001 (hsa_circ_0075001): The ex- 
pression of circNPM1 75001 is seen to lower 
the TLR (Toll-Like Receptor) gene expression, 
thereby, affecting the TLR signaling cascade. 
The TLR signaling cascade has been observed 
to aid leukemic stem cell differentiation and 
survival. Hence, circNPM1 75001 aids in reduc-
ing AML pathogenicity. These circRNAs are 
over-expressed in NPM1 mutated AML patients. 
NPM1 mutation results in both tumor suppres-
sion and proto-oncogenic product formation. 
These circRNAs can also be used as a biomark-
er to check prevalence of AML in patients [54].

Figure 2. Classification of AML based on the FAB and WHO system of classification. This figure shows the FAB and 
WHO systems of classifying AML. FAB system classifies AML into eight different subsections (M0-M7). This method 
of classification was based on cell shapes, sizes, immuno-phenotyping and pathologic mechanisms. WHO classifies 
AML into six different subsections based on genetic abnormalities and the associated molecular changes. They 
have been listed here.
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Table 1. Effects of circRNAs in Acute Myeloid Leukemia

circRNA name and ID Expression Gene Effects
miRNA that the 
circRNA sponges 
or targets

Does the circRNA 
promote or demote AML 
formation?

Can it be used as 
a biomarker or 
prognostic tool?

References

circ-PVT1; hsa_circ_001821 Upregulated PVT1 Suppresses tumor sup-
pressor miRNA, thereby 
causing oncogenic 
protein formation.

let-7 or miR-125. Promotes AML formation. Could be used as a 
therapeutic target.

[51]

circNPM1 75001; (hsa_circ_0075001) Upregulated NPM1 Involved with myeloid 
differentiation and 
NPM1 mutation leads 
to increased AML patho-
genesis.

miR-181 family/TLR 
signaling pathway.

Reduces AML formation. Could be used as a 
biomarker.

[54]

circ-ANAPC7; (hsa_circ_101141) Upregulated ANAPC7 Involved in pathogene-
sis of AML, can be used 
as a potential biomarker 
for AML.

miR-181 family. Proliferates AML formation. Could be used as a 
biomarker.

[55]

circRNA-DLEU2; (hsa_circ_0000488) Upregulated DLEU2 Promotes cell prolifera-
tion and reproduction.

miR-496/PRKACB. Proliferates AML formation. Could be used as a 
biomarker.

[56]

hsa_circ_100290 Upregulated SLC30A7 Causes AML and oral 
squamous cell cancer 
while promoting cell 
proliferation and inhibit-
ing apoptosis.

miR-293/Rab10. Proliferates AML formation. Could be used as a 
biomarker.

[57]

circ_0009910; (hsa_circ_100053) Upregulated MFN2 Used as a biomarker. 
Highly abundant in AML 
patients. Promotes 
cell cycle arrest and 
proliferation.

miR-20a-5p. Proliferates AML formation. Could be used as 
a biomarker and 
prognostic tool. High 
levels indicate poor 
prognosis.

[58]

circ-PAN3; (hsa_circ_0100181) Upregulated PAN3 Induces drug resistance 
and removes the effects 
of miRNAs.

miR-153-5p, miR-
183-5p, miR-338-
3p, miR-346, miR-
545-3p, miR-574-5p, 
miR-599, miR-653-
5p, miR-766-3p, 
miR-767-3p.

Upregulated stage induces 
drug resistance in AML 
patients, thereby making 
them more susceptible to 
AML pathogenesis.

Could be used as an 
indicator of chemo-
therapy efficacy and 
understanding drug 
resistance.

[59]

circ-VIM Upregulated VIM Involved in lymphocyte 
adhesion and transcel-
lular migration. It can 
also serve as a potential 
biomarker because of 
its upregulation in AML 
patients.

Does not bind to any 
miRNA.

High level proliferates AML. Used as a prognostic 
tool. High levels indi-
cate poor prognosis. 
Could be used as a 
biomarker.

[60, 61]

circ-HIPK2; 
(hsa_circ_0001756)

Downregulated HIPK2 Involved in regulation 
of ATRA-induced dif-
ferentiation.

miR-124-3p. Regulates APL differentia-
tion by the miR-124/CEBP 
axis.

Could be used as a 
biomarker.

[62]
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hsa_circ_0004277 Downregulated WDR37 Can be used as a bio-
marker. Less abundant 
in AML patients, but 
abundancy increases 
after treatment.

miR-138-5p, miR-
30c-1-3p, miR-892b, 
miR-571, miR-328-
3p/SH3GL2, PPARG-
C1A, PIP4K2C, 
SH2B3, ZNF275, 
and ATP1B4.

Increasing levels of this 
circRNA correlates with effi-
cient and proper treatment, 
which implies a decrease in 
AML pathogenesis.

Used as a biomarker. [63]

circKHLH8 Downregulated KHLH8 Overexpression leads to 
better survival of AML 
patients.

No data found. Reduces AML pathogenesis 
in overexpressed condition.

Does not show 
any prognostic sig-
nificance in younger 
AML patients.

[64]

circFBXW7 Upregulated FBXW7 Tumor suppressor. No data found. Reduces AML pathogenesis. Could be used as a 
prognostic tool.

[64]

Fusion circRNAs; f-circRNAs

circRNA name and ID Expression Fusion genes Effects
Does the circRNA 
promote or demote AML 
formation?

Can it be used as 
a biomarker or 
prognostic tool?

References

f-CircM9_1 Upregulated MLL/AF9 fusion Increased resistance to leukemia treatments 
in vitro, contributes to leukemogenesis in vivo, 
gives resistance to leukemia treatment agents 
like arsenic trioxide and cytarabine.

Promotes AML formation. Targeting their down-
stream effectors 
can give therapeutic 
targets.

[65, 66]

f-circPR Upregulated PML/RARα Increases clonogenicity and they are pro-
proliferative and proto-oncogenic, they also 
maintain the viability of the leukemic cells by 
inhibiting apoptosis.

Their expression leads to 
AML proliferation.

Targeting their down-
stream effectors 
can give therapeutic 
targets.

[66]

f-circM9 Upregulated MLL/AF9 fusion Increases clonogenicity and they are pro-
proliferative and proto-oncogenic, they also 
maintain the viability of the leukemic cells by 
inhibiting apoptosis.

Their expression leads to 
AML proliferation.

Targeting their down-
stream effectors 
can give therapeutic 
targets.

