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Abstract: Background: The functions of RNA-binding proteins (RBPs) in the occurrence and development of tumors
remain largely unexplored. We established a risk signature based on RBPs to predict the prognosis, tumor-related
immunity, and treatment benefits of patients with testicular germ cell tumors (TGCTs). Methods: A risk signature
was built based on RBPs closely related to survival obtained from TGCT data in The Cancer Genome Atlas (TCGA)
database. The ability of the signature to predict prognosis was analyzed by survival curves and Cox regression. The
risk signature was validated using the Gene Expression Omnibus (GEO) database. The connection between tumor
immunity and the risk score was evaluated. Risk score-related drug sensitivity and biofunctions were also explored.
Results: A risk signature including four selected RBP genes (PARP12, USB1, POLR2E and EED) was established. The
prognosis of high-risk TGCT patients was worse than that of low-risk TGCT patients. The risk score was considered
a critical factor closely related to prognosis, as determined via Cox regression, and was also closely associated with
multiple characteristics of tumor immunity, chemotherapy drugs and biofunctions. Conclusion: The established risk
signature including four selected RBPs in TGCTs could predict the prognosis, tumor-related immunity and treatment
benefits of patients with TGCTs. Utilization of this signature could help clinicians make personalized treatment deci-

sions.
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Introduction

Testicular germ cell tumors (TGCTs) are rela-
tively rare (1% of solid tumors in men) but are
considered the most common malignances in
young adult men [1]. Patients with TGCTs com-
prised more than 95% of patients with testicu-
lar origin cancers, and TGCTs can be further
divided into seminomas and nonseminomas [2,
3]. Although the cure rate of TGCTs through
conventional surgical resection, radiotherapy
and chemotherapy can reach over 90%, approx-
imately 15% of patients with TGCTs are not sen-
sitive to chemotherapy and have a poor progno-
sis [4-6]. Therefore, identification of other sen-
sitive TGCT biomarkers to better predict the
prognosis and treatment benefits of patients
with TGCTs would be valuable.

RNA-binding proteins (RBPs) are essential pro-
teins closely related to various RNAs [7, 8]. The
main functions of RBPs are to coordinate the
stability, splicing, modification, and positioning
of various RNAs and to maintain cell homeosta-
sis by participating in posttranscriptional gene
regulation [9]. To date, 1542 RBPs have been
identified, and recent studies have also demon-
strated that the dysregulation of RBPs is closely
related to tumors [10]. The overexpression of
RNA-binding motif protein 3 (RBM3) can acti-
vate hepatocellular carcinoma (HCC) cell prolif-
eration and predict a poor patient prognosis
[11]. Quaking (QKI) inhibits tumor progression
by regulating the alternative splicing process in
lung cancer [12]. In ovarian cancer, epithelial
splicing regulatory protein 1 (ESRP1) promotes
tumor epithelial-mesenchymal transition (EMT)
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from TCGA database (TCGA-TGCT) and GEO database.

mune functions, immune che-

The transcriptome data (MRNA) and clinical data of BC were obtained ckpoints, and the tumor mic-

roenvironment (TME)] in dif-
ferent risk groups were evalu-

ated, and risk score-related
biological functions were also
explored (Figure 1).

Materials and methods

The RBPs closely related to survival (P < 0.05)
were identified in TCGA and a risk signature
was built via LASSO. The GEO cohort was

used to validate the signature.

Patient samples included in
the study

The normalized RNA expres-
sion data and clinical infor-

Construction of the nomogram.

mation data of patients with
TGCTs were obtained from the
official website of the TCGA
database (TCGA-TGCT; http://
cancergenome.nih.gov/). TC-
GA-TGCT included transcrip-
tome information with sur-
vival data [the survival index
was progression-free survival

different risk groups were evaluated

infiltration, immune functions, immune checkpoints, TME) in

(PFS)] for 134 patients, and
complete clinical information

The characteristics of tumor immune (including immune cell was available for 103 of these

patients. The basic informa-
tion of the cohort from TCGA
is shown in Table 1. The GEO
cohorts (GSE3218 and GSE-

v

10783) from the GEO data-
base (https://www.ncbi.nim.
nih.gov/geo/) were utilized for

