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Abstract: Current plastic and reconstructive surgery computational techniques are not precise and take a long time 
to perform. Therefore, these limitations reduced the adoption of computational techniques. Although computer-
aided surgical preparation systems may help to enhance clinical results, minimize operating time and costs, they 
are too complicated and require detailed manual information, which restricts their usage in doctor-patient com-
munication and clinical decision-making. In order to obtain the optimal aesthetic and reconstruction treatment 
results, these techniques must be designed and implemented carefully. Computer-aided modeling, planning, and 
simulation techniques enable the preoperational evaluation of various therapeutic strategies based on the 3D 
patient models. We offer the new deep-learning architecture for diagnostics, risk stratification, and post-operative 
simulation for face prediction. Initially, preprocessing was done by using the weighted adaptive median filter and 
Laplacian partial differential equation-based histogram equalization. Then the target area was converted to 3D for 
clear visualization by using the Smart restorative frustum model. Finally, the post-operative face prediction was 
constructed by using the deep spatial Multiband VGG NET CNN. We obtained a face dataset of 313,318 CT and 
their clinical records from different centers. The algorithms were developed by 21,095 scans (Qure25k data set). In 
addition, CQ500 datasets from various centers were compiled in two batches, B1 and B2, to validate the algorithms 
clinically. Four hundred ninety-one scans used the CQ500 dataset. Initially, we reconstructed the input image and 
then devised the post-operative face computationally. The suggested deep spatial Multiband VGG NET CNN showed 
the high range of post-operative face prediction accuracy. Therefore, successful metrics such as the Jaccard and 
dice scores have shown accurate outcomes compared to other traditional methods. MATLAB was used to obtain the 
output of proposed work. With the help of the suggested classifier, the prediction accuracy was 93.7%, sensitivity 
was 99.9%, and specificity was 99.8%, all of which were higher than traditional approaches. Here, the suggested 
method provides better results for post-operative face prediction to the applied dataset than any other existing 
mechanisms. It is a generalized attempt that can apply to other similar datasets as well.

Keywords: Plastic and reconstructive surgery, surgical planning, post-operative face prediction, weighted adaptive 
median filter, histogram equalization, smart restorative frustum model, deep spatial multiband VGG NET CNN

Introduction

Every year, in the United States, more than 
200,000 maxillofacial treatments are per-
formed for various infections, illnesses, and 
injuries to the face, neck, and head. A signifi-
cant amount of patient detail is gathered to  
create and automate customized methods in 
machine learning-based applications for these 
operations. The machine learning surgical  
techniques are relatively new in plastic and 
reconstructive surgery. It has been utilized to 
illustrate how it can alter skull-development 

syndrome and how the remedial effects of sur-
gery on skull deformities can be examined or 
predicted. Preoperative work includes medical 
imaging and computer-assisted surgical prepa-
ration. Evaluating various operating options in a 
simulated world would save operational time, 
costs and promote a more consistent and opti-
mal treatment. To determinate the right bone 
cuts and bone orientation, a surgeon can ma- 
nipulate a digital patient model reconstructed 
with CT or MR images and reproduce face 
shape shifts. This immersive treatment proce-
dure can be used for patients to produce tai-
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lored wafers, cutting aids, plates, and im- 
plants. Though 3D computer-aided operational 
planning has existed for 30 years and the 
advantages of conventional 2D planning are 
recognized, its adoption has been restricted to 
high-quality hospitals, primarily because of the 
complexities of business software and disput-
ed planning precision. Deep learning models, 
including predictive types, were proposed to 
make this technology available and simplify  
the processes in computer-assisted operation-
al planning. However, incorrect face modeling 
challenges have been considered the vast ana-
tomical diversity of human populations. A wide 
variety of 3D images from diverse populations 
ages, sexes, and ethnicities are needed to 
develop a mathematical model which can cor-
rectly represent an individual face. These 3D 
photos have to be processed by the new com-
puter vision algorithms and instantly create an 
elevated mathematical model. In the begin-
ning, a popular approach to deep learning was 
used to retrieve accurate and complete 3D 
images for 2D images and simulate statistic 
models for the face and texture. Presently, 
deep learning techniques are used to identify 
the face, standardize expressions, and recre-
ate the video for the face. Therefore, we sug-
gest a deep-learning system with various fac-
tors, completely integrated diagnostic and clini-
cal decision-making processes in the field of 
craniomaxillofacial surgery. The full-automa-
tion-wide clinical model is available for diagno-
sis, risk stratification, and simulation of thera-
py. We also trained and validated a proposed 
deep spatial Multiband VGG NET CNN based  
on 313,318 head CT scans of healthy volun-
teers and patients receiving craniomaxillofacial 
surgery. CNN showed clinical decision-making 
potential, including a fully automatic diagnostic 
and simulation procedure. Our proposed model 
is crucial in making the surgical procedure easy 
for surgeons, inexpensive, and more transpar-
ent to patients based on the machine. It would 
turn patients into unique systems of orthogra-
phy therapeutic decision-making and other 
plastic and reconstructive surgical areas. The 
remaining part of the paper can be arranged as 
follows; Section II represents different me- 
thods used so far. The problem statement is 
illustrated in section III. The full description of 
the procedure proposed is given in section IV. 
The analytical aspect of the suggested scheme 
is section V. The overall workflow will eventually 
end in section VI.