[66]

CircRNAs that bind to RNA binding Proteins

circRNA name and ID Expression RBP or gene to which 
the circ-RNA binds Effects

Does the circRNA 
promote or demote AML 
formation?

Can it be used as 
a biomarker or 
prognostic tool?

References

hsa_circ_0004870 Downregulated RBM39 Causes enzalutamide resistance. Depletion of 
RBM39 causes decreased AML.

RBM39 expression causes 
AML cell migration and inva-
sion but it is generally not 
expressed in healthy cells.

Could be a potential 
therapeutic tool.

[67, 68]

circMYBL2 Upregulated FLT3-ITD Upregulates AML proliferation and inhibits dif-
ferentiation of AML cells.

Increases AML proliferation. It is a potential 
therapeutic target of 
FLT3-ITD AML.

[69]

circFoxo3 Downregulated CDK2 and cyclin depen-
dent kinase inhibitor p21

Forms circfoxo3-p21-CDK2 which results in 
differentiation of AML cell lines.

Increases AML proliferation. Could be potential 
prognostic tool.

[70]
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Table 2. Effects of miRNAs in acute myeloid leukemia

miRNA Expression Gene targets Effects
Does the miRNA pro-
mote or demote AML 
formation?

Can it be used as a 
biomarker or prognostic 
tool?

References

miR-126* Upregulated ADAT2, FOF1, LMO7. Induces inhibition of apoptosis. Results in 
chromosomal translocations, results in AML cell 
viability and proliferation.

Promotes AML formation. More research required. [71, 74]

miR-223 Downregulated ANKH, SCN1A, SCN3A, 
CBFB, CDH11, NEBL, 
RILPL1, CENPN.

miR-223 inhibits cell cycle regulator protein 
E2F1, but in AML condition, E2F1 acts as a tran-
scriptional regulator of miR-223, thereby down-
regulating it. This results in cell proliferation.

Promotes AML. More research required. [75]

miR-126 Upregulated TOM1, CKMT2, ZNF131, 
RGS3.

This targets the polo-like kinase2 protein (PLK2) 
which is a tumor suppressor protein, thereby 
aiding in tumor proliferation.

Aids in AML formation. More research required. [71]

miR-124-1 Downregulated Inhibits cell growth, promotes cell apoptosis and 
promotes cell differentiation [76].
However, another study has noted that it targets 
the C/EBPα pathway, and it’s silenced and 
inhibited differentiation gives rise to leukemia 
phenotype [77].

Suppresses AML formation. Serves as a prognostic 
marker. Those with miR-
124-1 under expression 
have good prognosis.

[76, 77]

miR-221 Upregulated HIPK1, RAB18, DNM3, 
ZNF547.

Inhibits p27 which in turn inhibits CDK, thereby it 
enhances cell proliferation in AML.

Aids in AML formation. Could be used as biomark-
er, as it’s amount increasing 
a lot in AML condition.

[78]

miR-20a and miR-17 Downregulated POLQ, KLF12, STK38, 
CENTD1, NUP35, GNB5, 
CTSK.

HIF-1α represses miR-20a and miR-17 expres-
sion. miR-17 and miR-20a removes HIF-1α medi-
ated AML differentiation. Hence, their downregu-
lation results in increase of AML differentiation. 
They also inhibit p21 and STAT3 expression.

In HIF-1α expressed 
condition, these miRNAs 
increase AML differentia-
tion, but they inhibit AML 
cell proliferation.

More research required. [72]

miR-29b Upregulated CD93, HBP1, SNX21, GNS, 
HMGCR, HNF4G, DNMT3B.

Reduces the expression of DNA methyltransfer-
ases.

Decreases AML patho-
genesis.

Therapeutic role of synthetic 
miR-29b is being identified.

[79]

miR-29b Upregulated SCML2, C1orf96, COL3A1, 
COL7A1, COL11A1.

Reduces tumor proliferation. Reduces AML tumor 
formation.

More research required. [79]

miR-193b Downregulated MMP19, ARMC1, ARPC5. c-Kit proto-oncogene results in abnormal cell pro-
liferation. In AML cases miR-193b serves to post-
transcriptionally modify c-Kit proto-oncogene, 
but it is downregulated. Artificially increasing 
miR-193b can lead to decrease in AML.

Increasing miR-193b can 
lead to decrease in AML 
pathogenesis.

miR-193b is used as a 
therapeutic agent, as 
increasing its amount in 
AML cells leads to better 
prognosis.

[73]

miR-196a and miR-196b Upregulated in early 
hematopoiesis

FOS, GATA6, HOXB6, 
HOXC8, ZNF24, CCDC47.

Induces downregulation of ERG, which has ad-
verse prognostic effects on elder AML patients.

Decreases the adverse 
effects of AML.

Could be used as a prognos-
tic tool and biomarker.

[80]

The * indicates that miR-126* is the complementary analog of miR-126. A common precursor from the egfl7 gene gives rise to both these miRNAs.



Role of non-coding RNA in leukemia

1414 Am J Transl Res 2022;14(3):1406-1432

Table 3. Effects of lncRNAs in acute myeloid leukemia

lncRNA Expression Effects Does the lncRNA promote or 
demote AML formation?

Can it be used as a biomarker or 
prognostic tool? References

H19 Upregulated H19 upregulation shows that it behaves as a proto-oncogene 
in several AML cases, however it has also been observed to be 
downregulated and causes apoptosis in several other AML/CML 
cases through the H19/IGF2 axis. This differing characteristic 
can be attributed to the small sample size of observations.

It has oncogenic properties in several 
AML cases when upregulated, but can 
also have tumor suppressing roles in 
certain AML cases. Its effect differs 
with the sex and age of the patient as 
well.

Unmethylated H19 can be used as a 
prognostic biomarker. H19/ID2 has a thera-
peutic target value.

[81, 82]

HOTAIR Upregulated It regulates LSC self-renewal by sponging miR-193a and by modu-
lating c-KIT expression.

Its expression increases the pathoge-
nicity of AML.

High HOTAIR expression is correlated with 
poor prognosis in AML patients.

[89-93]

UCA1 Upregulated It results in increased AML cell viability, growth, metastasis and 
cell invasion. This lncRNA binds with miR-126 and downregulates 
its action. However, overexpressed miR-126 binds to 3’UTR of 
RAC1 and inhibits its action. The PI3/AKT and JAK/STAT pathway 
is also blocked by miR-126 overexpression. Hence the PI3/AKT 
pathways are activated by lncRNA UCA1. UCA1 also sponges miR-
125a and miR-16.