GSEA validation, and the data from

108 TGCT patients with com-

plete clinical information [in-

Figure 1. Flowchart of this research. TCGA, The Cancer Genome Atlas; RBPs, cluding only overall survival

RNA-binding proteins; TME, tumor microenvironment; TGCT, testicular germ (0S)] and RNA sequencing in-

cell tumor; GEO, Gene Expression Omnibus; LASSO, least abso
and selection operator; GSEA, gene set enrichment analysis.

and is related to a poor 5-year survival rate
[13]. However, the functions of RBPs in the
occurrence and development of tumors remain
largely unexplored.

In our study, we established a risk signature
based on RBPs to predict the survival and treat-
ment benefits of patients with TGCTs from data
in The Cancer Genome Atlas (TCGA) database
(TCGA-TGCT) and validated this signature with
the Gene Expression Omnibus (GEO) database.
Furthermore, tumor-related immunity charac-
teristics [including immune cell infiltration, im-
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lute shrinkage formation were extracted for

further research. A list of

RBPs was obtained from the
literature [10]. To establish the signature, the
TCGA cohort was used as the training set, and
the GEO cohort was used as the validation set.
The ethical approval was unnecessary because
the data were obtained from public databases.

Establishment of a risk signature

Before establishing the risk signature, the RBPs
closely related to survival (P < 0.05) were iden-
tified from the TCGA dataset by univariate Cox
analysis. Then, the risk signature was estab-
lished via least absolute shrinkage and selec-
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Table 1. Characteristics of the TGCT patients ob-
tained from the TCGA database

Basic information

TCGA (n = 103)

Age 31 (median)
Stage | 72
I & I 31
T classification T1 58
T2&T3 45
N classification NO 73
N1 & N2 & N3 30
M classification MO 95
M1 8
Type Seminoma 45
Nonseminoma 58
Postoperative therapy None 51
Pharmaceutical 36
Radiation 16

TGCT, testicular germ cell tumor; TCGA, the Cancer Genome
Atlas.

tion operator (LASSO) Cox regression in
the “glmnet” R package based on the ex-
pression data of the selected genes in TCGA.
LASSO Cox regression is a regression me-
thod for high-dimensional predictive variables
that can retain valuable variables, estimate
parameters simultaneously and avoid overfit-
ting [14]. This method has been widely used
in survival analysis of high-dimensional
data. We then calculated the risk score acco-
rding to the coefficients obtained from
LASSO Cox regression as follows: risk score =
Z?ﬂ (coefficienti X expression of signature genei).
According to the median risk score, patients
with TGCTs were divided into high- and low-risk
groups. The accuracy of the risk signature was
evaluated through receiver operating charac-
teristic (ROC) curves using the “ROC” R pack-
age and the C-index. The distribution patterns
of the different risk groups were then estimat-
ed by principal component analysis (PCA).
Survival curves (log-rank test) were used to
compare differences in prognosis between the
two risk groups. Cox regression was then per-
formed to assess the ability of the risk score to
independently predict the prognosis of patients
with TGCTs. Factors that were significant in
both univariable and multivariable Cox regres-
sions (P < 0.05) were considered to affect the
outcome of patients independently. The effect
of each included gene on survival was also
evaluated using Kaplan-Meier curves. A nomo-
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gram was constructed to predict the 1-, 3-and
B-year survival probabilities using the “rms”
R package. Calibration curves and decision
curve analysis (DCA) were performed to as-
sess the effectiveness of the nomogram
using the “rmda” R package. The GEO cohort
was then used to verify the risk signature. All
Cox regression analyses and the log-rank
test were completed using the “survival” R
package.