Related works

Machine learning, a branch of artificial in- 
telligence, can tackle clinically related pro- 
blems in several fields of plastic surgery [1]. 
Even in difficult circumstances, advanced 
imaging tools such as computer-assisted 
surgery (CAS) can help with preoperative 
planning. Device placement and the shape of 
complex osteotomies can both be adjusted 
intra-operatively. Postoperative monitoring and 
long-term follow-up are both possible with CAS 
[2]. Furthermore, in craniomaxillofacial (CMF) 
surgery, selecting the right surgical plan is 
critical to obtaining the desired aesthetic facial 
profile [3]. In the research of Shahim et al. [3], 
the predicted plan for osteotomy of 6 clinical 
cases that undergoes CMF surgery was com- 
pared to the actual clinical plan. After that, the 
predicted and actual clinical plans were used  
to compare simulated soft-tissue results. The 
comparison of both facial outlook and the 
strategy for osteotomy indicates a high level of 
agreement, indicating that the suggested 
technique might be used in the prediction of 
CMF surgical planning. In the research of 
Okamoto et al. [4], the goal of his study was to 
assess 3D hard and soft tissues changes 
following mandibular setback surgery between 
orthodontics-firt approach (OFA) and surgery-
first approach (SFA). Okamoto et al. discovered 
that soft tissue changes following the SFA 
differed significantly from those after the OFA; 
hence, soft tissue predictions need additional 
care. An analysis of data comparing SFA and 
OFA for patients with mandibular prognathic 
confirms that post-operative orthodontic the- 
rapy and occlusal relationship in SFA modify 
the mandibular soft tissue. Bianchi et al. [5] 
performed a cone-beam computed tomogra- 
phy (CBCT) pre-operatively on 10 patients with 
CMF deformations. The data were recreated in 
three dimensions by using the SurgiCase CMF 
software, and several osteotomies were simu- 
lated in a 3D virtual environment by employing 
dissimilar surgical methods. After six months  
of surgery, the patients received another CBCT. 
As a result, the pre- and post-operative CBCT 
investigations may be superimposed to assess 
the software’s consistency and dependability. 
The preliminary findings of this study showed 
that in addition to the minimal radiation expo- 
sure, CBCT-based simulations in orthognathic 
surgery for CMF abnormalities are trustworthy, 
and might become the gold standard for surgi- 



