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Abstract: Objective: Liver cancer (LC) is a frequently occurring lethal malignancy worldwide, yet the molecular mech-
anisms of carcinogenesis and their development remain uncharacterized. In this study, bioinformatics methods 
were used to find candidate hub genes for prognosis assessment and clinical treatment of LC. Methods: Differential 
analysis was carried out based on the evidence of gene expression profiling in LC on The Cancer Genome Atlas 
(TCGA). The differentially expressed genes (DEGs) were constructed into co-expression networks and divided into 
modules by virtue of weighted gene co-expression network analysis (WGCNA). Based on the Gene Ontology (GO) and 
the Kyoto Encyclopedia of Genes and Genomes (KEGG), the module genes were subjected to functional enrichment 
analysis. The LC microarray (GSE105130) in the Gene Expression Omnibus was selected to verify the hub genes’ 
expression profiles. The validity of the hub genes was verified via survival analysis, as well as expression correlation 
with the clinicopathological features. Thereafter, gene set variation analysis (GSVA) and single-sample gene set en-
richment analysis (GSEA) were applied to investigate the possible biological functions of the hub genes. Results: In 
total, 3780 DEGs and 17 co-expression modules were obtained. The blue module had the strongest correlation with 
the tumour stage and the module genes were principally enriched in tumour-associated GO terms, as well as path-
ways such as Ras protein signal transduction, ERK1/2 cascade, Ras signal pathway, and ECM-receptor interaction. 
RASAL1, which is highly expressed in LC, was identified as a hub gene for LC progression. Its high expression sug-
gested unfavorable patient prognosis and was correlated with T stage, gender and tumour stage. Further analysis 
identified that the overexpression of RASAL1 was substantially enriched in cancer-associated gene sets. Conclusion: 
RASAL1 is a hub gene that influences LC progression, constituting a novel biomarker and molecular target in the 
future diagnosis and therapy of LC.
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Introduction

Aside from being the sixth most prevalent neo-
plastic disease, liver cancer (LC) also ranks 
fourth among the primary causes of cancer 
deaths worldwide. Multiple adverse factors, 
such as chronic virus infection, aflatoxin expo-
sure and alcoholism, increase the risk of LC [1]. 
Due to the large population base and high prev-
alence of chronic hepatitis B, LC has become 
the most common cancer type among people 
under 60 years old in China [1, 2]. Nevertheless, 
given that early diagnosis of LC is still challeng-
ing at present, most patients are already at the 
late phase of LC during treatment, resulting in  
a non-optimistic survival of patients (the five-

year relative survival rate is merely 10.1%) [3] 
and seriously compromises the public health of 
Chinese people. However, as a highly heteroge-
neous disease, the individual heterogeneity of 
LC lies to a great extent in its molecular mecha-
nisms [4]. Thus, accurately finding key targets in 
the treatment of LC has become the focus of 
initiatives to improve LC clinical efficacy.

With the increasing understanding regarding 
the molecular drivers of LC, DNA, RNA and pro-
teins can be used as biological markers for can-
cer prognosis, as well as independent evalua-
tors of clinical efficacy [5], thereby providing 
unprecedented opportunities for the develop-
ment of bioinformatics. At present, the Cancer 
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Genome Atlas (TCGA) is the largest database of 
cancer genes. It stores the gene expression 
matrix and clinical treatment data of 33 human 
cancers in 11,000 cases and helps people bet-
ter understand the molecular mechanism of 
cancer through high-throughput genome tech-
nology, with a view of accelerating the develop-
ment of cancer target drugs and immunothera-
py [6, 7]. In our study, the expression matrix of 
LC was downloaded from TCGA, differentially 
expressed genes (DEGs) were screened in 
tumour samples and their normal counterparts, 
and hub genes associated with LC progression 
were mined and identified to discuss their pos-
sible biological functions via weighted gene co-
expression network analysis (WGCNA), thus 
offering a theoretical basis in the identification 
of possible therapeutic targets for LC.

Materials and methods

Downloading and pre-processing of data

LC-associated clinical data and mRNA expres-
sion profiles were obtained from TCGA (https://
portal.gdc.cancer.gov/) for analysis, including 
374 tumour samples and 50 healthy ones. The 
expression of mRNAs was expressed via read 
count data, and the heatmap of gene expres-
sion was drawn using the R package ggplot2.