Its expression aids in AML formation. Could be used as a therapeutic target 
as it is abundant in patients with CEBPA 
mutation.

[94-96]

CRNDE Upregulated It is found to be overexpressed in AML cells and it results in 
inhibition of apoptosis, increased proliferation, and increased 
cloning.

It increases AML pathogenicity. Its presence is a measure of poor progno-
sis. Can be used as a therapeutic target. It 
is seen to be overexpressed in M4 and M5 
type of FAB cells, as compared to M1, M2 
and M3 cells.

[97]

PVT1 Upregulated It is elevated in t(8;21) AML and APL cases. It sponges miR-1204. 
It regulates MYC activation which is necessary for maintaining 
oncogenic state. PVT1 knockdown results in reduced cell migra-
tion and proliferation.

It increases AML pathogenicity. Its expression is a measure of poor prog-
nosis.

[84-87]

PANDAR Upregulated It results in AML pathogenesis by inhibiting the proapoptotic gene 
expression. This is done by interacting with the NF-YA transcrip-
tion factor. It also results in higher BM (bone marrow) blast count 
and lower CR (complete remission) rate. The overall survival of 
the patients is also found to be shortened.

It results in AML pathogenesis. It is used as a biomarker and as a 
prognostic marker. High expression levels 
result in poor prognosis especially in older 
individuals.

[98, 99]

RUNXOR Upregulated It is involved in chromosomal translocation by interacting with 
the RUNX1 promoter via its 3’-terminal fragment. This results 
in the formation of an intrachromosomal loop. Mostly seen in 
t(8;21) AML cases. It also interacts with EZH2 which is a H3K27 
methylase.

It results in AML proliferation. Could play therapeutic and prognostic role. [88]

CCAT1 Upregulated Promotes HL-60 cell growth by inhibiting miR-155 which has 
tumor suppressive properties. Hence, AML patients have less 
amounts of miR-155. This results in repressed monocytic differ-
entiation, and promotes cell growth. CCAT1 upregulation is found 
in mainly M4 and M5 AML patients according to the FAB system.

Promotes AML cell growth by sequester-
ing miR-155.

Its expression is a measure of poor progno-
sis. Downregulating CCAT1 can serve as a 
therapeutic target.

[84, 100]

TUG1 Upregulated TUG1 suppresses miR-34a by recruiting EZH2, this results in ADR 
resistance. It also induces cell proliferation and inhibits AML cell 
apoptosis by targeting the aurora kinase A (AURKA).

Promotes AML proliferation. High expression of TUG1 results in poor 
prognosis.

[101, 102]

CCDC26 Upregulated It is also known as retinoid modification (RAM) and is associated 
with pediatric AML. It is involved with the regulation of the dif-
ferentiation and apoptosis of acute monocytic leukemia cell lines 
via regulating c-KIT expression.

Increases AML proliferation. High expression is a measure of poor 
prognosis.

[103, 104]
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MONC Upregulated Enhances the proliferation of immature erythroid progenitor cells. Increases AML proliferation. Could play therapeutic role. [105]

MIR100HG Upregulated Involved in AML cell proliferation, viability, and colony formation. Increases AML proliferation. Could play therapeutic role. [105]

HOXA-AS2 Upregulated Through a TRAIL mediated pathway, HOXA-AS2 suppresses apop-
tosis that is induced by ATRA. However, this HAOX-AS2 is also 
induced by ATRA. Net result is increase in the number of viable 
cells, and decrease in apoptosis.

Increases AML proliferation. HOXA-AS2 is therapeutic targets need to be 
identified.

[106, 107]

MALAT Upregulated Sponges and downregulates miR-96. It increases AML cell 
proliferation, and decreases apoptosis. It’s knockdown results 
in increased cytarabine (Ara-C) chemosensitivity by upregulating 
miR-96.

Increases AML proliferation. Results in poor prognosis. [108, 109]

MEG3 Downregulated In a p53 dependent manner, MEG3 is seen to inhibit tumori-
genesis. However, its methylation is seen to increase tumor 
formation and results in poor prognosis. MEG3 can also inhibit 
tumorigenesis in a p53 independent manner as well. Ten-eleven 
translocation 2 (TET2) is seen to upregulate MEG3 expression 
via a TET2-WT1-MEG3 axis, and this results in increased AML 
proliferation.

Decreases AML proliferation. Methylation of MEG3 results in poor prog-
nosis and reduced overall survival rates. 
Can be used as a biomarker.

[110, 111]

CASC15 Upregulated CASC15 is a tumor suppressor gene and it results in reduced 
colony formation. It also limits AML cell proliferation. It regulates 
the SOX4 gene by modulating the transcription factor YY1.

It suppresses AML proliferation. Studies on CASC15 have given insights into 
using them as potential therapeutic agents.

[112]

IRAIN Downregulated It is involved in inhibition of tumor cell migration. It is found to be 
more expressed in low-risk AML patients, but less expressed in 
high-risk AML patients. It is closely linked with the IGF1 promoter 
sequence. Exposing the AML cells to cytarabine (AraC), which is a 
chemotherapeutic agent, results in enhancing IRAIN expression.

It suppresses AML proliferation. Results in shorter overall survival and 
results in a refractory response to chemo-
therapy.

[113, 114]

NEAT1 Downregulated in 
AML pathogen-
esis condition.

Results in suppressing AML cell proliferation and induces apopto-
sis. This is done via the NEAT1/miR-23a-3p/SMC1A axis. NEAT1 
expression downregulates miR-23a-3p expression which leads to 
SMC1A upregulation, which then reverses AML proliferation.

It is generally downregulated in AML 
state, but inducing its upregulation 
results in decreasing AML proliferation.

Could be used as a therapeutic target by 
upregulating NEAT1 expression in AML 
affected cells.

[115]

LOC285758 Upregulated LOC285758 increases AML pathogenesis by regulating HDAC2 
expression. Knockdown of LOC285758 results in increased cell 
apoptosis and inhibits cell proliferation.

Increases AML proliferation. Indicates poor prognosis in AML patients. [116-118]
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Circ-ANAPC7 (hsa_circ_101141): This circRNA 
is seen to sponge the miRNA-181 family. It 
results in proliferation of pathogenesis of AML. 
It is observed to be up-regulated in AML 
patients and can be used as a potential bio-
marker for AML studies [55].