Multiband based postoperative face prediction study

2529 Am J Transl Res 2022;14(4):2527-2539

cal treatment planning. Fiducial markers, such 
as titanium spheres, ceramic balls, softened 
gutta-percha, acrylic, or face-bow, were used in 
the methods of Gateno et al. [6], Uechi et al. 
[7], and Nairn et al. [8] to create a proper 
procedure of replacing the contorted dental 
image without accounting for faulty imaging 
effects obtained by CBCT. In the research of 
Steinbacher et al. [9], 3D analysis and common 
threads of all six forms of reconstruction 
(cranial reconstruction, craniosynostosis, mid- 
face advancement, mandibular distraction, 
mandibular reconstruction, and orthognathic 
surgery) are emphasized and compared to 
novel CMF surgical applications. According to 
the findings of this study, 3D planning and 
virtual surgery improve efficiency, specificity, 
originality, and repeatability in CMF surgery. 
Bauermeister et al. [10] presented a literature 
review study on 3D printing technology 
concerning plastic and reconstructive surgery. 
This study concluded that 3D printing allows  
for the formation of complex customized 
implants which enhance patient outcomes and 
the economic viability of the procedure. This 
technology provides a degree of accessibility 
for distant and resource-constrained areas 
where health care is typically scarce. In the 
investigation of Bhalodia et al. [11], the Shape 
Works software was used to analyze the form 
of the skull. Combining researcher evaluations 
with their shape analysis model, machine 
learning was utilized to anticipate the intensity 
of metopic craniosynostosis (CS) using CT 
scans. Interfrontal angles then contrasted  
their model with the gold standard. This 
technique may make it easier for physicians to 
measure the intensity of the illness and con- 
duct comprehensive longitudinal examinations. 
Jalali et al. [12] developed an algorithm for 
machine learning to predict the required blood 
transfusion in human craniofacial surgery pre-
operatively. Plastic surgeons can use this 
prediction model to enhance the clinical care  
of patients presenting for CS surgery. Brucoli et 
al. [13] conducted a study to evaluate and 
explain experience by using a teleradiology 
approach on facial trauma patients. Teleme- 
dicine systems handled 467 patients with a 
total of 650 fractures. According to findings, 
teleradiology may be useful in properly triaging 
trauma patients from outlying hospitals for the 
correct referral to a maxillofacial trauma hub 
center. Van de Lande et al. [14] proposed 
combined machine learning and geometric 

morphometrics model to allocate detailed and 
precise facial shapes. Their implementation 
seems to be highly useful in surgical prepar- 
ation and evaluation. However, a clinical tool 
must also be developed to use this model. 
Miller et al. [15] compared the eFACE scale of a 
clinician to the automated evaluations of 
machine-learning (auto-eFACE). According to 
their findings, auto-eFACE is a rapid and simple 
evaluation method that can standardize facial 
palsy outcome metrics and reduce observer 
bias found in eFACE clinician scales. Tonutti et 
al. [16] proposed a procedure to evaluate a 
brain deformation paradigm for patients by 
integrating data from the finite element meth- 
od (FEM) and learning algorithms. The results 
outperform previous deformation models for 
real-time applications, with lower errors and 
higher patient specificity. The suggested me- 
thod satisfies the present demands of image-
guided surgical techniques and can simulate 
any soft tissue deformation. Stepanek et al. 
[17] used the R programming language to do 
multivariate regression to find factors that 
increase face attractiveness following rhino- 
plasty. Based on the Ekman-Friesen FACS 
scale, Bayesian Naive Classificatory, neural 
networks and decision trees (CART) were used 
to allocate facial image data to one of the  
facial emotions. In this research, performed 
machine learning analysis showed the highest 
accuracy and increased facial attractiveness. 
Mostoufi et al. [18] demonstrated that digital 
technology has transformed the landscape of 
maxillofacial surgery, particularly orthognathic 
techniques, and it is continually evolving. As a 
result, clinicians must be aware of and un- 
derstand available alternatives while keeping 
abreast of these developments. It illustrates 
the impact of advanced technology in orthog- 
nathic surgery by explaining the fundamental 
principle of virtual planning and navigation  
with examples of surgical procedures. Gerbino 
et al. [19] assessed 3D soft tissue and bone 
alterations in the malar region by using malar 
valgisation osteotomy combined with orthog- 
nathic surgery. In midface hypoplasia, malar 
valgisation osteotomy combined with orthog- 
nathic surgery improved the zygomatic pro- 
jection and contributes to a balanced facial 
correction. A volume and surface analysis 
based on 3D geometrical data showed 
enhancement in the transversal and forward 
directions. Thus, the osteotomy can be done 
safely, when combined with orthognathic 
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procedures. Hemelen et al. [20] proposed a 
study to compare the prediction accuracy of a 
conventional 2D planning with a 3D computer-
aided planning in hard and soft tissue profiles. 
The 3D planning method allows for more 
precise soft tissue planning. Nevertheless, the 
2D orthognathic planning is equivalent to 3D 
planning when it comes to hard tissue plan- 
ning. In the research of Hertanto et al. [21], the 
study’s main goal was to investigate patients’ 
perceptions about the influence of 3D predic- 
tion planning (3D PP) of facial soft tissue 
changes after orthognathic surgery. The 3D PP 
had a noteworthy positive impact on the 
patients’ experience of their orthognathic 
management journey. Its improved surgeon-
patient communication while reducing pa- 
tients’ preoperative anxiety and increasing 
their motivation and confidence to undertake 
surgery. The 3D PP was accurate and did not 
overestimate the expected changes. 