Screening of DEGs

The R package edgeR was adopted for screen-
ing DEGs in the tumour samples and their nor-
mal counterparts with the screening conditions 
of |log2(FC)| > 1 and p-value < 0.05. Following 
this, the R package ggplot2 was applied for 
drawing the volcanic plot of the DEGs.

WGCNA and functional enrichment analysis

The co-expression network of DEGs was con-
structed using the WGCNA software package to 
search for crucial modules associated with the 
clinical symptoms of LC. After matching the 
expression of DEGs with the gene names, the 
soft threshold power was calculated to obtain 
scale independence, and the weighted adja-
cency matrix was subjected to conversion to 
acquire a topological overlap matrix (TOM) after 
being established. Average hierarchical cluster-
ing was created based on the TOM’s heteroge-
neity, in which a module had at least 30 genes 
and a height of 0.25. Genes with analogous 
expression profiles were assigned to the same 

gene module. For a more in-depth investigation 
of the potential biological functions of the key 
modules, R package ‘clusterProfiler’, ‘enrich-
plot’ and ‘ggplot2’ were adopted for the Kyoto 
Encyclopedia of Genes and Genomes (KEGG) 
and the Gene Ontology (GO) enrichment analy-
ses of module genes. Meaningful pathways (P 
< 0.05) and the first 10 GO terms were 
screened, among which GO analysis covered 
the cellular components (CC), molecular func-
tions (MF), and biological processes (BP).

Screening and identification of hub genes

With threshold ≥ 0.1 set as the screening condi-
tion of the module correlation edge, the func-
tion ‘exportNetworkToCytoscape’ in the R pack-
age WGCNA was used to import genes from  
the key modules into Cytoscape (Version 3.7.1). 
With the maximal clique centrality (MCC) algo-
rithm, the top 10 crucial genes were selected 
according to their scores. The histogram of 
each gene score was drawn using the R pack-
age ggplot2. The gene with the highest score 
was considered the candidate hub gene of this 
study. In addition, the expression profile of LC 
(GSE105130) was retrieved from the Gene 
Expression Omnibus (GEO) (https://www.ncbi.
nlm.nih.gov/), including 25 pairs of tumour tis-
sues from patients with LC and their non-can-
cerous counterparts. Paired-sample t-test was 
adopted to analyse the hub genes’ expression 
levels among different samples, with P <  
0.05 considered as statistically significant. 
Visualization was carried out using the R pack-
age ggplot2.

Survival analysis

To further probe into the prognostic signifi-
cance of hub genes in LC, Kaplan-Meier (K-M) 
analysis of TCGA was conducted via the survfit 
function in the R package survival. Low- and 
high-expression groups were set based on the 
genes’ median expressions. The 95% confi-
dence interval (95% CI), as well as the hazard 
ratio (HR), was reported. The function ggsurv-
plot was used to plot the survival curve.

Correlation between hub gene expression lev-
els and clinicopathological features

We assigned the hub genes in the LC samples 
in TCGA to low-/high-expression groups based 
on the median expression. Then, the Chi-square 
test was applied for association analysis 
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between each group and clinical traits (T_st- 
age, M_stage, N_stage, Gender, Age, Survival_
Status, Survival_Time, Tumour_Stage), with a 
statistical significance level of P < 0.05. 

Gene set variation analysis (GSVA) and single-
sample gene set enrichment analysis (GSEA)

After assigning the hub genes to high-/low-
expression groups based on their median 
expression, they were analysed by GSEA and 
GSVA to discuss their biological functions.  
First, the gene dataset ‘h.all.v7.1.symbols.gmt’ 
was acquired in MSigDB (https://www.gsea-
msigdb.org/gsea/index.jsp). Corresponding ge- 
ne pathways were found by the msigdbr func-
tion in the R package msigdbr, after which they 
were analysed using the R package GSEA, with 
FDR < 25% and P < 0.05 as screening condi-
tions. In addition, the R package GSVA was 
used to transform the gene expression profiles 
into pathway name expression profiles. After 
the heatmap was drawn using the R package 
pheatmap, difference analysis (screening con-
ditions: |log2(FC)| > 1; P < 0.05) and visualisa-
tion were performed utilising the R packages 
limma and ggplot2, respectively.

