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Abstract: Periodontitis is mainly initiated by periodontal pathogens including Porphyromonas gingivalis, and bad liv-
ing habits such as smoking aggravate its incidence and severity. The development of periodontitis is closely related 
to the host’s immune responses and the secretion of various cytokine networks. Moreover, periodontitis has an im-
portant connection with the development of systemic diseases. Recently, epigenetics which is a fast-developing hot 
research area has provided new insights into the research of various diseases including periodontitis. Epigenetics is 
an important supplement to the regulation of gene expression. The study of epigenetics is about causing heritable 
gene expression or cell phenotype changes through certain mechanisms without changing the DNA sequence. It 
mainly includes histone modification, DNA methylation, non-coding RNA and the latest research hotspot m6A RNA 
methylation. In the review, we comprehensively summarize the latest literature on the potential epigenetic regula-
tions in various aspects of periodontitis.
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Introduction

Periodontitis is a chronic inflammatory disease 
caused by bacteria in dental plaque invading 
periodontal tissue. It can lead to periodontal 
destruction, periodontal pocket formation, 
attachment loss and alveolar bone absorption 
[1, 2]. Periodontitis is the main cause of adult 
tooth loss. According to the fourth China oral 
health epidemiological survey report, the de- 
tection rate of gingival bleeding among 35-44- 
year-olds was 87.4%, rate of dental calculus 
was 96.7%, and rate of attachment loss (great-
er than or equal to 4 mm) was 33.2% [3].

One essential process is the secretion of 
inflammatory cytokine networks in periodonti-
tis. The cytokines induce the host’s suscep- 
tibility and strengthen the immune response, 
which contribute to tissue destruction in peri-
odontitis [4, 5]. Accordingly, numerous experi-
mental studies have used many types of in- 
flammation-controlling agents and factors that 
improve osteogenic and mineralization proper-
ties of periodontal ligament cells (PDLC) as a 

strategy to treat periodontitis [6-8] (Figure 1). It 
is worth noting that periodontitis is not just an 
oral disease, but it can potentially affect the 
health of other body systems, and is a risk fac-
tor for that development or aggravation of a 
variety of systemic diseases [9], like diabetes 
[10], rheumatoid arthritis [11], cardiovascular 
disease [12], etc.

Epigenetics refers to the interplay between epi-
genetic modification and the regulation of gene 
expression and differentiation, as well as genet-
ic changes in gene activity or cell phenotype 
that occur without changing the DNA sequence 
[13]. Epigenetic regulation is an important way 
of regulating gene expression in the process of 
growth, development, aging and disease occur-
rence. The orderly response of an individual’s 
life to environmental factors depends on to a 
large extent the effective operation of the epi-
genetic regulatory network [13].

The main epigenetic mechanisms include DNA 
methylation, histone modification [14], non-
coding RNA molecules [15], and mRNA methyl-
ation-mediated gene expression regulation 

http://www.ajtr.org


Epigenetics in periodontitis

2163 Am J Transl Res 2022;14(4):2162-2183

[16]. Through the response to developmental or 
environmental stimuli, various epigenetic regu-
lations cooperate to enable cells to transmit 
genetic information and related phenotypes. 
The advance of research methods has provided 
the opportunity to precisely detect the epigen-
etic regulation (Table 1) [17-20].

This review aims to generalize the latest in vivo 
and in vitro studies regarding epigenetic regula-
tions in periodontitis, mainly from three per-
spectives including histone modification, DNA 
methylation and non-coding RNA (Figure 2).

Histone modification and periodontitis

Histones assemble and arrange DNA into 
nucleosomes, enabling their storage in the 
nucleus. Each nucleosome contains two sub-

units, both composed of histones H2A, H2B, 
H3, and H4, linking histone H1 as a stabilizer. 
Histone H3 is frequently modified to predict the 
type of chromatin, distinguish the functional 
elements of the genome, and establish wheth-
er these elements are active or inhibited. 
Research on histone modifications primarily 
focuses on dynamic methylation [21] and acet-
ylation [22]. Post-translational modification of 
histones regulates the genome into autosomal 
active regions available for DNA transcription. 
On the other hand, histone modification tight-
ens DNA into inactive heterochromatin regions, 
hence, making it difficult for transcription [23]. 

Histone methylation

Observation of histone modification in peri-
odontitis is relatively limited. A study performed 

Figure 1. In periodontitis, the periodontal pathogens induce the secretion of inflammatory cytokines. The cytokines 
activate the immune cells and promote the differentiation of osteoclasts, which leads to tissue destruction. Also, the 
osteogenic abilities of the periodontal cells are inhibited under stimulations of the pathogens. The potential supple-
ment to bone destruction is suppressed. Accordingly, the strategy to treat periodontitis can be focused on alleviating 
inflammatory response and enhancing the osteogenic potential of periodontal cells.

Table 1. Research methods of epigenetic regulations
Epigenetic regulation Research methods ref
Histone modification liquid chromatography - tandem mass spectrometry (LC-MS-MS), Chromatin immunoprecipitation (ChIP), 

and ChIP-qPCR
[17, 18]

DNA methylation Methylation analysis at overall level of the genome DNA methylation analysis of specific sites [19]

high performance liquid chromatography (HPLC), methyla-
tion sensitive amplified polymorphism (MSAP), methylated 
DNA immunoprecipitation (MeDIP)

combined bisulfite restriction analysis (COBRA), 
whole genome bisulfate sequencing (WGBS)

Non-coding RNA RT-PCR, high-throughput sequencing, RNA-pulldown, RNA-immunoprecipitation assay [20]
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chromatin immunoprecipitation-on-chip analy-
sis comparing the H3 methylation data be- 
tween healthy and LPS-stimulated PDLCs. In 
healthy PDLCs, active H3K4me3 was highly 
enriched at COL1A1, COL3, and RUNX2 gene 
promoters, while DEFA4, CCL5 and IL-1β gene 
promoters were highly occupied by the repres-
sive H3K27me3. LPS infection upregulated 
H3K4me3 on inflammatory responsive genes 
and H3K27me3 on extracellular matrix and 
osteogenesis lineage genes [24]. In PDLCs 
treated with P. gingivalis LPS, the expression of 

one histone methyltransferase SETD1B was 
elevated. Besides, increased enrichment of 
SETD1B and H3K4me3 on IL-1β, IL-6 and 
MMP2 promoter were detected via ChIP-qPCR 
analysis. Consequently, SETD1B knockdown 
decreased these inflammatory cytokines in 
LPS-treated PDLCs. Also, NF-κB signaling was 
confirmed to be involved in the process. 
SETD1B knockdown suppressed the p65 acti-
vation while p65 knockdown reduced SETD1B 
nuclear mutually. NF-κB inhibition via BOT-64 
downregulated SETD1B expression and pro-