Problem statement

Corrective procedure for congenital abnormali-
ties and organ transplantation cells for a rigor-
ous preparatory process during which many 
studies are performed. It could be dangerous 
without an accurate knowledge of the relation-
ship and the structure involved in an operation. 
Thus, an appropriate configuration is required 
to schedule surgical procedures correctly.

Proposed methodology

The benefits of preoperative imaging include 
the opportunity to test potential treatments, 
e.g., different points of entry, access points, 
pathways, sites, and collection of implants by 
the surgical instruments. It also enables the 
surgery to be more precise, durable and re- 
duces complications. Preoperative preparation 
based on images aims to identify a viable solu-
tion in challenging situations and facilitates 
patient access to surgery. The schematic repre-
sentation of the suggested methodology is 
depicted in Figure 1.  

Pre-processing

Pre-processing was the first phase of image 
processing. Pre-processing ensured the com-
patibility and performance of the database. 
Each step was required to reduce the workload 
of image processing. Filtering and extracting 
methods identified the unintentional errors  

that impaired the image’s capacity and were 
used for pretreatment. Pre-processing was 
done to enhance the contrast of the images. 
The first weighted adaptive median filter 
stopped other unexpected sounds from occur-
ring. Thus, the noise was eliminated to produce 
a translucent image.
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Where b, d is the parameter, and σ represents 
standard deviation. Following that, the errors 
should be independent of one another, and it 
can be described as follows,
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Where S represents a random variable. Then 
the movement of the variable needs to be nor-
malized by the standard deviation.
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Where D denotes the moment scale.

μk=F(P-μ)^K                                                      (4)

Where P is a random variable and F is the 
expected value.
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For normalizing the distribution of the variable 
using the mean.
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P
f=                                                               (6)

Where Cv is the co-efficient of the variance.

The improved pixels in this step were convert- 
ed into binary images by an automatic thresh-
old mechanism. It was achieved by establishing 
whether each pixel was a vessel pixel (value 1) 
or a background pixel threshold (value 0). This 
approach was more accurate than the stand- 
ard threshold technology. The threshold utility 
was automatically determined by a standard 
intra-class variance global threshold measure-
ment procedure. Isolate image threshold arti-
facts or some other related digital image infor-
mation. During the thresholding process, 
warped pixels usually produce error pixels. The 
scaling function can do by setting the values 
between 0 and 1. This technique is called stan-



Multiband based postoperative face prediction study

2531 Am J Transl Res 2022;14(4):2527-2539

dardization, depending on the application, and 
it reduced the noise perfectly.

Et+1(X,Y) = Et(X,Y) + [{E(Rr,Gg,Bb) - E(Rr,Gg,Bb)} 
VΔt]                                                                   (12)

Figure 1. Flow diagram of the proposed methodology.
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Afterwards, in general, the 
histogram equalization can 
be done to boost the con- 
trast. Since the histogram 
was equalized, the average 
contrast of the images was 
then improved. However, the 
partially difference-oriented 
Laplacian model may be pro-
posed for improving the irreg-
ular pixels. The use of the 
RGB space was much conve-
nient since it can take images 
from any capturing source 
without transformation any of 
the light images. Consequent- 
ly, the RGB space was exten-
sively used in current working 
systems and also in the pro-
cess of image processing. 
Figure 2 shows the pixel color 
representation.
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Here, Rr+Gg+Bb=1

Where X denotes red intensi-
ty, Y denotes green intensity, 
and Z denotes blue intensity.

The algorithm is then rewrit-
ten as a partial variance 
equation,

ØE(Rr,Gg,Bb)/,t=F(Rr,Gg,Bb) - 
E(Rr,Gg,Bb)                                (11)

Where E(Rr,Gg,Bb) represents 
the continuous pixel while 
F(Rr,Gg,Bb) = f {E(Rr,Gg,Bb)}V = 
FINT {E(Rr,Gg,Bb)} and the fol-
lowing expression can be 
found by using the finite dif-
ference method.
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By scaling the noise, we can smooth the pixel  
in this process. Thus, by applying the anisotro-
pic diffusion formula, a transformed expression 
will,

ØE(Rr,Gg,B b)/Øt=µc RN (ǁ▽E(Rr,Gg,B b)ǁ )div 
(▽E(Rr,Gg,Bb)/ǁ▽E(Rr,Gg,Bb)ǁ) + f(Rr,Gg,Bb) - E(Rr,
Gg,Bb)                                                                 (13)

Where µ represents the weighing factor that 
maintains the smoothing process, ▽S(X,Y,Z) 
was the gradient of the pixel, cCRN was the diffu-
sion coefficient.