Circ-DLEU2 (hsa_circ_0000488): Circ-DLEU2 
is observed to be over-expressed in AML 
patients, thus it can be used as a potential bio-

marker. It acts by sponging miR-496 and there-
by increases PRKACB expression by the com-
petitive endogenous RNA mechanism. This 
leads to inhibition of apoptosis and increased 
proliferation of AML cells [56].

hsa_circ_100290: This circRNA is formed from 
the SLC30A7 gene. Similar to circ-DLEU2 it is 
also over-expressed in AML patients and can 
be used as a potential biomarker. It regulates 

Figure 3. Summary of circRNAs, miRNAs, lncRNAs in AML and CML. The figure shows percentage of downregulated 
verses upregulated ncRNAs for all three types in AML and CML, of all the different types listed in this review. Panels 
(A-F) show the analyses pertaining to AML, and panels (G-L) represent analysis for CML. The percentage of downreg-
ulated versus upregulated ncRNAs are depicted as pi-charts: (A and G) circRNA; (C and I) miRNA; (E and K) lncRNA. 
The effects of each ncRNA in terms of whether they cause or decrease AML (B, D, F) or CML (H, J, L) are also shown. 
Figure also shows percentage of causing the disease versus percentage of not causing the disease in AML and CML.
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the miR-203 and Rab10 axis. This promotes 
cell proliferation and inhibits apoptosis in AML 
cell lines, thereby increasing the pathogenicity 
of AML [57].

Circ_0009910 (hsa_circ_100053): This origi-
nates from the gene MFN2 and it sponges miR-
20a-5p. This sponging results in increased cell 
proliferation and its knockdown induces apop-
tosis. It is usually up-regulated in AML bone 
marrow samples and can be used as a poten-

tial biomarker and as a prognostic marker too, 
as high levels result in poor prognosis [58].

circ-PAN3 (hsa_circ_0100181): These cir-
cRNAs are involved primarily in drug resistance. 
They are up-regulated in AML cells and cause 
resistance to THP-1/ADM cells by the circ-
PAN3-miR-153-5p/miR-183-5p-XIAP axis [59].

Circ-vimentin: This circular RNA is seen to be 
up-regulated in AML patients and can be used 

Figure 4. A summary on few of the mechanistic roles of miRNAs, lncRNAs and circRNAs on the pathogenesis of 
AML and CML. A. Effects of circPVT1 and lncRNA UCA1 on the miR-125 family have been shown. Their mechanistic 
effects on the pathogenesis of AML have been presented. B. Effects of circNPM1 75001 and circ-ANAPC7 on the 
miR-181 family has been shown in the pathogenesis of AML. C. Effects of the hsa_circ family on the miR-181 family 
and miR-16 family in the pathogenesis of CML have been shown. D. Effect of miR-21 in both AML and CML has been 
shown, along with special focus on the lncRNA MEG3 in CML. E. Effect of the lncRNA MALAT on miR-328 and in the 
pathogenesis of CML has been shown. F. The role of the PVT1 gene loci in formation of circ-PVT1 and lncPVT1 in 
proliferation of AML has been shown. G. Role of lncRNA UCA1 in proliferation of both AML and CML has been shown.
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as a measure of prognosis. Up-regulation of 
circ-VIM results in poor prognosis in elder 
patients. The vimentin protein is a part of inter-
mediate filament protein III and is used for lym-
phocyte adhesion and trans cellular migration 
[60, 61].

circ-HIPK2 (hsa_circ_0001756): These cir-
cRNAs have an effect on acute promyelocytic 
leukemia, which is a subdivision of acute myelo-
cytic leukemia. APL is caused by the blockage 
of cell differentiation at the promyelocytic stage 
by the PML/RARα fusion protein. They are 
down-regulated in APL cases and sponge miR-
124. This causes astrocyte activation. miR-
124, on the other hand, inhibits CEBPA which is 
a downstream protein. Hence, circ-HIPK2 regu-
lates APL proliferation by the miR-124-CEBP 
axis [62].

hsa_circ_0004277: This is used as a biomark-
er in treatment of AML. It is de-regulated in AML 
pathogenesis conditions and up-regulated 
after treatment. It has many miRNA down-
stream targets such as miR-138-5p, miR-30c-
1-3p, miR-892b, miR-571 and miR-328-3p [63].

Fusion circRNAs: Some chromosomal translo-
cations give rise to chimeric cancerous gene 
products. These can give rise to circRNAs which 
are then called fusion circRNAs or f-circRNAs.

miRNAs and AML

Table 2 summarizes the effect of different miR-
NAs in the pathogenesis of AML. Several of 
them have been seen to increase AML prolifer-
ation, while others are down-regulated and 
decrease tumorigenesis. Few miRNAs and their 
pathways of action are described below.

miR-126: miR-126 is found on intron7 of the 
epidermal growth factor-like 7 (EGFL7). Its ex- 
pression is dependent on methylation regula-
tion of a 287 bp region on EGFL7. Over-ex- 
pression of miR-126 results in reduced apopto-
sis, and increased cell viability of AML cells. The 
Polo-like kinase family is involved in regulating 
the cell cycle and DNA damage checkpoints. 
One such polo-like kinase is PLK2, which is a 
tumor suppressor and it is a target of miR-126. 
Up-regulation of miR-126 negatively regulates 
PLK2, thereby causing proliferation of AML cell 
lines. The other gene targets of miR-126 are 

TOM1, CKMT2, ZNF131 and RGS3. The thera-
peutic effects of miR-126 are being researched 
currently [71].

miR-20a and miR-17: miR-20a and miR-17 are 
involved in reducing AML cell differentiation by 
affecting HIF-1α expression. HIF-1α is a tran-
scription factor necessary for inducing differen-
tiation of AML cells. HIF-1α can also repress 
miR-20a and miR-17 expression by down-regu-
lating the c-Myc transcription factor. These 
miRNAs also inhibit p21 and STAT3 expression. 
This results in up-regulation of the miRNAs, as 
the p21 and STAT3 can inhibit the miRNAs from 
affecting HIF-1α. In summary, the miRNAs 20a 
and miR-17 are down-regulated in AML patho-
genesis condition. This happens due to HIF-1α 
targeting their expression. If the miRNAs can be 
up-regulated, then they not only inhibit HIF-1α 
from acting as an oncogene, but they also inhib-
it p21 and STAT3 from acting as a miRNA inhibi-
tor. It is being researched if these miRNAs can 
be up-regulated in cancer cells so that they can 
act as therapeutic targets. POLQ, KLF12, 
STK38, CENTD1, NUP35, GNB5 and CTSK are 
its gene targets [72].

miR-193b: miR-193b is found to be inversely 
related to the expression levels of c-Kit proto-
oncogene. In AML cases, miR-193b is down 
regulated; hence c-Kit proto-oncogene is 
expressed. c-Kit proto-oncogene over-expres-
sion leads to abnormal cell proliferation and is 
a measure of poor prognosis. Hence, to inhibit 
AML pathogenesis, miR-193b must be over-
expressed, as this can then post-transcription-
ally modify c-Kit proto-oncogene expression 
levels. The gene targets of miR-193b are 
MMP19, ARMC1 and ARPC5. miR-193b expres-
sion levels are used as a prognostic biomarker 
as, it’s under expression is an indication of poor 
prognosis, while its over-expression is a mea-
sure of good prognosis [73].