Figure 2. Epigenetic mechanisms include histone modification, DNA methylation, ncRNAs and RNA methylation. His-
tone modifications are mainly comprised of methylation and acetylation, which are balanced by HMT versus HDM, 
and HAT versus HDAC. DNA methylation is catalyzed by three DNMTs (DNMT1, DNMT3A and DNMT3B). Different 
ncRNAs function via competitive endogenous RNA (ceRNA) mechanism. m6A is the most frequent RNA methylation. 
All the mechanisms make alterations to cell phenotypes without variation of DNA sequence. All epigenetic regula-
tions are deeply involved in the initiation, progress, therapeutic clues of periodontitis and connection to systemic 
diseases. Periodontal pathogenic bacterium, inflammatory cytokines and unhealthy living habits cooperate to influ-
ence the epigenetic pattern. The changes of expression of key genes induced by epigenetic modifications promote 
the development of periodontitis. Moreover, epigenetics may be a potential mechanism of connection between 
periodontitis and systemic diseases. Targeting these epigenetic molecules may have vital treatment value for peri-
odontitis.
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moted osteogenesis in a mouse periodontitis 
model [25]. LPS infection downregulated the 
expression of histone demethylase PHF8, in 
which TLR4 might be involved. The downregula-
tion could be reversed by TLR4 inhibitor TAK-
242 [26]. IGFBP5 is essential in MSC-mediated 
periodontitis defect regeneration since IGFBP5 
promotes migration, proliferation, and osteo-
genic differentiation of MSCs yet suppresses 
inflammatory responses. Nonetheless, deple-
tion of KDM6B or forming a protein complex of 
KDM6B/BCOR induced K27 methylation of 
IGFBP5 promoter and downregulated its ex- 
pression [27, 28]. PRDM9 is an HMT, and its 
depletion increases the proliferation and migra-
tion of PDLCs. Mechanistically, depletion of 
PRDM9 elevated the H3K4me3 level in the 
IGFBP5 promoter and its transcription [29]. 

Histone acetylation

Class I and II histone deacetylase expression 
were detected in gingival biopsies obtained 
from 21 patients with chronic periodontitis and 
19 control individuals. The findings showed 
that HDACs 1, 5, 8, and 9 were evaluated in 
chronic periodontitis in mRNA and protein lev-
els [30]. 

Regarding treatment implications of histone 
modifications in periodontitis, several HDAC 
inhibitors have been studied. Two HDAC inhibi-
tors were compared in mice periodontitis. 
Consequently, 1179.4b - an inhibitor of both 
Class I and II histone deacetylase was more 
effective than MS-275 - an inhibitor of Class 
HDAC only in preventing alveolar bone loss [31]. 
Another HDACi Trichostatin A (TSA) increased 
the osteogenic markers but not the adipocytic 
markers in PDLCs. Through immunoblotting, 
histone H3 at lysines K9/K14 was the acety-
lated target molecule of TSA [32]. What’s more, 
TSA induced acetylated RUNX2, enhancing the 
osteogenic potential of PDLCs [33]. Another 
HDACi - sodium butyrate (NaB) was shown to 
enhance the osteoblast-specific markers and 
inhibited the secretion of inflammatory cyto-
kines in PDLCs [34]. In another in vitro study 
using gingival fibroblasts (GFs), Pan-HDACi 
decreased the inflammatory mediators after 
stimulation. More importantly, selective inhibi-
tion of HDAC3 was essential in the suppres- 
sion of the inflammatory response [35]. One 
histone acetyltransferase GCN5 was downreg-
ulated in PDLCs after inflammatory stimulation. 

Drugs upregulating GCN5 demonstrated a pro-
tective role in rat periodontitis and promoted 
osteogenic differentiation of PDLCs. Mechani- 
stically, GCN5 induced acetylation of H3K9 and 
H3K14 at DKK1 promoter, thereby inhibiting 
Wnt/β-catenin signaling pathway [36].

Regarding the connection to systemic disease 
based on histone modification, citrullinated his-
tone H3 was detected in the periodontal tissue 
of periodontitis patients. Therefore, periodonti-
tis is considered to be a source of antigens tar-
geted by autoantibodies against citrullinated 
proteins (ACPA), specific for rheumatoid arthri-
tis (RA) [37]. In Epstein-Barr virus (EBV) - relat-
ed diseases, ZEBRA is the product of the EBV 
BZLF1 gene and crucial for the virus transition 
from latency to lytic cycle. Butyric acid, culture 
supernatant from P. gingivalis, inhibited HDACs 
and increased histone acetylation in EBV-
infected BL cells, thereby upregulating tran-
scription of the BZLF1 gene. Then, ZEBRA 
expression was upregulated while EBV reactiva-
tion was induced, implying that periodontitis 
pathogens are a risk factor for EBV - related  
disease [38]. Researchers investigated the 
effect of metabolic by-products of short-chain 
fatty acids (SCFAs) on the Kaposi’s Sarcoma-
Associated Herpesvirus (KSHV) replication. As 
a result, SCFAs increased histone acetylation 
and decreased trimethylation to transactivate 
the viral chromatin [39]. Also, P. gingivalis was 
reported to be connected to reactivation of 
HIV-1 virus. Butyric acid was a product of P. gin-
givalis and played the role of inhibitor of HDAC. 
Butyric acid was demonstrated to cause his-
tone acetylation and corepressor complex com-
prising HDAC1 and AP-4 was dissociated from 
the HIV-1 long terminal repeat promoter. This 
study suggested periodontal disease as a risky 
factor of HIV-1 reactivation from the view of his-
tone modification [40]. 

Although not described in the central dogma, 
the histone status would affect the availability 
of DNA transcription. As mentioned above, the 
osteogenic factor RUNX2 could both be affect-
ed by histone methylation and acetylation, 
which might be vital for the regenerative poten-
tials of periodontal cells.

DNA methylation and periodontitis

Among DNA chemical modifications, the most 
thoroughly studied is 5-methylcytosine (5mC), 
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which is generally regarded as a stable inhibi-
tory regulator of gene expression [41]. The 
human genome contains approximately 1% 
methylated cytosine, hence, the most abun-
dant and extensive DNA modification. 5mC  
was originally located in the CpG island, a com-
mon segment of DNA in the promoter region of 
genes rich in CpG dinucleotides. Within these 
promoter regions, 5mC acts as a stable epigen-
etic marker inhibiting gene transcription. In the 
mammalian genome, methylated cytosine is 
initially integrated into DNA by methyltransfer-
ases DNMT3a and DNMT3b during early devel-
opment [42]. Subsequently, an additional meth-
yltransferase, DNMT1, replicates the DNA 
methylation pattern to the daughter strands 
during DNA replication, thereby maintaining 
these methylation markers throughout the 
genome [43]. Noteworthy, 5mC was not a com-
pletely stable modification. In contrast, it is a 
dynamic process and DNA methylation that can 
be reversed by the ten-eleven translocation 
(TET) enzyme [44].