CRN=ǁ▽E(Rr,Gg,Bb)ǁ=1/1 + [ǁ▽E(Rr,Gg,Bb)ǁ/k]^2 
                                                                        (14)

The expression β has a higher smoothing value 
for the equation smoothing, but pixels must be 
reinforced before smoothing. However, a linear 
pixel amplification operator such as Laplacian 
has sharpened and masked the pixel. We want 
to selectively sharpen the pixels to stabilize the 
environment and to prevent noise from enhan- 
cing. The method of forwarding and backward 
diffusion can apply according to Laplacian as, 

cFBD(ǁ▽E(Rr,Gg,Bb)ǁ=1/1+[ǁ▽E(Rr,Gg,Bb)ǁ/
fk]^nα/1+ǁ▽E(Rr,Gg,Bb)ǁfk)ϑ]^2m                   (15)

The FAB approach was inappropriate for tex- 
ture safety and was ideal for pixel fluidity. The 
smoothing must then continue with a reason-
able sharpening rate without changing the 
pixel. Therefore, we have changed the equation 
for the new expression Laplacian: 
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It leads to the generally accepted PDE formu- 
lation and improved continuous initial image 
field E (R, G, B) in the form of smoothing/
sharpening,

ØS(Rr,Gg,Bb)/Øt=µ gFBD(S(Rr,Gg,Bb)) + ge(S(Rr,Gg, 
Bb)) + µge(S(Rr,Gg,Bb))                                              (17)

Where gFBD(S(Rr,Gg,Bb)), ge(S(Rr,Gg,Bb)), µge(S(Rr, 
Gg,Bb)) represents the simultaneous sharpen-
ing functions that be expressed as,
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The enhancement form of the PDE can be rep-
resented as,

gFBD(E(Rr,Gg,Bb))=f(gFBD(E(l,m)) - (E(Rr,Gg,Bb))) 
                                                                        (19)

3D reconstruction

Many medical images get scanned, but the 
reconstruction required considerable time and 
made the algorithm complicated. Reliable 
patient details were a fundamental prerequi-
site for the meaningful preparation of surgical 
procedures. These models have been recov-
ered from topographic slice stacks. Until start-
ing the 3D conversion process, images was 
converted from JPEG to DICOM format. Be- 
cause of the functional reconstruction, three-
dimensional osteotomy preparations were 
based on the 3D paradigm for osteotomies  
and subsequent relocations of pelvic bone 
parts. The bone tissue interface links bone 
relocations with the soft tissue around which 
the amount of hard tissue and air determined. 
A soft tissue volumetric representation was 
required for an effective 3D simulation of soft 
tissue deformation and for a preoperative  
study of aesthetic recovery. For better perfor-
mance, the smart restorative frustum model 
was used. Figure 2 shows the step-by-step pro-
tocol for using the smart restorative frustum 
model (SRFM). Three-dimensional (3D) dis- 
plays provided the depth detail that was inac-
cessible in 2D content. The binocular differ-
ence of the depth cue was added to digital 
images viewed by the face during 2D-to-3D 
transfer, significantly enhancing the immersive 
effect if achieved correctly. The method of cal-
culating the image depths used the values of 
contrast and accuracy. In the proximity of 
objects, there was more contrast and sharp-
ness than the farther distant objects. There 
were also a reverse proportion of contrast and 
sharpness to depth. Adjacent regions had nar-
row chrominance values, making them compa-
rable in depth. Chrominance was a composi- 
tion measure for the 2D image.

By using edge data, the work described the 
successful method of 2D to 3D conversion. 
Remarkably, the edge of an item was likely to 
be the edge of the map. The relative depth 
value of each area was assigned until the  
pixels get clustered together. The dissatisfac-
tion paradigm, which divided the image into 
various groups. The depth of each segment 
was then calculated using an initial approxima-



Multiband based postoperative face prediction study

2533 Am J Transl Res 2022;14(4):2527-2539

Figure 2. Pixel Color representation.