LncRNAs and AML

Table 3 summarizes the effects different 
lncRNAs have on the pathogenesis of AML. A 
few of these lncRNAs are also seen to be 
involved in the pathogenesis of CML as well. 
The pathways of action of a few of these are 
explained below.

H19: H19 is located on chromosome 11p15. By 
regulating IGF2-IGFR1 activity it maintains qui-
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escence of hematopoietic stem cells at the 
transcriptional and post-transcriptional level. 
H19 is usually up-regulated in AML and increas-
es tumorigenesis along with cell proliferation. It 
exhibits pro-proliferative and anti-apoptotic 
characteristics. In AML, H19 is associated with 
lower Complete Remission (CR) rate and short-
er Overall Survivability (OS). H19 overexpres-
sion is also correlated with the sex, age, WBC 
count, FLT3-ITD and DNMT3 mutation levels of 
the patients. H19 regulates ID2 expression (the 
downstream gene of H19), by regulating hsa-
miR-19a/b, and this results in increased leuke-
mogenesis [81-83].

PVT1: Acute pro-myelocytic leukemia is a sub-
type of AML which is formed by blockages in 
granulocytic differentiation during the pro-
myelocytic stages. PVT1 stands for Plasmacy- 
toma Variant Translocation 1 and it is located 
on chromosome 8q24 along with c-myc. c-Myc 
knockdown results in down-regulation of PVT1 
and reverses the oncogenic effects of up-regu-
lated PVT1. In up-regulated stage it is involved 
in increasing cell migration and proliferation. It 
mainly occurs in t(8;21) translocations. It is 
also known to sponge miR-1204 which is 
another factor to increase oncogenes in AML 
cells. It can be used as a prognostic tool 
[84-87].

RUNXOR: RUNXOR is an intragenic lncRNA that 
is present upstream of the RUNX1 promoter. It 
gets its name because of overlapping with the 
promoter region (RUNX1 overlapping RNA). 
RUNXOR is up-regulated in AML cells, especial-
ly those cells that occur with t(8;21) transloca-
tions. Its expression was also increased when 
treating the cells with Ara-C. It interacts with 
EZH2 which is a H3-K27 methylase and the 
RUNX1 proteins via intra-chromosomal loops, 
and it thereby regulates RUNX1 gene. This 
leads to regulation of AML pathogenesis and its 
over-expression increases proliferation of AML 
cells [88].

Chronic myeloid leukemia

Similar to AML, chronic myeloid leukemia (CML) 
is a leukemia characterized by the uncontrolled 
cell division of the myeloid cells that gives rise 
to a large population of blast cells in the blood. 
It is a myeloproliferative neoplasm and patients 
with more than 20% of blast cells are said to be 
under the blast crisis (BC) stage at which point 

the leukemia becomes painful, and bone pain 
and bleeding can occur [119, 120]. It mainly 
affects an older age group, with the median 
age of 56-57 years, and 20% of cases are spe-
cific to 70-year-old individuals [46, 121-123]. 
An abnormal reciprocal chromosomal translo-
cation between chromosomes 9 and 22 
(t(9;22)) causes the formation of a minute chro-
mosome known as Philadelphia (Ph) chromo-
some. This translocation is considered to be 
one of the causative reasons of CML [124]. The 
breakpoint cluster region, BCR, is a 5.8kb 
region on chromosome 22, which when fuses 
with the ABL1 region on chromosome 9, causes 
the fusion of different exons on BCR with differ-
ent exons on ABL1. This results in a chimeric 
mRNA which then translates to form oncogenic 
proteins [125-127]. Recently a fusion of BCR-
ABL1 has given rise to a different fusion protein 
which has tyrosine kinase activity, but only for 
those patients who are positive for Ph+ [128-
131]. Research is now focused on targeting 
this tyrosine kinase in attempts to reduce the 
pathogenicity of the disease. More information 
has been given in Tables 4-6.

Circular RNAs and CML

Table 4 summarizes the two types of circRNAs 
seen to be involved in CML pathogenesis. Both 
types are up-regulated and result in increased 
proliferation of CML cells. They have been 
explained below.

circBA9.3 (fusion circRNA): A major reason for 
CML pathogenesis is the unregulated tyrosine 
kinase activity of BCR-ABL1. circBA9.3 is a 
fusion circRNA derived from BCR-ABL1. In its 
up-regulated state it aids in increasing the tyro-
sine kinase activity of BCR-ABL1. Such patients 
are resistant to tyrosine kinase inhibitors (TKIs). 
Up-regulation of circBA9.3 increases the BCR-
ABL1 and c-ABL1 expression which increases 
the proliferation of CML and inhibits cell apop-
tosis. Targeting the expression levels of this cir-
cular RNA and down-regulating it can aid in 
eliminating CML in TKI resistant patients [132].

hsa_circ_0080145; hsa_circ_0024002; hsa_
circ_0037781: hsa_circ_0080145, hsa_circ_ 
0024002 and hsa_circ_0037781 target the 
leukemia associated miRNAs (miR-16, miR-
181a and miR-29b) by a ceRNA pathway. miR-
16 is seen to be up-regulated in the peripheral 
lymphoid. miR-29b is involved in down-regulat-
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Table 4. Effects of circRNAs in chronic myeloid leukemia

circRNA name and ID Expression Gene Effects miRNA that the circRNA 
sponges or targets

Does the circRNA promote 
or demote AML formation?

Can it be used as a biomarker 
or prognostic tool? References

circBA9.3 (fusion circRNA) Upregulated BCR-ABL1 Promote cell proliferation, 
causes TKI resistance due 
to increased ABL1 expres-
sion, causes drug resistance 
and inhibits apoptosis.

None Promotes CML formation. It can be targeted to be used as a 
therapeutic target.