Plenty of studies have evaluated the DNA meth-
ylation pattern of candidate genes from clinical 
samples of periodontitis patients. Research 
has revealed a hypomethylation of STAT5 pro-
moter [45], PTGS2 promoter [46], increased 
methylation at two CpG sites of TNF-α pro- 
moter [47] and higher methylation frequency of 
the TLR2 gene [48] in gingival tissues from 
chronic periodontitis patients. The methylation 
status of the IFN-γ, IL-10 [49] and IL-6 [50]  
were not significantly different in chronic peri-
odontitis compared to the control group. In 
research regarding aggressive periodontitis 
(AgP), methylation of CCL25 and IL17C were 
decreased in AgP gingival tissue compared to 
healthy controls [51]. In oral epithelial cells 
from AgP patients, a higher frequency of hypo-
methylation of IL-8 [52], a lower level of SOCS1 
demethylation, and a lower percent of LINE-1 
overall methylation [53] were detected.

Moreover, advances in high throughput tech-
nology and bioinformatic tools enable an analy-
sis of the DNA methylation in a bigger scale of 
candidate genes. Methylation status of 1284 
immune-related and 1038 cell-cycle-related 
genes were analyzed on gingival samples from 
12 periodontitis cases and 11 age-matched 
healthy individuals via Illumina. The results 
indicated that the mean methylation scores 

and the frequency of methylated probes were 
significantly lower in genes related to the 
immune process [54]. The alteration of DNA 
methylation must be dependent on the methyl-
transferase. In buccal mucosa cells from CP, 
the T allele and TT genotype in DNMT3B were 
more frequent, and miR-9-1 methylation 
occurred more frequently, potentially promot-
ing CP [55]. In contrast with the periodontal 
lesion in gingivitis patients without alveolar 
bone loss, expression of TET2 enzyme was sig-
nificantly enhanced in lesions of periodontitis 
patients. Moreover, 5-hydroxymethylcytosine 
(5hmC) was higher in blood than in tissues 
among periodontitis patients [56].

Smoking is a risk factor for the initiation and 
development of periodontitis. However, its role 
from an epigenetic view in periodontitis is 
unclear. The DNA methylation of TLR2 and 
TLR4 of gingival biopsies from 11 periodontitis 
smokers (PS), 11 periodontitis non-smokers 
(PNS), and 11 healthy controls (H) were ob- 
served. Methylation frequency of HhaI site of 
TLR2 gene was lower in PS and PNS group than 
H group, whereas TLR4 gene in all groups was 
mostly unmethylated [57]. SOCS1 methylation 
was compared between smokers with chronic 
periodontitis (CP/S) and non-smokers with 
chronic periodontitis (CP). Epithelial cells from 
CP/S were about seven times more likely to 
have a methylated SOCS1 than that from the 
CP group [58]. Based on research comprising 
40 control individuals, 30 smokers with CP,  
and 40 non-smokers with CP, a lower percent 
of IL-8 methylation was detected in epithelial 
cells of CP patients with or without smoking, 
compared to the control group [59].

As a major periodontitis pathogen, the role of P. 
gingivalis LPS as an epigenetic mediator was 
investigated. DNMT1, HDAC1, and HDAC2 
decreased after the challenge of periodontitis 
pathogens P. gingivalis or Fusobacterium nu- 
cleatum in GECs. Pretreatment of DNMT or 
HDAC inhibitor elevated the expression of anti-
microbial cytokines b-defensin 2, CCL20, and 
IL-8 [60]. In the gingival epithelium of mice peri-
odontitis and LPS-treated human gingival kera-
tinocytes, DNMT1 was down-regulated, and 
acetylation of histone 3 (ac.H3) was induced, 
causing the recruitment of p300/CBP co-tran-
scription factor, resulting in the activation of 
NF-κB activation [61]. Similar results were 
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repeated in hPDLCs [62]. However, other stud-
ies demonstrated conflicting findings. The ex- 
pression of DNMT1 in hPDLCs stimulated with 
P. gingivalis LPS was significantly elevated 
while the methylation of RUNX2 DNA at 0.1 
kb-1.9 kb was significantly higher, and expres-
sion of RUNX2 was lower, which could be 
reversed by DNMT inhibitor 5Aza [63]. P. gingi-
valis infection decreased transepithelial el- 
ectrical resistance (TEER) in primary human 
gingival epithelial cells, indicating a destructed 
barrier function. This phenomenon might be 
linked to increased DNA methylation of three 
cell-cell junction complexes, CDH1, PKP2, and 
TJP1. Administration of DNMT inhibitor prevent-
ed these LPS-induced changes [64]. IL-1β and 
PGE2 were important inflammatory mediators 
in the ongoing and development of periodonti-
tis. One study showed that exposure of human 
gingival fibroblasts to IL-1β upregulated the 
expression of maintenance methyltransferase 
DNMT1 but downregulated de novo methyl-
transferase expression DNMT3a and the de- 
methylating enzyme TET1, while PGE2 down-
regulated expression of all three enzymes [65]. 
Besides the enzymes, the methylation of candi-
date genes was evaluated, which might be 
directly responsible for the effects causing  
periodontitis. After LPS stimulation in human 
periodontal fibroblasts (hPDLFs), 25 extracellu-
lar matrices (ECM)-related genes exhibited 
4-fold greater hypermethylation. Among them, 
transcriptions of nine genes (FANK1, COL4A1- 
A2, 12A1 and 15A1, LAMA5 and B1, MMP25, 
POMT1, and EMILIN3) were significantly de- 
creased due to the hypermethylation [66]. LPS 
treated HCEM revealed DNA hypermethylation 
in GJA1, BMP2, and BMP4, inducing decreased 
mineralization levels. Notably, 5Aza abolished 
the LPS-induced decrease [67]. Treponema 
denticola is another risk pathogen for perio- 
dontitis, and its challenge in PDLCs caused a 
detectable decrease in methylation of the 
MMP-2 promoter and induced MMP-2 expres-
sion, causing matrix degradation and bone 
resorption [68].