Figure 3. 3D image reconstruction process.

Figure 4. Steps of the reconstruction process.

tion of depth. Finally, the 
smart restorative frustum 
model generated a variety of 
image views. It improved 
image quality by converting 
the 2-dimensional image into 
a comfortable 3-dimensional 
image without artefacts.

The creation of the 3D image 
is depicted in Figure 3. Both   
approximate depth and com-
putational complexities was 
favorably compared by the 
algorithm suggested. It signi-
fied that every pixel in a frus-
tum has the same depth 
value. Here, the image was 
differentiated by using the 
frustum model. The absolute 
mean difference of the adja-
cent frustum was used to 
compute the value of each 
link between the frustum.

Diff (n, d) = |Mean (n) - Mean 
(d)|                                     (20)

Where n and d represent- 
ed two neighboring frustum 
blocks. A smaller value indi-
cated that the two frustum 
blocks looked more similar. 
The absolute difference bet- 
ween the frustum block aver-
ages was determined. By 
removing the connections of 
more substantial edges, nu- 
merous grouped regions of 
the frustum were generated. 
Many small groups were gen-
erated, and there was no con-
sistency between the frustum 
and connectivity. It preserved 
connectivity and also provid-
ed a better spatial result. The 
effective connection success-
fully avoided the image’s pro- 
perty. The process was then 
progress to deep extraction, 
and it was crucial in the con-
version process. The main 
distinction was the under-
standing of 2-dimensional 
and 3-dimensional distance. 
We provided a firm basis for 



Multiband based postoperative face prediction study

2534 Am J Transl Res 2022;14(4):2527-2539

the refinement and enhancement of 3D images 
by collecting and integrating these depth pix-
els. After generating the frustum block classes, 
the required depth for each unit was allocated 
using the expected depth gradient. Forming 
gradient plans, assigning depth gradients, and 
ensuring the accuracy of the recognized field 
was all part of the procedure.
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   (21)

Greater depth indicated the proximity of the 
pixel. Each block group had a depth function 

After then, we measured the object area of 
each slice. A smart restorative frustum model 
that can reconstruct the image in a 3D form 
gives clear visualization of the abnormality.

In Figure 4, the preoperative 3D image was  
created from a 2D image after following the 
multiple steps. 

Face prediction

The technique of choice for complex cranio-
maxillofacial dysplasia is a 3D analysis that 
focuses on topographical details and virtual 
patterns. A cephalometric and functional exam 
may distinguish facial areas that differ or indi-

Table 1. Performance analysis of the suggested methodol-
ogy over CQ500 dataset

No. Image
(deep spatial Multiband VGG NET CNN) Proposed 

Sensitivity Specificity Accuracy
1 HG01 98.84 100 99.25
2 HG02 100 98.84 99.12
3 HG03 96.78 97.84 96.87
4 HG04 98.45 98.98 98.32
5 HG05 99.21 99.75 99.42
6 HG06 95.84 98.86 96.78
7 HG07 98.95 98.47 98.17
8 HG08 98.75 99.21 98.79
9 HG09 98.74 98.74 97.86
10 HG10 78.65 96.54 93.78
11 HG11 100 100 100
12 HG12 89.24 95.78 95.87
13 HG13 97.48 97.12 98.47
14 HG14 100 98.02 98.78
15 HG15 100 100 100
16 HG22 97.14 97.15 92.98
17 HG24 100 97.14 94.41
18 HG25 100 98.65 94.05
19 HG26 99.27 99.25 93.65
20 HG27 94.35 97.25 96.78
21 HG28 97.84 98.65 95.16
22 HG29 100 100 90
23 HG30 100 98.58 99.34
24 HG31 100 99.25 93.12
25 HG32 100 99.88 93.76
26 HG33 100 99.45 93.46
27 HG34 100 99.32 99.47
28 HG35 100 98.78 99.06
29 HG36 100 98.45 99.15
30 HG37 99.84 99.89 93.45
Average  99.91233333 99.828 93.7733333

corresponding to the same degree 
as the block unit gravity center, as 
shown by this formula. The meaning 
of Wfrustum(1) and Wfrustum(2) sign was 
balanced for the slope weight from 
left to right and from top to bottom. 
It enabled the depth chart to be 
developed. Since a bilateral cross-
filter provided a continuous depth 
map with equivalent pixel values 
throughout the smooth region, the 
depth map’s graphical characteris-
tics was convenient. Finally, the 
depth map was created. A smooth 
depth map with equal pixel values 
within a soft area retains sharp dis-
continuity and comfortable visual 
consistency at the object boundary. 
With three-dimensional projection 
depth picture processing, the depth 
map was used to create right or left 
multi-visual images. Eventually, a 
pixel to the right or the left of the 
intermediate point was identified for 
the 3D view. The location of the pixel 
is adjusted by depth quality. This for-
mula can recreate the 3D image, 
through cubic interpolation, 

i a * 3x x3
1

x
2
t

z
f= + c8 B                                   (22)