Results

Screening of DEGs

A heatmap was drawn to show the expression 
levels of 16,006 genes in the LC tumour sam-
ples and their normal counterparts in TCGA 
(Figure 1A). Among these, 3,780 DEGs were 
screened, with 982 showing up-regulated 

expression and 2,798 presenting down-regulat-
ed expression (Figure 1B), suggesting that LC 
can cause significant changes in the mRNA 
expression level in cancer cells. 

WGCNA

The DEGs retrieved from the TCGA LC expres-
sion matrix were used as research subjects to 
construct a weighted gene co-expression net-
work. Moreover, the hclust function was adopt-
ed for the expression matrix calculated by the 
mean value method to draw the cluster den- 
drogram, in which clinical traits were input to 
screen out isolated samples (Figure 2A). The 
soft threshold power was set to 1-10 to ensure 
high-scale independence (R2 = 0.9) and low 
mean connectivity (near 0) when β = 4 (Figure 
2B). Seventeen modules were retained through 
the dynamic tree cut means (Figure 3A). The 
module-trait relationships are shown in Figure 
3B. The blue module related to tumour stage 
had the deepest colour (r = 0.29, P < 0.001), 
which was regarded as the crucial module for 
further analyses.

Enrichment analyses of key modules

The gene members in the blue module were 
strongly linked to the gene significance for 
tumour stage (r = 0.59, P < 0.001) (Figure 4A). 
According to the functional enrichment analysis 
of 476 genes in the module, those in blue 
colour were enriched in BP-related GO terms, 
such as Ras protein signal transduction, 
ERK1/2 cascade, JNK cascade and MAPK cas-
cade. They were also related to CC, such as 

Figure 1. Screening of differential genes in LC. A. Heatmap of all genes in LC tumor samples and normal samples, 
with purple for tumor samples and orange for normal samples; B. Volcano plot of differentially expressed genes 
(DEGs) in LC tumor samples and normal samples, with down-regulated genes in purple and up-regulated genes in 
red.
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Figure 2. Sample dendrogram and soft threshold calculation. A. Sample dendrogram and trait heatmap: the seven 
indexes are T_stage, M_stage, N_stage, Gender, Age, Survival_Status, Survival_Time, and Tumor_Stage, respec-
tively. The color intensity is positively correlated with stage progression, male, age, survival and survival time, and 
the gray area is the missing value. B. Scale independence and mean connectivity of each soft threshold.

Figure 3. Screening key modules in weighted gene co-expression network analysis (WGCNA). A. Gene cluster den-
drogram generated by hierarchical clustering based on the dissimilarity measure (equal to one minus the topologi-
cal overlap matrix, namely, 1 - TOM). Each module is assigned a color. According to the correlation between mod-
ules, a total of 17 modules are generated. The two rows below the cluster dendrogram represent the original module 
and the merged module, respectively. B. Heatmap of module-trait relationships. The darker the module color, the 
stronger the correlation between the two. 
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tetra-azide enrichment microdomain, filamen-
tous actin and myosin, as well as MF-associat- 
ed GO terms, including sensitive ion channel 
activity, collagen binding and gated channel 
activity (Figure 4B). KEGG enrichment analysis 
found that the module genes were correlated 
with the Ras signal pathway, ECM-receptor 
interaction, MAPK signal pathway, and others, 
as shown in the figure. Further analysis revealed 
a correlation of the blue module genes with car-
cinogenesis and progression (Figure 4C), sug-
gesting that the blue module genes are bound 
to the occurrence and development of LC.

Mining of hub genes

The MCC method was used to analyse the cen-
trality of each gene in the module. Up to 401 
nodes and 9,276 edges were identified, high-

lighting the top 10 central genes as follows: 
RASAL1, PFKP, ITGB4, ELOVL7, ITPR3, TMC4, 
KIAA1522, CACNB3, C12orf75 and KLC2 
(Figure 5A, 5B). Among them, RASAL1 scored 
the highest in the MCC value. Therefore, it was 
used as the hub gene in this study for subse-
quent analyses. The expressions of RASAL1 in 
the TCGA LC expression matrix and the 
GSE105130 microassay were discussed. The 
results showed a noticeable elevation of 
RASAL1 in the tumour tissues compared with 
their normal counterparts (Figure 5C).