Conventional clinical periodontal therapy in- 
cludes the removal of supragingival calculus 
and subgingival instrumentation. Studies have 
evaluated the impact of periodontal therapy on 
the DNA methylation status of biopsies, con-
firming the effect of DNA methylation on peri-
odontitis development from another perspec-

tive. Gingival biopsies were collected from 
healthy individuals and CP patients three 
months after periodontal therapy. The methyla-
tion profiles of SOCS1, SOCS3, and LINE-1 
genes were similar between two groups in epi-
thelial and connective tissues [69]. In another 
study, DNA profiles of gingival biopsies were 
observed in healthy and periodontitis patients 
at baseline and at 2 and 8 weeks after treat-
ment. The results demonstrated that periodon-
tal therapy re-set the DNA methylation status of 
COX-2 in periodontitis patients. In detail, the 
methylation percentage of COX-2 decreased 
significantly at 2 and 8 weeks after therapy  
and was close to the level in the healthy group. 
However, periodontal therapy demonstrated 
little effects on the methylation status of TNF-
α, IFN-γ and LINE-1 [70]. 

As to treatment implications from the view of 
epigenetic regulation, some in vitro studies 
offered a new insight. TGF-β is an anti-inflam-
matory mediator, inhibiting NF-κB signaling 
pathway and decreasing the secretion of TNF- 
α and IL-8. The anti-inflammation effect of 
TGF-β depended on protein arginine methyl-
transferase I (PRMTI) - mediated Smad6 meth-
ylation. Mechanistically, methylated Smad6 
could mediate MyD88 degradation, thereby 
suppressing NF-κB activation [71]. Knockdown 
of DNA demethylases-Tet 1 and 2 led to Dkk1 
hypermethylation and activated WNT signaling 
pathway, thus increasing expression of Fas 
ligand. The molecular changes above enhanced 
the immunomodulation of periodontal ligament 
stem cells (PDLSCs) and enhanced the PDLSCs-
mediated amelioration of colitis in mice [72]. 
This might be an implication of periodontitis 
amelioration. 

Concerning the role of DNA methylation in the 
connection of periodontitis and systemic dis-
ease, rheumatoid arthritis and diabetes have 
been studied. The 19 CpG motifs of the IL-6 
gene promoter were analyzed in peripheral 
blood from 30 RA patients, 30 CP patients and 
30 healthy individuals. The results showed IL-6 
methylation levels of the CpG motif at -74 bp 
were lower in the RA and CP group than con-
trols respectively, inducing higher IL-6 concen-
tration [73]. Another study compared 12 CpG 
motifs of TNF-α in peripheral blood from 30 RA 
patients, 30 CP patients and 30 healthy indi-
viduals in Japan. Unlike the healthy group, a 
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higher methylation rate and the frequency at 
-72 bp was observed in the CP group. Seven 
CpG sites (-302, -163, -199, -72, -49, -38 and 
+10 bp) were more highly methylated in the RA 
group than the healthy group [74]. In inves- 
tigating the correlation between periodontitis 
and cancer in DNA methylation pattern, one 
study analyzed the methylation of E-Cadherin 
and COX-2 in blood samples from 108 healthy 
subjects, 110 periodontitis and 106 breast 
cancer patients. However, none was detected 
among healthy individuals; hypermethylation of 
E-Cadherin and COX-2 was reported at 38% 
and 35% in breast cancer and 25% and 19% in 
periodontitis [75].

Epithelial cells of buccal mucosa were obtained 
from 21 control subjects (C), 29 periodontitis 
patients (P) and 22 diabetes/periodontitis pa- 
tients (D/P) and methylation form of CXCL12 
was analyzed. The findings showed no signifi-
cant differences in CXCL12 methylation among 
the three groups. Whereas DNA methylation of 
CXCL12 was significantly correlated to peri-
odontal parameters and glycosylated hemoglo-
bin separately [76]. The genome-wide DNA 
methylation pattern was analyzed in a mini pig 
model with streptozotocin-induced diabetes. 
STZ-induced diabetic status and altered the 
methylated expression of 1163 genes, where 
599 and 564 genes were significantly hyper- 
and hypo-methylated. GO term analysis show- 
ed that genes responsible for biological pro-
cess occupied the largest part. KEGG pathway 
analysis demonstrated that the genes were 
related to various aspects of inflammation-
related signaling [77]. High glucose enhanced 
the expression of DNMT and consequently 
higher DNA methylation in diabetic rats and in 
human PDLCs. Additionally, HG impaired the 
osteogenic differentiation capacity of hPDLCs 
and could be rescued by DNMT inhibitor 5-aza-
dC [78]. Controversially, another study demon-
strated that DNMT1 expression was sup-
pressed under high glucose condition in PDLCs. 
The CpG island within the TNFR-1 gene was 
hypomethylated and the expression of TNFR-1 
was elevated, hence reducing cell viability [79].

As the initiation of genetic central dogma, DNA 
could be methylated by methylases without 
affecting its sequence. As a sure consequence, 
the downstream mRNA transcription and pro-
tein translation would be affected. In periodon-

titis, alteration of DNA methylation status of 
plenty of inflammation-related genes was 
investigated, which might be the mechanism of 
elevated inflammatory cytokines.

Non-coding RNA and periodontitis

Non-coding RNAs (ncRNAs), mainly including 
microRNAs (miRNAs) and long non-coding RNA 
(lncRNAs), will not be translated into protein, 
but play critical roles in epigenetic mechanisms 
and regulating genome imprinting, nuclear and 
cytoplasmic transport, gene transcription and 
clipping [80].

microRNA

miRNA is a highly conserved non-coding seg-
ment of RNA comprising 17-25 nucleotides and 
binds to the 3’ UTR of mRNA transcribed by a 
target gene. In combination, the target mRNA 
would be degraded, or translation would be 
inhibited, causing a negative regulation of the 
target gene expression [81].