Risk score and tumor immunity

Twenty-nine gene markers of immune-related
characteristics were identified in a previous
study [15]. Single-sample gene set enrich-
ment analysis (SSGSEA) using the “GSVA” R
package was performed to calculate the
enrichment level of each sample based on
these gene markers and to quantify the infil-
tration of immune cells and immune function
scores. The differences in tumor immunity
(including the infiltration of immune cells,
immune functions and expression of 47 com-
mon immune checkpoints) between the differ-
ent risk groups were then studied. The stromal
score (level of stromal cells), immune score
(level of immune cells), estimation of stromal
and immune cells in malignant tumor tissues
using expression data (ESTIMATE) score (the
stromal score plus the immune score) and
tumor purity were obtained using ESTIMATE
in the “estimate” R package [16, 17]. The
ESTIMATE algorithm could infer the infiltration
levels of stromal cells and immune cells in the
tissue based on the gene expression profile
of the sample (the sum of the calculation
results of the two cells was defined as the
tumor purity) [18]. The relationships between
the risk score and the ESTIMATE results were
further assessed. Pearson’s test was used for
the correlation analysis, and the effect of the
TME on survival in the two risk groups was also
evaluated.

Risk score and drug sensitivity

The relationships between the half-maximal
inhibitory concentration (IC50) of six common
chemotherapy drugs (bleomycin, docetaxel, cis-
platin, doxorubicin, gemcitabine and paclitaxel)
and the risk score were investigated using the
“pRRophetic” R package. The algorithm con-
structed a regression model based on gene
expression and drug sensitivity data in cancer
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were detected using the Wil-
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Figure 2. Univariate Cox regression. RBPs closely related to survival (P <
0.05) were identified from the TCGA dataset by univariate Cox regression.
RBPs, RNA-binding proteins; TCGA, The Cancer Genome Atlas.

cell lines obtained from Genomics of Drug
Sensitivity in Cancer (GDSC) (www.cancerrx-
gene.org/) and then applied the model to gene
expression data from TCGA to evaluate drug
sensitivity in vivo [19, 20].

Biofunctions associated with the risk score

Gene set enrichment analysis (GSEA) was per-
formed to analyze the biological functions of
the genes in the risk score. GSEA is one of the
most commonly used methods for biological
function analysis. The results were based on
gene sets rather than individual genes and
were thus more reliable and flexible than those
obtained using traditional methods [21]. The
“cb.all.v7.4.symbols.gmt” gene set for Gene
Ontology (GO) analysis and the “c2.cp.kegg.
v7.4.symbols.gmt” gene set for Kyoto Ency-
clopedia of Genes and Genomes (KEGG) analy-
sis were downloaded from the Molecular Sig-
natures Database (MSigDB). A nominal (NOM)
P value < 0.05 and false discovery rate (FDR)
Q value < 0.25 were considered to indicate
significance.

Statistical analysis

The differences in measurement data between
the patients with TGCTs in the two risk groups
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N —

Hazard ratio

(Figure 2). A risk signature
was then established using
LASSO Cox regression accord-
ing to the selected genes; ul-
timately, four genes, namely,
poly (ADP-ribose) polymerase
family member 12 (PARP12),
U6 snRNA biogenesis phos-
phodiesterase 1 (USB1), RNA polymerase I, |
and lll subunit E (POLR2E) and embryonic ecto-
derm development (EED), were included in the
signature, and the risk score was calculated
using the coefficients obtained by LASSO Cox
regression (Table 2). We then divided the pa-
tients into high- and low-risk patient groups
based on the median risk score (the cutoff
value was 1.276) (Figure 3A-C). The areas
under the curve (AUCs) were 0.768 at 1 year,
0.708 at 3 years and 0.669 at 5 years (C-index
= 0.695), which indicated that the credibility of
the risk signature was low to medium (Figure
3D). The PCA results suggested that the two
groups exhibited different distribution patterns
and could be clearly distinguished (Figure 3E).
The survival curve revealed that the PFS rate of
high-risk TGCT patients was lower than that of
low-risk TGCT patients (P = 0.002) (Figure 3F).
The univariable Cox regression suggested that
the risk score, clinical stage and N stage were
associated with PFS in TGCTs (Figure 3G) (all P
values < 0.05). Multivariable Cox regression
further proved that the risk score indepen-
dently predicted the prognosis of patients with
TGCT (P < 0.001) (Figure 3H). The external GEO
cohort was used to validate the signature
(Figure 4A-C), and the results yielded AUCs of
0.703 at 1 year, 0.817 at 3 years and 0.783 at

w
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Table 2. The coefficients of included genes
obtained by LASSO Cox regression