RASAL1 expression and survival analysis of 
patients with LC

Based on the K-M analysis, the five-year sur-
vival rates of LC patients with high and low 
RASAL1 expression were 63.04% and 67.37%, 

Figure 4. Function enrichment analysis of the blue module. (A) Scatter diagram between blue module gene mem-
bers and the gene significance for tumor stage; Top 10 GO terms and pathways of (B) GO and (C) KEGG enrichment 
analysis of blue modular genes. GO: Gene Ontology; BP, biological processes; CC, cellular components; MF, molecu-
lar functions; KEGG, Kyoto Encyclopedia of Genes and Genomes.
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respectively, indicating a worse prognosis in LC 
patients with high RASAL1 expression (HR = 

stage II-IV LC, as well as female patients (P < 
0.05).

Figure 5. Mining and identification 
of hub genes. A. The Maximal Clique 
Centrality (MCC) method was used 
to mine hub genes, and the genes 
with the top 10 MCC values were 
colored in red and yellow. B. MCC 
values of hub genes; C. Comparison 
of RASAL1 expression level between 
tumor samples and normal samples 
in TCGA and GSE105130 microarray. 
Note: *P < 0.05; ****P < 0.0001.

Figure 6. Survival curve of liver cancer patients with high and low RASAL1 
expression. The red represents RASAL1 high expression group and the blue 
represents RASAL1 low expression group.

1.150 (0.640-1.580), P < 
0.05; Figure 6).

Correlation between RASAL1 
expression and clinicopatho-
logical features

The Chi-square test was used 
to analyse the correlation of 
RASAL1 expression with the 
clinicopathological features of 
LC patients. The results iden- 
tified a connection between 
RASAL1 expression and T 
stage, gender and tumour 
stage of LC patients (Figure 
7), which indicated that a  
high expression of RASAL1 
accounted for a higher propor-
tion in LC patients with higher 
T stage (TIII, TIV) and clinical 
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RASAL1 in GSEA and GSVA

The GSEA results (Figure 8) showed that high 
RASAL1 expression was significantly enriched 
in gene sets like HALLMARK_TGF_BETA_SIG- 
NALING, HALLMARK_WNT_BETA_CATENIN_SI- 
GNALING, HALLMARK_IL6_JAK_STAT3_SIGN- 
ALING and HALLMARK_APOPTOSIS, indicating 
that RASAL1 was involved in tumour-related  
BP in LC. Furthermore, GSVA revealed that 
RASAL1 was obviously enriched in high-expres-
sion gene sets, such as HALLMARK_EPITH- 
ELIAL_MESENCHYMAL_TRANSITION, HALLMA- 
RK_MTORC1_SIGNALING and HALLMARK_
P53_PATHWAY (Figure 9), which further attest-
ed that RASAL1 is related to the malignant 
transformation of cancer cells.

Discussion

Chronic liver injury traverses the entire develop-
ment process of LC. Sustained damage leads 

to a high turnover rate of liver cells, which drives 
obvious changes in the liver microenvironment, 
leading to the formation of a proto-oncogenic 
environment and promoting gene transforma-
tion and malignant transformation of liver cells 
[8]. An increasing number of studies have 
shown that aberrantly expressed genes may be 
the key factors in accelerating the malignant 
progression of LC [9, 10]. Thus, finding genes 
with different gene expression levels carries 
profound implications for exploring biomarkers 
for diagnosing and treating LC [11-13].

In this study, the DEGs in the LC expression 
matrix of the TCGA database were screened 
through differential expression analysis, includ-
ing 982 up-regulated DEGs and 2798 down-
regulated DEGs. Then, based on the above 
DEGs, a co-expression network was set up 
through WGCNA, and 17 gene modules were 
segmented and retained. WGCNA is a unique 
method for identifying gene modules with ana-

Figure 7. Correlation between RASAL1 expression and clinicopathological features. Note: *P<0.05; **P<0.01; 
****P<0.0001.

Figure 8. Gene set enrichment analysis (GSEA) of RASAL1. RASAL1 high expression groups in (A) “HALLMARK_TGF_
BETA_SIGNALING”, “HALLMARK_WNT_BETA_CATENIN_SIGNALING”, “HALLMARK_IL6_JAK_STAT3_SIGNALING”; (B) 
“HALLMARK_APOPTOSIS”, “HALLMARK_ EPITHELIAL_MESENCHYMAL_TRANSFORMATION”, “HALLMARK_PEROXI-
SOME”; (C) “HALLMARK_ INFLAMMATORY_REACTION”, “HALLMARK_ALLOGRAFT_REJECTION”, “HALLMARK_TNFA_
SIGNALING_VIA Enrichment in the “_NFKB” gene set.
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logical expression modes and finding the cen-
tral participants in the modules, namely, mod-
ule genes [14, 15]. At present, WGCNA is 
applied to identify potential biomarkers in vari-
ous malignancies, such as breast cancer and 
LC [16, 17], providing candidate genes that are 
highly correlated with the clinical traits for 
tumours.