Research on the role of microRNAs in perio- 
dontitis has significantly matured, and attribut-
ed to the advances and accessibility of related 
technologies. Microarrays were used to detect 
the expression of a series of microRNA [82]. 
Microarrays were conducted using RNA derived 
from periodontitis or healthy gingival tissue in 
people from different countries [83-86]. 
Numerous microRNAs were found to be differ-
entially expressed in these studies, most of 
which were functionally related to inflammatory 
responses, cell homeostasis, etc. Additionally, 
serum microRNA might serve as a biomarker  
of diseases [87, 88]. Serum microRNA profiles 
were analyzed in healthy and periodontitis 
groups via microarray analysis. More than two 
thousand microRNAs were identified differen-
tially expressed between two groups. The up-
regulation of miR-664a-3p, miR-501-5p, and 
miR-21-3p were confirmed by real-time PCR 
and these three microRNAs were considered  
as candidate serum biomarkers for periodonti-
tis patients [89]. In LPS-stimulated PDLCs, 22 
up-regulated and 28 down-regulated microR-
NAs were detected via microRNA array. GO  
and KEGG analysis demonstrated that these 
miRNAs were associated with inflammation-
related pathways [90]. Defective osteogenic 
potentials of PDLCs were closely related to  
periodontitis [36]. Two studies observed the 



Epigenetics in periodontitis

2169 Am J Transl Res 2022;14(4):2162-2183

microRNA profile in the process of osteogenic 
induction in PDLCs [91, 92]. Among them, 
downregulation of miR-24-3p promoted osteo-
genic differentiation of human periodontal liga-
ment stem cells by targeting SMAD family  
member 5 [92]. Through re-analysis of three 
previous microRNA microarray files [84-86], 
miR-144-5p was upregulated in the three stud-
ies and verified in gingival tissue biopsy from 
periodontitis group [93]. Cyclooxygenase 2 
(COX2) and interleukin-17F (IL17F) were pre-
dicted to be target genes of miR-144-5p and 
were down-regulated in periodontitis gingival 
samples [93]. 

Numerous specific microRNAs and their target 
genes have been studied; among them, miR-
146a is a star molecular. miR-146a is widely 
researched due to its negative regulation of 
inflammatory responses by inhibiting the NF- 
κB signaling pathway. Its dysregulation was 
implicated in various immune-related and 
inflammatory diseases, including rheumatoid 
arthritis [94], Sjögren’s syndrome [95], sy- 
stemic lupus erythematosus [96], etc. Simi- 
larly, the expression of miR-146a was dysregu-
lated in both gingival tissue [97, 98] and plas-
ma [99] of periodontitis patients compared to 
healthy control and was closely related to the 
disease severity. The in vitro cell assays dem-
onstrated similar results. The expression of 
miR-146a was elevated in LPS or P. gingivalis 
stimulated periodontal ligament fibroblasts 
[100, 101]. Overexpression of miR-146a or 
miR-146a mimics negatively regulated the 
inflammatory responses [101, 102]. As to the 
mechanism, miR-146a was bound to the 3’- 
UTR of TRAF6 [101]. In addition, miR-146a pro-
moted osteogenic differentiation of PDLC via 
decreasing NF-κB signaling [103] and rescued 
the LPS-inhibited osteogenic differentiation 
[104]. The above findings strongly imply a pro-
tective role of miR-146a to periodontitis by 
down-regulating inflammatory responses and 
promoting osteogenic differentiation.

Additional studies investigated some specific 
microRNAs in various aspects of periodontitis. 
microRNA-205-5p was downregulated in peri-
odontal tissue from clinical patients and in P. 
gingivalis-stimulated gingival epithelial cells. 
IL6ST (interleukin 6 signal transducer) was pre-
dicted via TargetScan and verified via dual lucif-
erase reporter assay to be the target gene of 

miR-205-5p. Additionally, pJAK2 and p-STAT3 
were significantly upregulated in P. gingivalis-
stimulated GECs [105]. miR-23a was upregu-
lated in gingival crevicular fluid samples from 
periodontitis patients compared to control  
subjects. The role of miR-23a involved inhibit-
ing osteogenic differentiation of PDLCs by tar-
geting bone morphogenetic protein receptor 
type 1B (BMPR1B) [106]. The expression of  
let-7a and miR-21 was upregulated, while miR-
100 and miR-125b were downregulated in gin-
gival tissue samples from periodontitis pa- 
tients. NFKB was predicted as a common tar-
get of the four microRNAs [107]. The analysis of 
serum from periodontitis patients demonstrat-
ed that miR-142 expression was positively cor-
related with TNF-α. In GEC, TNF-α stimulation 
induced an upregulated expression of miR- 
142, which targeted basic leucine zipper tran-
scription factor 2 (BACH2) downstream, caus-
ing apoptosis of GEC [108]. miR-21 was 
increased both in periodontal ligament tissue 
of periodontitis patients and gingival tissue of 
mice periodontitis models, which was a poten-
tial feedback mechanism of infection protec-
tion. miR-21 mimic inhibited the inflammatory 
responses in LPS-treated macrophages, while 
the absence of miR-21 increased NF-κB signal-
ing [109].

Regarding the role of smoking in periodontitis 
from the perspective of microRNA, nicotine up-
regulated the expression of miR-30a and sup-
pressed the proliferation of PDLCs. The me- 
chanism might be that miR-30a targeted the 3’ 
UTR of cyclin E2 (CCNE2), which was verified by 
luciferase reporter assay [110]. In another 
study, higher miR-18b was detected in PDLCs 
from smokers and nicotine-stimulated PDLCs. 
miR-18 inhibitor was able to partially reverse 
the suppressive effect on proliferation and 
migration of nicotine [111]. 

An in vitro inflammatory cell model by P. gingi-
valis was commonly used in microRNA-related 
research. miR-203 was elevated in GECs after 
P. gingivalis infection. SOCS3 and SOCS6 were 
targets of miR-203, which were decreased  
after infection. In downstream, Stat3 was dys-
regulated and host signaling responses were 
modulated [112]. In P. gingivalis LPS-stimulat- 
ed PDLCs, miR-212-5p was down-regulated. 
Overexpression of miR-212-5p was able to 
inhibit the inflammatory response. The mecha-
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nism might be targeting Myd88 and inactiva-
tion of MAPK and NF-κB signaling [113]. 

In addition, the osteogenic potential of peri-
odontal cells was closely correlated to develop-
ment of periodontitis and was a vital therapeu-
tic target of periodontitis [6-8]. Several studies 
investigated the changes of a few microRNAs 
after the osteogenic induction of PDLCs. The 
results demonstrated the decrease of miR- 
214 [114], 21 [115], 132 [116], 125b [117] and 
152-3p [118] in the process of osteogenic dif-
ferentiation of PDLCs. These four microRNAs 
negatively regulated the osteogenic potentials 
of PDLCs by targeting their downstream genes. 
In contrast, miR-543 was upregulated during 
osteogenic induction of PDLCs and overexpres-
sion of miR-543 positively promoted the pro-
cess [119]. Osteogenic induction under inflam-
matory conditions was a more natural microen-
vironment like periodontitis. Inflammatory cyto-
kines inhibited osteogenic potentials of PDLCs, 
which might be involved with upregulation of 
miR-148a [120] and 138 [121] and down-regu-
lation of miR-21 [122]. In another periodontal 
cell-OCCM, upregulation of miR-155-3p was 
responsible for inflammation-inhibited cement-
oblast differentiation [123]. Moreover, it was 
revealed that microRNAs interplay with HDAC  
in the osteogenic differentiation of PDLCs. miR-
22 increased the expression of osteogenic 
markers via targeting HDAC6 [124]. Under 
inflammatory stimulation, the expression of 
HDAC9 was significantly increased. HDAC9 
could be enriched on the promoter of miR-17, 
thereby preventing the expression of miR-17. 
While inhibiting the expression of HDAC9 pre-
vented the bone loss in periodontitis. The effect 
was partially dependent on miR-17 [125].