Gene Coefficients
POLR2E 0.030
PARP12 -0.045
UsB1 0.037
EED 0.199

LASSO, least absolute shrinkage and selection operator;
POLR2E, RNA polymerase Il, | and Ill subunit E; PARP12,
poly (ADP-ribose) polymerase family member 12; USB1,
U6 snRNA biogenesis phosphodiesterase 1; EED, embry-
onic ectoderm development.

5 years (C-index = 0.729) (Figure 4D). The PCA
suggested that the two groups exhibited differ-
ent distribution patterns and could be clearly
distinguished (Figure 4E). The survival curve
revealed that the OS of high-risk TGCT patients
was lower than that of low-risk TGCT patients (P
< 0.001) (Figure 4F). The results of the impact
of each included gene on survival showed the
same trend in the GEO and TCGA cohorts,
decreased expression of PARP12 suggested a
poor prognosis, and increased expression of
USB1, POLR2E and EED suggested a poor prog-
nosis (Figure 5A-H). The nomogram was built
(Figure 6A), the calibration curve (Figure 6B-D)
and the DCA (Figure 6E) confirmed that the
nomogram could appropriately predict the sur-
vival probability of patients with TGCTs.

The risk score could indicate the characteris-
tics of tumor immunity

ssGSEA was conducted to calculate the scores
of immune cells and elucidate the immune-
related functions for each sample. The results
of the TCGA cohort indicated that there were
no differences in dendritic cells (DCs), macro-
phages or immature dendritic cells (iDCs) am-
ong the different risk groups. The infiltration
level of mast cells in high-risk patients was sig-
nificantly increased, and the infiltration levels
of other immune cells were significantly in-
creased in low-risk patients (all P values < 0.05)
(Figure 7A). The immune function scores in low-
risk patients were significantly higher than
those in high-risk patients (all P values < 0.05)
(Figure 7B). Interestingly, the expression levels
of most immune checkpoints in high-risk pa-
tients were lower than those in low-risk patients
(Figure 7C). In the analysis of the GEO cohort,
the results were roughly the same as those
obtained with the TCGA dataset (Figure 7D-F).
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The relationships between the TME (including
the immune score, stromal score, ESTIMATE
score and tumor purity) and risk score were
assessed via ESTIMATE. The results obtained
with the cohort from TCGA revealed that the
risk score negatively correlated with the im-
mune score (Figure 8A) and ESTIMATE score
(Figure 8B) (all P values < 0.05), whereas the
risk score positively correlated with tumor puri-
ty (P < 0.001) (Figure 8C). No significant differ-
ence was found between the stromal score and
the risk score (P = 0.14) (Figure 8D). We found
similar results with the GEO cohort (Figure
8E-H). The analyses of the cohorts from TCGA
(Figure 9A-D) and GEO (Figure 9E-H) revealed
that lower values of the immune score and
ESTIMATE score suggested a poor OS, that
increased tumor purity led to worse prognosis
and that the stromal score was not significantly
associated with survival.

Risk score and drug sensitivity

The IC50 values of six common chemotherapy
drugs were predicted in the different groups.
The results obtained with the cohort from TCGA
revealed that bleomycin (Figure 10A), cisplatin
(Figure 10B), docetaxel (Figure 10C), doxorubi-
cin (Figure 10D), gemcitabine (Figure 10E) and
paclitaxel (Figure 10F) all had higher IC50 val-
ues in low-risk patients (all P values < 0.05),
which could indicate that high-risk patients
were more sensitive to these chemotherapy
drugs. We obtained similar results with the GEO
cohort (Figure 10G-L).