Based on the results of this study, the blue 
module was the key that was most related to 
tumour staging. According to the KEGG and GO 
enrichment analyses of 476 genes in this mod-
ule, these genes were associated with the bio-
logical functions of Ras protein signal trans- 
duction, ERK1/2 cascade, as well as JNK and 
MAPK cascades. In addition, genes in this blue 
module were greatly enriched in the MAPK sig-
nalling pathway, ECM-receptor interaction, Ras 
signalling pathway and others. The first path-
way is a vital regulator in physiological process-
es, such as cell growth and differentiation. The 
MAPK family contains JNK, ERK1/2 and p38 
MAPK cascades, while the abnormal regulation 
of RAS/MAPK/ERK is implicated in the metas-
tasis, invasion and proliferation of various 
malignant tumours [18, 19]. These studies also 
support the impact of the genes in the blue 
module on the occurrence and development of 
LC.

MCC is a topology analysis method [18, 19]. In 
the present study, the candidate hub genes 
(RASAL1, PFKP, ITGB4, ELOVL7, ITPR3, TMC4, 
KIAA1522, CACNB3, C12orf75 and KLC2) in 
the blue module were chosen via the MCC algo-
rithm. Among them, RASAL1 was identified as 

the hub gene by sequencing according to the 
MCC value. Comparing the expression matrix 
between the LC samples and the normal  
counterparts in TCGA and GSE105130, it was 
found that RASAL1 was up-regulated in LC,  
and patients with high RASAL1 expression had 
poor prognoses. Moreover, RASAL1 expression 
was related to the advanced T stage and clini-
cal stage of LC patients. It has been pointed  
out that the staging of LC, including clinical 
staging, TNM staging and BCLC staging, is the 
key factor in predicting patient survival and 
selecting different clinical treatment schemes 
[20]. Accordingly, it is of profound importance 
to find an appropriate biomarker for choosing 
feasible clinical treatment schemes for LC.

RASAL1, which is located at 12q23-q24, is a 
calcium-dependent RAS protein activity regula-
tion gene whose gene promoter methylation 
level is substantially increased in gastric can-
cer, colorectal cancer and other gastrointesti-
nal tumour tissues, promoting tumour invasion 
and growth [21, 22]. In addition, RASAL1 is 
shown to be a cancer suppressor in multiple 
neoplastic diseases. When RASAL1 is inacti-
vated due to the hypermethylation and muta-
tion of tumours, its low expression level can 
activate the RAS/MEK/ERK signalling pathway 
and promote cell apoptosis by inducing cell 
cycle arrest to inhibit cell proliferation [23, 24]. 
It is also worth mentioning that RASAL1 overex-
pression is associated with distant metastasis 
and tumour invasion [25]. Chang et al. [26] 
found that RASAL1 is up-regulated in ovarian 
cancer (OC) tissues and cells, and its high 
expression is related to the deterioration of the 

Figure 9. Gene set variation analysis (GSVA) of RASAL1. A. Clustering heatmap of differential expression pathways 
of RASAL1: purple and yellow represent RASAL1 high and low expression groups, respectively; B. Gene set scores 
of different signaling pathways.
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survival rate. Moreover, it participates in the 
regulation of the MAPK signaling pathway, and 
RASAL1 silencing inhibits the proliferation and 
invasion of OC cells. The results of GSEA and 
GSVA on RASAL1 also demonstrated that 
RASAL1 is associated with the activation of 
LC-related signal pathways, such as TGF-β and 
epithelial mesenchymal transition [27, 28].

Due to experimental condition limitations, the 
specific role of RASAL1 in LC was not discussed 
in detail and verified by experiments. This will 
be the main direction of our follow-up research. 
Nevertheless, our study uncovered the key role 
of RASAL1 in LC for the first time, including its 
contribution to the progression of LC. The find-
ings of this study serve as significant guides in 
the prognosis evaluation of LC patients and tar-
geted therapy.
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