There were several studies investigating the 
potential connection between periodontitis  
and systemic diseases based on microRNAs. In 
a study of serum and gingival crevicular fluid 
from periodontitis patients with or without  
type 2 diabetes, the level of miR-223 was 
increased while miR-200b was decreased in 
the diabetes group. These data implied that 
microRNA might be a biomarker of periodon- 
titis with type 2 diabetes [126]. In another 
study, miR-214 was upregulated in gingival tis-
sue of diabetes-associated periodontitis pa- 
tients. The in vitro cell assay demonstrated that 
miR-214 and its target gene (activating tran-

scription factor 4) ATF4 regulated the process 
of necroptosis [127]. High glucose increased 
the apoptosis of PDLCs by reducing the level of 
miR-221 and 222 and elevating caspase-3 
[128]. Different microRNA profiles (like miR-
15a, 18a, 22, et al) were observed between 
periodontitis individuals and obese periodonti-
tis individuals. Predicted target genes of the 
above microRNAs were related to the expres-
sion of cytokines, chemokines and regulators 
of glucose and lipid metabolism [129]. In hyper-
lipidemic and proatherogenic ApoE-/- mice, 
polymicrobial periodontal pathogens including 
P. gingivalis, T. forsythia and T. denticola infec-
tion were conducted. miR-146a was found to 
be increased in the maxillary periodontium and 
spleen in mice, which functioned as a negative 
regulator of the inflammatory response [130]. 
In rats infected with the above three patho-
gens, dysregulation of miR-155, 132 and 146a 
was detected in salivary glands and pancreas. 
The results suggested a novel insight into the 
connection between periodontal pathogens 
and Sjögren’s syndrome [131]. 

Long non-coding RNA

Long non-coding RNA is a kind of ncRNA with a 
length of more than 200 nucleotides. Its mech-
anism of action is complicated and has not yet 
been fully understood. According to the current 
research, lncRNAs have the following function-
ing mechanisms: Firstly, it forms a complemen-
tary double-strand with the transcript of the 
gene encoding protein, which interferes with 
the splicing of mRNA. Secondly, it inhibits RNA 
polymerase or mediates chromatin remodeling 
and histone protein modification. Thirdly, it 
works as a precursor molecule of miRNA [132].

High-throughput sequencing including microar-
ray [133-135] and bioinformatic analysis [136, 
137] were used to detect the expression profile 
in periodontitis. Hundreds and thousands of 
lncRNAs were modified and lncRNA-microRNA-
mRNA networks were predicted. In periodontal 
tissue specimens from periodontitis patients, 
levels of lncRNA AC0001207, MZF1-AS1, FGD5-
AS1 and OIP5-AS1 were downregulated, while 
levels of lncRNA RP1129G83 [138] and LINC- 
01126 [134, 139] were upregulated. LINC0- 
1126 inhibited proliferation and facilitated 
inflammatory responses of PDLCs by sponging 
miR-518a-5p [134]. Meanwhile, LINC01126 
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suppressed the migration of PDLCs via MEK/
ERK signaling [139]. The decreased expression 
of FGD5-AS1 was in line with other findings 
[140]. Overexpression of FGD5-AS1 alleviated 
the LPS-induced inflammatory responses via 
downstream miR-142-3p/SOCS6 [140]. lnc- 
RNA taurine-upregulated gene 1 (TUG1) was 
decreased in periodontal tissues derived from 
periodontitis patients, and its overexpression 
played a protective role in LPS-induced prolif-
erative inhibition and apoptosis promotion via 
sponging miR-132 [141]. Similarly, TUG1 was 
downregulated in LPS-stimulated PDLCs in 
vitro. TUG1 inhibited the inflammatory respons-
es via regulate miR-498 and its target gene 
RORA [142]. lncRNA brain-derived neurotrophic 
factor-antisense (BDNF-AS) was decreased 
while PNKY was increased in periodontal tis-
sues from periodontitis individuals [143]. In 
PDLCs derived from periodontitis-affected 
teeth, the downregulation of lncRNA MAFG- 
AS1 [144], papillary thyroid carcinoma suscep-
tibility candidate 3 (PTCSC3) [145], Linc-RNA 
Activator of Myogenesis (Linc-RAM) [146] and 
mortal obligate RNA transcript (MORT) [147] 
was observed, whereas lncRNA metastasis-
associated lung adenocarcinoma transcript 1 
(MALAT1) [148] was upregulated. The common 
effect of the five above lncRNAs was regulating 
the proliferation of PDLCs [144-148]. Another 
downregulated lncRNA POIR made an impact 
on osteogenesis in PDLCs from periodontitis 
patients. POIR competed with miR-182 and led 
to depression of FoxO1 [149]. Besides peri-
odontal tissues, lncRNA profile of peripheral 
blood was explored. The level of lncRNA AW- 
PPH was elevated in plasma of periodontitis 
patients, which reduced after periodontitis 
treatment [150]. Upregulation of lncRNA p50- 
associated COX-2 extragenic RNA (PACER) 
[151] and downregulation of antisense non-
coding RNA in the INK4 locus (ANRIL) [152] 
were detected in peripheral blood from peri-
odontitis patients. 

In a cell model simulating periodontitis, expres-
sion of lncRNA MALAT1 was upregulated in 
human gingival fibroblasts after P. gingivalis 
LPS or E. coli LPS treatment. MALAT1 promoted 
development of inflammation by binding with 
miR-20, which increased the expression of 
TLR4 [153]. In nicotine-stimulated PDLCs, 
lncRNA NEAT1 and IL-8 was significantly up-
regulated [154].