[45, 131]

hsa_circ_0080145; hsa_
circ_0024002; hsa_circ_0037781

Upregulated Sponges the miRNAs in-
volved in inhibiting vascular 
inflammation, thereby pro-
moting CML pathogenesis.

miR-16, miR-181a, miR-
29b

Promotes CML proliferation. Since hsa_circ_008014 sponges 
miR-29b it has potential for 
being a potential prognostic and 
therapeutic target for curing CML 
cell lines.

[137]

Table 5. Effects of miRNAs in chronic myeloid leukemia

miRNA name Expression Gene targets Effects Does the miRNA promote or 
demote AML formation?

Can it be used as a biomarker or 
prognostic tool? References

miR-17-92 Downregulated IRF9, RAB10, TXNIP, 
TET2

A BCR/ABL-c-MYC-miR-17-92 pathway takes 
place in CML cell lines.

Upregulation causes increase in CML. It is being checked as a possible thera-
peutic agent.

[74, 141]

miR-21 Upregulated TXPAN2, LUM, SUZ12, 
MSH2, PDZD2

Antisense inhibition causes induction of apop-
tosis and inhibits cell growth and migration in 
CML cells. It also upregulates PDCD4 which is 
a tumor suppressor gene.

Antisense inhibition of miR-21 de-
creases CML growth, but in normal cell 
conditions, miR-21 is oncogenic.

Antisense inhibited miR-21 is being 
used as a therapeutic agent.

[138]

miR-29b Downregulated HAS3, SNX24, CD93, 
SCML2, COL7A1, 
ZNF396, HMGCR, ICOS

Inhibits cell growth, colony formation, and 
induces apoptosis of CML cells by inhibit-
ing ABL1 and BCR/ABL1 in overexpressed 
condition.

It is downregulated in CML cells, but 
inducing its overexpression leads to 
decreased CML formation.

Could be used as therapeutic agent. [140]

miR-138 Downregulated KLF12, H3F3B, 
MYO5C, NXN, NEBL, 
PDPN, STK38

In overexpressed condition it inhibits cell 
growth and it is a tumor suppressor of CML 
cells by inhibiting BCR/ABL1 and CCND3 by 
binding to their 3’UTR regions. It is down-
regulated in normal conditions but GATA1 
activation and imatinib treatment restores its 
amount.

Decreases CML formation. Could be used as a therapeutic target 
to control CML.

[139]

miR-203 Can become 
hypermethylated 
in CML cells

RTKN2, AAK1, MYST4, 
CD109, IL21, PLD2

In normal cells miR-203 has tumor suppressor 
roles. Sometimes it gets hypermethylated in 
CML cells which leads to increase of BCR/
ABL fusion protein thereby causing cellular 
proliferation of CML cells.

Hypermethylation causes increased 
CML pathogenesis.

Un hypermethylated miR-203 is used as 
a therapeutic agent to control CML.

[142]

miR-451 Downregulated TSC1, ACADSB, GRSF1, 
MAML1, GDI1, NAMPT

It is associated with BCR/ABL1 activity. Has a complex relationship in CML 
pathogenesis.

Further research is required to check its 
therapeutic effects.

[143]

miR-212 Downregulated APAF1, EP300, EDNRA, 
CFL2, NOS1, SOX4, 
SOX11

Downregulated miR-212 causes upregula-
tion of ABCG2 protein. ABCG2 is observed in 
imatinib resistant CML cells.

Downregulated miR-212 causes CML 
cells to be resistant to imatinib, there-
by increasing susceptibility to CML.

Anti-miR-212 can cause downregulation 
of ABCG2 and can cause imatinib resis-
tant cells to be susceptible to imatinib.

[144]
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Table 6. Effects of lncRNAs in chronic myeloid leukemia

lncRNA name Expression Effects Does the lncRNA promote or 
demote CML formation?

Can it be used as a biomarker or 
prognostic tool? References

HOTAIR Upregulated It results in imatinib resistance in CML patients. Its knockdown results 
in lowering the resistance and better sensitivity to imatinib via a PI3/Akt 
pathway.

Upregulated condition results in 
resistance against imatinib, thereby 
causing CML.

It is used as a therapeutic target to 
check sensitivity to CML drugs.

[149]

H19 Upregulated H19 is upregulated in human cancers by the c-Myc transcription factor. 
This results in cellular transformations. In CML it is upregulated by the Bcr-
Abl kinase, resulting in efficient tumor growth and inhibits apoptosis.

Causes CML proliferation. Further research is being conducted to 
check the role of hypomethylated H19 
as a potential biomarker.

[147, 148]

HAND2-AS1 Downregulated In CML cells, HAND2-AS1 is downregulated. This results in increased miR-
1275 which results in cell proliferation. However, upregulation of HAND1-
AS2 results in sponging of miR-1275 which inhibits cell proliferation and 
promotes apoptosis. 

It is downregulated in CML cells but 
its upregulation causes sponging 
of miR-1275 which results in inhibi-
tion of CML proliferation.

Upregulation of HAND2-AS2 is being 
checked and it can be a potential thera-
peutic target for combatting CML.

[150]

SNHG5 Upregulated Overexpression of SNHG5 acts as a CeRNA against miR-205-5p and sup-
presses it, while overexpression of miR-205-5p suppresses the expression 
of ABCC2. SNHG5 results in imatinib resistance in CML by regulating 
ABCC2 via miR-205-5p. It also regulates CML cell proliferation, apoptosis 
and cell differentiation.

Results in imatinib resistance and 
aids in CML proliferation.

The role of SNHG5 as a drug inhibitor is 
being researched and more research is 
being done to see if it can be targeted 
as a therapeutic target.

[151, 152]

NEAT1 Upregulated It is essential for forming nuclear body paraspeckles. It is regulated by c-
Myc transcription factor. Knockdown of NEAT1 results in imatinib induced 
apoptosis. Additionally, SFPQ is a NEAT1-binding paraspeckle protein 
which induces NEAT1 to mediate apoptosis in K562 cells. 

Results in proliferation of CML. Its role as a therapeutic agent is being 
researched.

[153]

MALAT1 Upregulated Targets miR-328 and via the lncRNA MALAT1/miR-328 axis it promotes 
CML cell proliferation and induces imatinib resistance. Silencing of 
MALAT1 arrests cell cycle of CML cells.

Results in CML proliferation. Its role as a therapeutic target is being 
researched.

[146]

HULC Upregulated Knockdown of HULC inhibits cell proliferation and induces apoptosis by 
repression of c-Myc and Bcl-2. It’s silencing also results in apoptosis by 
imatinib treatment, and it suppresses the phosphorylation of PI3K/Akt 
pathway. It also acts as a endogenous sponge of miR-200.