The xi is the horizontal coordinate of 
the frustum pixel view, f is focal 
length, tx is the width, and Z is the 
actual pixel depth value. The for- 
mula indicates the 3D image recon-
struction of the intermediate view 
pixel horizontally the left and the 
right view.
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cate functional failure from bilateral symmetry. 
Facial dysplasia correction usually means that 
the face structure is moved, removed, in- 
creased, or even replaced entirely. As a result, 
bone must be replaced, and an operation must 
be carefully planned. The osteotomies were 
designed in complex cases with skull replicas 
of life-size. Moving bone sections was rear-
ranged to maintain anatomical symmetry and 
to restore functional anatomy. The comparison 
of different concepts of care includes a variety 
of policy models. This approach is not neces-
sarily viable when health care rates rise, and 
public health insurance costs fall. Our objec- 
tive was to create an immersive computing 
environment that allows the operator to anti- 
cipate complex osteotomies and bone trans-

lyzed and resized in the whole system by clas-
sification and then measured by class probabil-
ity; the method was used preoperatively. By 
giving different input parameters, the suggest-
ed classifier predicted the facial structure. 
Post-operative face according to the rating 
model was expected. Finally, a ranking was 
generated for the matching distance of data.

ED v

v b

20 * q( 2 * S )/2

exp ( cos (2 * S )/ ) 20exp

obj

d

=- - -

+r

/

/                  (23)

Where ED signifies the Euclidean distance, q 
denotes the query data, and s is the score value 
of the image.

EDclassify F ( ) a bobj j
l
j
l=                                  (24)

Figure 5. Image reconstruction and post-operative face representation. 
Preoperative face (A), 2D image (B), 3D reconstructed RGB colored image 
(C), 3D reconstructed grey scale image (D), estimated postoperative image 
(E) and postoperative image (F). 

fers using simulated models. 
Different methods are then 
practically free to search. The 
planning of computer-assist-
ed osteotomy was based  
on the above definition. The 
deep spatial multiband VGG 
NET CNN can be refined as 
neural and has multiple hid-
den nonlinear layers. It is  
pre-trained in the nonlinear 
dimension reduction of the 
data, and the network model 
can provide additional senso-
ry feedback. The face region 
here needed to be distin-
guished and dismantled. The 
classification system was 
used to classify facial im- 
ages by various features to 
improve the form and face 
recovery process. The pro-
posed classification was us- 
ed for improvement or specif-
ic functionality to extract the 
non-linear properties of facial 
images. The use of classifica-
tion techniques showed the 
face images with existing 
accuracy, efficiency, and con-
tinuity. The featured photos 
identified the need for facial 
reconstruction. The classifi- 
cation system was based on 
the derived characteristics. 
The classifier was likely to cal-
culate and perform a func-
tion. The data was first ana-
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The classification concluded as,

F a b n(a b )j
l
j
l

j
l
j
l 2= -                                          (25)

Where F denotes the feature, P represents the 
pointed feature, a bjl j

l  are the classified fea- 
tures.

Algorithm 1: (deep spatial Multiband VGG NET 
CNN)

Input: Enhancement image eim

Output: Post-operative face image FC

Initialize the classifier layers

For ii =1: size (train attributes, 1)

Test data = [train attribute; class (1: Train cut) 
end-5: end]

End

Result and discussion

The computer-assisted modeling, planning, 
and simulation method enables the preopera-
tive evaluation based on of 3-D simulations 
with various therapeutic strategies. The ana-
tomical and functional limits of bone structures 
may be mobilized and moved. With high-quality 

Figure 6. Dice (A) and Jaccard co-efficient (B).