Like microRNA, lncRNA is widely studied in the 
osteogenic differentiation of periodontal cells, 
closely related to the development and thera-
peutic implies of periodontitis. The levels of 
lncRNAs including MEG8, MIR22HG [155], 
growth arrest specific transcript 5 (GAS5)  
[156], TWIST1 [157], X-inactive specific tran-
script (XIST) [158], TUG1 [159, 160], prostate 
cancer-associated ncRNA transcript-1 (PCAT1) 
[161] and Fer-1-like family member 4 (FER1L4) 
[162] were upregulated after osteogenic in- 
duction of PDLCs. These above lncRNAs pro-
moted osteogenic differentiation of PDLCs. 
Mechanically, GAS5 enhanced osteogenic 
potentials by upregulating the expression of 
GDF5 and activating JNK and p38 signaling 
[156]. lncRNA TWIST1 promoted osteogenic 
differentiation of PDLCs by enhancing the level 
of TWIST1 mRNA [157]. XIST played its po- 
sitive role in osteogenesis by sponging microR-
NA-214-3p [158]. TUG1 made the effect via 
sponging miR-222-3p [160]. lncPCAT1 interact-
ed with miR-106-5p, targeting BMP2 [161]. 
FER1L4 sponged miR-874-3p, which target a 
crucial osteogenic gene VEGFA [162]. In con-
trast, lncRNA anti-differentiation noncoding 
RNA (ANCR) [163], DANCR [164] and MEG3 
[165, 166] were decreased during osteogenic 
induction. ANCR suppressed bone formation 
via sponging miR-758 [163], while downregula-
tion of ANCR increased osteogenic potential 
[163, 167]. MEG3 influenced osteogenesis of 
PDLCs via regulating BMP2 [166] or miR-27a-
3p/IGF1 axis [165]. 

Regarding the role of lncRNA in connection  
with periodontitis and systemic diseases, 
ANRIL and cardiovascular diseases were the 
hotspots. ANRIL was identified as a shared 
genetic susceptibility locus for periodontitis 
and coronary heart disease (CHD) [168]/car-
diovascular disease (CVD) [169]/atherosclerot-
ic cardiovascular disease (ACVD) [170]. De- 
creased ANRIL led to repression of ADIPORI, 
VAMP3 and C11ORF10. A region upstream of 
VAMP3 within CAMAT1 was demonstrated to be 
associated with high risk of coronary artery dis-
ease and periodontitis [171]. ANRIL polymor-
phism was related to the elevated level of 
C-reactive protein (CRP), which was a risk mark-
er for ACVD [170]. In addition, gene polymor-
phism influenced the expression of another 
lncRNA CDKN2BAS, which was involved in the 
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disease predisposition of periodontitis and cor-
onary artery disease [172]. 

CircularRNA

CircularRNA (circRNA) is a special type of 
ncRNA molecule. Unlike traditional linear RNA 
terminated with 5’ caps and 3’ tails, circRNA 
molecule has a closed loop structure and is  
not affected by RNA exonuclease. Its expres-
sion is more stable and not easily degraded 
[173]. In terms of function, recent studies have 
shown that circRNA molecules act as miRNA 
sponges, thereby releasing miRNA’s inhibitory 
effect on its target genes and increasing 
expression target genes, which is called the 
competitive endogenous RNA (ceRNA) mecha-
nism [174].

In most recent years, research has investigated 
the role of some circRNAs in periodontitis and 
their related ceRNA mechanism. Compared to 
healthy controls, levels of circ_0085289 [175], 
CDR1as [176] and 0081572 [177] were down-
regulated and circMAP3K11 [178] was upregu-
lated in periodontal tissues of periodontitis 
patients. In vitro dual luciferase reporter assay, 
RNA pull-down and RIP assay demonstrated 
that the above four circRNAs involve in the 
pathology of periodontitis following the ceRNA 
mechanism. To be specific, circ_0085289 alle-
viated LPS-induced inflammatory cytokine 
secretion and apoptosis, by sponging microR-
NA let-7f-5p and increasing downstream target 
gene SOCS6 [175]. Similarly, circ_0081572 
prevented cell injury via miR-378h/RORA axis 
[177]. CircMAP3K11 promoted cell prolifera-
tion and migration, and inhibited cell apoptosis 
of PDLCs by targeting miR511-3p/TLR4 axis 
[178]. Overexpression of circCDR1as rescued 
the LPS-induced proliferative inhibition in 
PDLCs via targeting miR-7, whereas knockdown 
of CDR1as further promoted the inhibitory 
effect [176]. 

During osteogenic differentiation of PDLCs 
from D0 to D14, the expression profiles of cir-
cRNAs, miRNAs and mRNAs were significantly 
varied by sequencing analysis [179]. The upreg-
ulation of circMAN1A2, CRKL and RIM51 from 
D0 to D7 and downregulation of circETFA from 
D0 to D14 were verified by qRT-PCR [179]. In 
periodontitis tissues, the level of circCDK8  
was upregulated. CircCDK8 is involved in the 
pathology of periodontitis via inducing autoph-

agy and inhibiting osteogenic differentiation of 
PDLCs [180]. CircCDR1as was increased during 
osteogenic induction of PDLCs and promoted 
osteogenic potentials via sponging miR-7 and 
upregulating its target gene growth differentia-
tion factor 5 (GDF5) [181].

Due to the convenience of detection methods, 
the number of altered ncRNAs was tremen-
dous. The function of plenty ncRNAs were even 
udiscovered and more in deepth studies weare 
needed to reveal them. Additionally, it was hard 
to tell wether the alterations of many ncRNA 
expressions were the reasons or outcomes for 
periodontitis development. Still, due to the sim-
pleness of observation, ncRNA alterations had 
higher potentials to be the biomarkers of peri-
odontitis compared to enzymes and molecules 
involved in histone modification and DNA  
methylation. But more studies are definitely 
needed.

RNA methylation and periodontitis

The most common internal modification of 
mRNA includes N6-adenylate methylation 
(m6A) [182]. In the transcription process from 
DNA to RNA, adenylate undergoes methylation 
modification at the sixth position under the 
action of the methylases METL3, METL14 and 
WTAP. The bases that have been modified by 
m6A are able to be demethylated by the two 
enzymes FTO and ALKBH. These RNA base 
sites undergoing methylation require specific 
enzymes for recognition to be functional. The 
YTHDF family primarily includes YTHDF1, 
YTHDF2, and YTHDF3. These enzymes recog-
nize the bases undergoing m6A methylation, 
participate in the downstream translation, 
mRNA degradation, and accelerate the mRNA 
exit rate [183].