Results in CML proliferation. Its role as a potential therapeutic target 
is being researched.

[154]

PLIN2 Upregulated CEBPA upregulates PLIN2 which then increases CML tumor growth via the 
GSK3 and Wnt/β-catenin signaling pathway. PLIN2 increases cell prolifera-
tion and inhibits apoptosis.

Increases CML proliferation. A new CML treatment based on target-
ing the CEBPA/PLIN2 axis is being 
researched.

[155]

UCA1 Downregulated UCA1 acts as a ceRNA of MDR1 and sponges miR-16, which results in 
increased imatinib resistance, and increases CML proliferation.

Increases CML proliferation. The UCA1/MDR1 axis is being studied 
as a potential therapeutic target.

[156]

MEG3 Downregulated It is downregulated in CML, however its overexpression results in sponging 
of miR-21 which results in inhibition of CML cell proliferation and induces 
apoptosis. Additionally, it also regulates miR-147 and the JAK/STAT 
pathway.

It is downregulated in CML but 
its overexpression reduces CML 
proliferation.

Used as a prognostic tool and is 
observed to be lower in AP and BP CML 
cases compared to CP stage.

[157-159]

FENDRR Downregulated FENDRR sponges the RNA binding protein HuR as well as miR-184 which 
results in attenuation of Adriamycin resistance in CML cells, and results in 
suppression of tumor growth and increased cell apoptosis rates.

Decreases CML pathogenicity. FENDRR is a potential target for revers-
ing the roles of Adriamycin resistance 
and it is being researched as a potential 
therapeutic target.

[145]

BGL3 Downregulated BGL3 acts as a ceRNA for binding miR-17, miR-93, miR-20a, miR-20b, 
miR-106a and miR-106b so that it can cross regulate PTEN expression. 
BGL3 acts as a tumor suppressor.

It is a tumor suppressor and 
reduces CML proliferation.

More research is being conducted on its 
therapeutic and prognostic effects.

[160]
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ing the expression of BCR-ABL1, hence it is 
concerned with malignant hematopoiesis. miR-
181b is involved in inhibiting vascular inflam-
mation in human macrophages. Their sponging 
by these circRNAs results in proliferation of 
CML and increased pathogenesis. These cir-
cRNAs are usually up-regulated in CML and 
they can be used as potential biomarkers and 
in CML prognosis [53, 133-136].

miRNAs and CML

Table 5 summarizes the effects of different 
miRNAs on the pathogenesis of CML. Several 
of these miRNAs are involved in reversing ima-
tinib resistance in cells, while others result in 
imatinib resistance. The functional pathways of 
a few miRNAs are discussed below. 

miR-21: miR-21 is involved in increased CML 
cell migration, it inhibits apoptosis and it 
increases cell growth. It’s inhibition by anti-
sense oligonucleotides (ASOs) are used as 
therapeutic tools in order to suppress the 
effects of miR-21. miR-21 is itself up-regulated 
in tumor cells and they down-regulate the 
expression of the tumor suppressor gene 
PDCD4. The gene targets of miR-21 are 
TXPAN2, LUM, SUZ12, MSH2 and PDZD2 [138].

miR-138: miR-138 is a tumor suppressor, but it 
is down-regulated in CML pathogenesis condi-
tions. It is up-regulated when the CML cells are 
treated with imatinib. This results in inhibited 
cell proliferation, increased apoptosis leading 
to inhibited colony formation by granulocyte-
macrophages. One of the reasons for this is 
that miR-138 down-regulates BCR-ABL by bind-
ing to its coding region, another is it binds to 
the 3’UTR of CCND3, which also results in its 
tumor suppression role. Additionally, miR-138 
up-regulation results in up-regulation of GATA1 
activity which then binds to miR-138 promoter, 
and in turn up-regulates its activity. All these 
point to the therapeutic roles miR-138 has in 
stopping the proliferation of CML [139].

miR-29b: In CML cells it is down-regulated 
which leads to CML proliferation. It binds to the 
3’UTR region of ABL1. By up-regulating it artifi-
cially and over-expressing it, CML cells undergo 
apoptosis by cleavage of procaspase3 and 
PARP. This happens because the miR-29b binds 
to the 3’UTR of ABL1 and suppresses its onco-
gene formation. Hence, up-regulation of miR-
29b acts as a tumor suppressor and is used as 

a therapeutic target for combatting CML prolif-
eration. The gene targets are HAS3, SNX24, 
CD93, SCML2, COL7A1, ZNF396, HMGCR, and 
ICOS [140].

LncRNAs and CML

Table 6 summarizes the effects of different 
lncRNAs on the pathogenesis of CML. They all 
have different modes of action and they affect 
different pathways. A few of them have been 
discussed below.

FENDRR: Adriamycin is a drug used in chemo-
therapy to combat cancer. However, many 
patients are resistant to Adriamycin due to the 
expression of multi drug resistance 1 (MDR1) 
gene. FENDRR is another gene in the genome 
which is usually down-regulated in CML cases. 
However, it has been noted that over-expres-
sion of FENDRR results in silencing of MDR1, 
thereby, increasing Adriamycin sensitivity. This 
results in increased apoptosis and decreased 
tumor growth. The mechanism of FENDRR 
action is discussed here. The 3’UTR of FENDRR 
and MDR1 contain multiple HuR binding sites. 
HuR is an RNA binding protein. miR-184 also 
has biding sites on the 3’UTR of FENDRR. It is 
observed that miR-184 competes with HuR to 
bind FENDRR. It was observed that miR-184 
positively regulates MDR1 expression via the 
miR-184/FENDRR/HuR/MDR1 pathway. Hen- 
ce, up-regulation of FENDRR and downregula-
tion of miR-184 can serve as a therapeutic tar-
get by decreasing Adriamycin resistance in CML 
cells [145].

MALAT1: The metastasis-associated lung ade-
nocarcinoma transcript 1 (MALAT1) is an 
lncRNA, which is known as being a proto-onco-
gene. It is up-regulated in CML cells and 
increases cell proliferation. It is also involved in 
increased imatinib resistance, which is why tar-
geting and down-regulating it can serve thera-
peutic effects. Silencing MALAT1 targets the 
miR-328, which results in arresting the cell 
cycle of CML cells, thereby preventing CML  
proliferation (Figure 4). This proves that the 
MALAT1/miR-328 axis is a crucial pathway that 
can be targeted to stop CML and increase ima-
tinib sensitivity [146].