Initialize the vgg layers

Integrate vgg layers

Initialize train attributes

Set label

Train label =80%

Tet label =20%

Lab = unique (label)

For ii =1: lengh (Lab)

Class = find (label == Lab (ii))

To pass train attributes data 
to each layer,

Train cut = length (class)-train 
cut

Traindata = [train data; train 
attributes; class (1: Traincut) 
end-5: end]

Predict label = classify (net, 
train data)

End

End

For ii =1: size (train data, 1)

Traindata = [train data; train 
attributes; class (1: Traincut) 
end-5: end]

End
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modeling methods, the resultant facial expres-
sion is simulated and visualized. This method is 
essential for preoperative surgical preparation 
and for keeping active patient records, docu-
mentation, quality control, and surgical train-

NET CNN has shown a high accuracy range  
over post-operative face prediction, and the 
measuring precision reveals the tool’s actual 
mass and efficiency. Therefore, successful 
metrics such as the Jaccard and Dice scores 

Figure 7. Determination of the accuracy percentile.

Figure 8. Data vs. sensitivity (%).

ing. Table 1 shows the aver-
age forecast performance. 
After preprocessing and en- 
hancement stage, image slic-
es in which the post-opera- 
tive face can be predicted by 
using a deep spatial Multi- 
band VGG NET CNN classifier. 
The following Figure 1 shows 
the output of the suggested 
classifier. It can be noted  
from the dataset of identified 
post-operative faces. For the 
output of the proposed work, 
MATLAB was used. This sec-
tion has analyzed the efficien-
cy of the proposed method. 

Dataset

We collected the 313,318 
head CT scan dataset and its 
clinical records from different 
centers. Of these, the algo-
rithms were developed by 
21,095 scans (Qure25k data 
set). In addition, CQ500 data-
sets from various centers 
were compiled in two batch-
es, B1 and B2, to verify  
the algorithms clinically. 491 
scans used the CQ500 data-
set. Three independent radi-
ologists agreed with the stan-
dard for CQ500 results, while 
the gold standard for Qure- 
25k data collection is called 
the clinical report (http://he- 
adctstudy.qure.ai/#dataset). 
All data mentioned above are 
open-source; hence, no app- 
roval for ethical committee 
was required.

Figure 5A-F, initially recon-
structed the input image, and 
then the post-operative face 
was designed. The suggested 
deep spatial Multiband VGG 
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have shown accurate outcomes compared to 
other traditional methods.  

Dice co-efficient

Let C and D be the pixels for the ground truth 
and the pixels marked. They can then deter-
mine the coefficient as the dice.

I (A, B) = (2 A∩B/A+B) = 2TP/2TP+FN+FP   (26) 

Jaccard co-efficient

The similarity between the diverse communi-
ties can be established.

J (A, B) = (A∩B/A∪B) = (A∩B)/A+B - (A∩B) = (TP/
TP+FN+FP)                                                     (27)

The Dice and Jaccard scores for the suggest- 
ed deep spatial VGG NET CNN solution is seen 
in Figure 6A, 6B. The findings demonstrated 
that the recommended procedure displays 
accurate high Jaccard and Dice coefficient val-
ues. It can compare with the other existing me- 
thods to prove the efficiency of the proposed 
model as shown in reference [22].

The proposed classification system exceled  
the existing approaches with a maximum accu-
racy yield of 93.7 percent, presented in Figure 
7. It is evident from the obtained findings that 

Through this study, the estimation of the post-
operative face based on the new approach 
remains the most complicated issue in the 
medical sector. By utilizing the visual skull CT 
representations, the current procedure effec-
tively identifies the post-operative face. This 
research aims to effectively and efficiently rec-
ognize the post-operative face and save time 
and resources. This method contrasts with the 
three others recently introduced approaches to 
evaluate the system’s efficiency. Compared to 
different current methods, the output of the 
suggested protocol indicates positive effects. 
In the future, we will try to implement the rec-
ommended procedure for disease diagnosis.
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Figure 9. Data vs. specificity (%).

the proposed approach is way 
above the current methods.

Figure 8 depicts the suggest-
ed system, which shows high-
er sensitivity rates (99.9%) 
than the current method.

Figure 9 compares the accu-
racy of the specificity values 
achieved by the proposed  
system with the current me- 
thods. The findings clearly 
show that the proposed app- 
roach has provided a high 
specificity rate (99.8%) rela-
tive to the previous appro- 
aches. The results indicate 
that the proposed method 
can achieve the desired per- 
formance.

Conclusion
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