Notably, studies on the roles of m6A in peri-
odontitis are limited. As such, through analysis 
of genome-wide association studies on peri-
odontitis, m6A-associated single-nucleotide 
polymorphisms might be potential functional 
variants for periodontitis [184]. Another micro-
array data study was obtained from 69 healthy 
periodontal samples and 241 periodontitis 
samples [185]. Seventeen of twenty-three m6A 
regulators were detected in altered expression 
of periodontitis, among which 15 m6A regula-
tors were essential for periodontitis via a seri-
ous bioinformatic algorithm. Then correlation 



Epigenetics in periodontitis

2173 Am J Transl Res 2022;14(4):2162-2183

Table 2. Epigenetic changes in various clinical samples from periodontitis patients
Epigenetic regulation Sample Results
DNA methylation gingival tissues hypomethylation of STAT5 promoter [45], PTGS2 promoter [46], increased methylation at two CpG sites of TNF-α promoter [47] and higher methylation 

frequency of TLR2 gene [48] in CP

gingival tissue methylation of CCL25 and IL17C were decreased [51] in AgP

oral epithelial cells a higher frequency of hypomethylation of IL-8 [52], a lower level of SOCS1 demethylation, and a lower percent of LINE-1 overall methylation [53] in AgP

gingival biopsies methylation frequency of HhaI site of TLR2 gene was lower in periodontitis [57]

epithelial cells a lower percent of IL-8 methylation in CP than healthy group [59], a higher methylated SOCS1 in smokers with CP than non-smokers with CP [58]

Non-coding RNA microRNA serum up-regulation of miR-664a-3p, miR-501-5p, miR-21-3p [89] and miR-142 [108]

gingival tissue up-regulation of miR-144-5p [93], miR-146a [97, 98], let-7a and miR-21 [107], down-regulation of miR-100, miR-125b [107]

plasma down-regulation of miR-146a [99]

periodontal tissue down-regulation of miR-205-5p [105]

gingival crevicular fluid up-regulation of miR-23a [106]

lncRNA periodontal tissue down-regulations of lncRNA AC0001207, MZF1-AS1, FGD5-AS1, OIP5-AS1 [138] and BDNF-AS [143], up-regulations of lncRNA RP1129G83 [138], 
LINC01126 [134, 139], TUG1 [141] and PNKY [143]

PDLCs downregulation of lncRNA MAFG-AS1 [144], PTCSC3 [145], Linc-RAM [146] and MORT [147], up-regulation of lncRNA MALAT1 [148]

peripheral blood up-regulation of lncRNA AWPPH 150, PACER 151, downregulation of ANRIL 152

cirRNA periodontal tissue down-regulation of circ_0085289 [175], CDR1as [176] and 0081572 [177] and up-regulation of circMAP3K11 [178]

RNA methylation periodontal tissue expressions of 17 m6A regulators were altered, and were closely related to immune microenvironment [185]

Table 3. Epigenetic changes in cell assay related to periodontitis
Epigenetic regulation Cell type Stimulation Result
Histone methylation PDLC LPS Upregulation of H3K4me3 on inflammatory responsive genes and H3K27me3 on extracellular matrix and 

osteogenesis lineage genes [24], down-regulation of the expression of histone demethylase PHF8 [26]

PDLC P.g LPS increased enrichment of SETD1B and consequent upregulation of H3K4me3 on IL-1β, IL-6 and MMP2 
promoter [25]

DNA methylation GEC P.g Fusobacterium nucleatum or Expressions of DNMT1, HDAC1, and HDAC2 decreased [60]

gingival keratinocytes or PDLC LPS DNMT1 was down-regulated, and acetylation of histone 3 (ac.H3) was induced [61, 62]

PDLC P.g LPS expression of DNMT1 elevated and methylation of RUNX2 DNA was higher [63]

GEC P.g Increased DNA methylation of CDH1, PKP2, and TJP1 [64]

Gingival fibroblast IL-1β Upregulation of DNMT1 but downregulation of DNMT3a and TET1 [65]

PDLC LPS 25 extracellular matrices (ECM)-related genes exhibited 4-fold greater hypermethylation [66]

HCEM LPS DNA hypermethylation in GJA1, BMP2, and BMP4 [67]

non-coding RNA microRNA PDLC LPS up-regulation of miR-146a [100]

PDLC P. g up-regulation of miR-146a [101] and down-regulation of miR-212-5p [113]

GEC P. g down-regulation of miR-205-5p [105] and up-regulation of miR-203 [112]

PDLC nicotine up-regulation of miR-30 [110]

lncRNA PDLC LPS down-regulation of lncRNA TUG1 [142]

gingival fibroblast P.g LPS up-regulation of lncRNA MALAT1 [153]

PDLC nicotine up-regulation of lncRNA NEAT1 [154]
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analysis found a close relation between dys-
regulated m6A and immune microenvironment, 
including infiltrating immunocytes, immune 
reaction gene-sets and HLA gene expressions. 
Three distinct subtypes of periodontitis could 
be distinguished via unsupervised consensus 
clustering analysis according to the expression 
patterns of m6A regulators.

Conclusion and perspective

In addition to the genetic information carried by 
the DNA sequence itself, the epigenetic regula-
tions have become a vital link between the 
external environmental factors and the regula-
tion of gene transcription [186].

In terms of periodontitis, periodontal pathogen-
ic bacterium, inflammatory cytokines, and 
unhealthy living habits cooperated to promote 
the progress of the disease. In various clinical 
samples, including periodontal tissue and 
peripheral blood, alteration of epigenetics-
related profiles was detected (Table 2). 
Expression patterns of enzymes responsible 
for histone modification, DNA methylation and 
ncRNAs were different in periodontitis and 
healthy individuals. These data implied that 
these molecules may be potential biomarkers 
of periodontitis. However, translational applica-
tion of the research still has a long way to go.  
A larger number of clinical samples are needed 
to confirm accurate biomarkers. In vitro cell 
assays and in vivo animal periodontitis models 
revealed the molecule mechanism and signal-
ing pathway of epigenetic changes induced by 
P. gingivalis, LPS, nicotine, etc (Table 3).

On the other hand, the changes in expressions 
of key genes induced by epigenetic modifica-
tions promote the development of periodonti-
tis. Targeting these epigenetic molecules may 
result in inhibiting the inflammatory response 
and promoting osteogenic potentials of PDLCs, 
which have important clinical value for the 
treatment of periodontitis. 

The link between periodontitis and systemic 
diseases were discussed from various aspects 
[187]. Epigenetic mechanisms are new connec-
tion bridges and they influence immune 
responses and key molecules [188]. 

However, despite the abundant research into 
the histone modification, DNA methylation and 

ncRNAs in periodontitis, publications of m6A 
RNA methylation in periodontitis are deficient. 
Current research has demonstrated that m6A 
was involved in tooth root formation [189], cell 
cycle of dental pulp stem cells [190] and inflam-
mation of dental pulp cells [191]. It’s reason-
able to speculate that m6A may be involved in 
periodontitis.

The literature included in the present review 
adequately elaborated the epigenetic regula-
tions of gene expressions without alteration of 
DNA sequences. It described a network con-
taining stimulation, epigenetics mechanisms, 
modifications of gene expressions and out-
comes in periodontitis. The network offered 
additional information into the mechanisms of 
periodontitis development and accordingly it 
provided new insights of periodontitis therapy 
ideas.
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