H19: H19 is an oncogene and tumor suppres-
sor whose transcription is positively regulated 
by the c-Myc transcription factor. Knockdown of 
H19 promotes apoptosis, makes CML cells 
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more susceptible to imatinib and reduces the 
oncogenic tumor proliferation of BCR-ABL1. 
One reason for its over-expression in CML is 
accounted for the hypomethylation of certain 
differentially methylated regions or imprinting 
control regions in the H19 locus [147, 148].

Analysis of the effects of ncRNAs in AML and 
CML

Among all of the non-coding RNAs mentioned in 
this review, several of them are connected in 
one way or the other. This section will provide a 
summary and will tie up several connections 
among the circular, micro and long non-coding 
RNAs discussed thus far. This can help us to 
study certain gene loci or ncRNAs which have 
multi-faceted roles in more detail.

Connections between circRNAs and lncRNAs

The circ-PVT1 and lncPVT1 RNAs, as the name 
suggests, are derived from the same gene loci, 
the PVT1 gene present on chromosome 8. 
Though they are from the same gene loci, their 
transcription occurs by different promoters 
[161]. Both are up-regulated and result in the 
proliferation of AML.

Connections between miRNAs, circRNAs and 
lncRNAs

The miRNA-125 family consists of three homo-
logs: hsa-miR-125a located on 19q13, hsa-
miR-125b-1 located on 11q23 and hsa-miR-
125-2b located on 21q21 [162]. This miRNA 
family is known to be involved in tumour sup-
pression in several leukaemias. The miR-125b 
in AML acts as a tumour suppressor; the circ-
PVT1 RNA and lncRNA UCA1 both increases 
AML by sponging miR-125 family and miR-125a 
respectively. The miRNA-181 family is another 
set of conserved miRNAs that has different 
subtypes. They are mainly separated along 
three different genomic clusters, the miR-
181a1 and miR-181b1 are located on chromo-
some 1, miR-181a2 and miR-181b2 are on 
chromosome 9, and miR-181c and miR-181d 
are on chromosome 19 [163]. circNPM1 75001 
sponges the miR-181 family, however it reduc-
es AML. circ-ANAPC7 also sponges miR-181 
family but leads to the proliferation of AML. 
hsa_circ_0080145, hsa_circ_0024002 and 
hsa_circ_0037781 circRNAs target miR-181a 
and miR-181b by ceRNA pathway and result  
in increased CML pathogenesis. The miR-124 

family is also involved in AML formation. miR-
124-1 is down-regulated and inhibits AML for-
mation, while the circ-HIPK2 sponges miR-124-
3p in AML. The miR-20 family which is encoded 
from miR-17-92 [164] is present as miR-20a in 
AML and is down-regulated, which results in 
decreased AML proliferation leading to in- 
creased differentiation. lncRNA BGL3 is down-
regulated in CML, but it sponges miR-20a along 
with miR-20b and decreases CML. circ_000- 
9910 is up-regulated, it sponges miR-20a-5p 
and increases AML proliferation. miR-138  
is down-regulated in CML and over-expres- 
sion inhibits CML growth. miR-138-5p is 
sponged by hsa_circ_0004277 and it dec- 
reases AML pathogenesis. hsa_circ_0004277 
sponges miR-328-3p and regulates miR-328-
3p/SH3GL2 axis resulting in decreased AML. 
MALAT targets miR-328 and results in increased 
CML proliferation. miR-17 increases AML cell 
differentiation thereby decreases AML cell pro-
liferation and miR-17-92 family increases CML 
proliferation, while BGL3 sponges miR-17 and 
decreases CML proliferation.

LncRNAs involved in pathogenesis of both 
AML and CML

lncRNA UCA1 is up-regulated in AML leading to 
increased proliferation, while, lncRNA UCA1 is 
down-regulated in CML causing higher prolifer-
ation. Interestingly, this lncRNA is involved in 
both AML and CML (Figure 4). All the three, 
hsa_circ_0080145, hsa_circ_0024002 and 
hsa_circ_0037781 in CML could sponge miR-
16 and result in increased tumorigenesis. 
lncRNA H19 is up-regulated in both CML and 
AML, causing increased tumorigenesis in both 
diseases. However newer research is pointing 
to H19 tumor suppressive role in AML as well. 
lncRNA HOTAIR is also up-regulated in both 
AML and CML leading to increased tumor prolif-
eration in both cases. lncRNA MALAT is up-reg-
ulated and causes increased proliferation in 
both AML and CML. MEG3 is down-regulated in 
both AML and CML causing reduction in AML 
proliferation in down-regulated state. However, 
in CML, its over-expression causes decreased 
CML proliferation. MEG3 in CML sponges miR-
21, which is oncogenic in nature. miR-21 is 
known to be up-regulated in CML cases and 
could be used as a prognostic tool. lncRNA 
NEAT1 is up-regulated in CML and causes 
increased proliferation of CML, however in 
AML, it is down-regulated. Up-regulation of 
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NEAT1 in AML causes decrease of AML patho- 
genesis.

Conclusion

This review has tried to give an overview of the 
different non-coding RNAs and their effects on 
the two types of myeloid leukemia. It has 
focused on the pathway of action of several of 
them, and has also delved into their prognostic 
value. Their use as biomarkers and possible 
therapeutic targets have also been listed and 
discussed. Figure 3 gives summary of cir-
cRNAs, miRNAs, lncRNAs in AML and CML. A 
statistical overview of the different types of 
ncRNAs are discussed and the tendency of 
them to cause the disease. Our interpretation 
shows that around 67% of the circRNAs men-
tioned here cause AML, while 100% of the cir-
cRNAs mentioned here cause CML. We could 
conclude that circRNAs in general have a more 
antagonistic function in myeloid leukemias. In 
the case of miRNAs, 60% of them result in low-
ering of AML in patients, while 67% of them 
cause CML pathogenesis. This can be interpret-
ed as: miRNAs have a positive protagonistic 
role in AML, but it has an antagonistic role in 
CML. Finally, when considering lncRNAs, 84% 
of lncRNAs result in increased AML pathogen-
esis, while 83% of them cause increased CML 
pathogenesis. We could assume that lncRNAs 
have an overall antagonistic effect while caus-
ing myeloid tumorigenesis. Several of the cir-
cRNAs, miRNAs and lncRNAs are yet to be dis-
covered. We await the day when myeloid tumors 
can be cured by targeting these ncRNAs.
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