Biological functions

The biological functions of the risk score were
evaluated via GSEA. The most significant bio-
functions enriched in high-risk patients based
on GO and KEGG analyses are listed in Tables
3 and 4, respectively [22]. The most signifi-
cant biofunctions enriched in low-risk patients
based on a KEGG analysis are listed in Table 5,
and the GO analysis identified no enriched
pathways in low-risk patients.

Discussion

It is well known that an imbalance of RBPs is
significantly related to the occurrence and de-
velopment of tumors and can further affect
patient’s survival [23-25]. Unfortunately, the
current research on RBPs in tumors is not com-
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Figure 3. The risk signature could independently predict a poor PFS of patients with TGCTs. Expression of selected genes in different risk groups of patients with
TGCTs (A). Distribution of patients with TGCTs into different risk groups (B). Survival status of patients in different risk groups of patients with TGCTs (C). AUC based
on the ROC curve (D). A PCA suggested that the two groups exhibited different distribution patterns and could be clearly distinguished (E). The survival curve sug-
gested that the PFS of high-risk TGCT patients was lower than that of low-risk TGCT patients (F). Cox regression confirmed that the risk score was a factor that inde-
pendently predicted the prognosis of patients with TGCTs. (G, H) AUC, area under the curve; TGCT, testicular germ cell tumor; ROC, receiver operating characteristic;
PFS, progression-free survival; PCA, principal component analysis.
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Figure 4. The risk signature was validated with the GEO database. Expression of selected genes in different risk groups of patients with TGCTs (A). Distribution of
patients with TGCTs into different risk groups (B). Survival status of patients in different risk groups of patients with TGCTs (C). AUC based on the ROC curve (D). A
PCA suggested that the two groups exhibited different distribution patterns and could be clearly distinguished (E). Survival curves revealed that high-risk TGCTs were
significantly related to poor OS (F). AUC, area under the curve; TGCT, testicular germ cell tumor; GEO, Gene Expression Omnibus; ROC, receiver operating character-
istic; PCA, principal component analysis; OS, overall survival.
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Figure 5. Impacts of each included gene on survival. In the TCGA cohort, decreased PARP12 expression suggested a poor prognosis (A). Increased expression of
USB1, POLR2E and EED suggested a poor prognosis (B-D). The analysis of the GEO cohort yielded results that were roughly the same as those obtained with the
TCGA cohort (E-H). TCGA, The Cancer Genome Atlas; PARP12, poly (ADP-ribose) polymerase family member 12; USB1, U6 snRNA biogenesis phosphodiesterase 1;
POLR2E, RNA polymerase I, | and Ill subunit E; EED, embryonic ectoderm development; GEO, Gene Expression Omnibus.

2832

Am J Transl Res 2022;14(5):2825-2843



An RNA-binding protein-related risk signature in TGCTs

A 0 10 20 30 40 50 60 70 80 90 100
Points L 1 1 Il 1 1 1 1 1 1 J
Age | N B B B B B B B B B |

70 60 50 40 30 20 10
T2
T l—‘—|
T1 T3
N1&2&3
N r .
NO
M1
M —
MO
Stage IlI
Stage " . 1
Stage Il Stage |
Riskscore " T T T T T T !
0 0.5 1 1.5 2 25 3 3.5
Total Points " T T T T T T T T T T 1
0 20 40 60 80 100 120 140 160 180 200 220
1-year survival T T T — T
0.99 0.9 0.80.7 0503 0.1 0.01
3-year survival r T — T
0.99 0.9 0.80.7 0503 0.1 0.01
5-year survival r — T T — T
0.99 0.9 0.80.7 0503 0.1 0.01
B : —7] C = { D = E =
:é s //// l :2 i ] - = g: .c: ] - - % — Nomogram
£ - 7 £ 57 ,,/ £ s - 2 — Rsksoore
Tg“ ° 1/’/ g a4l E ERN e g 00
n‘a oyr a's 09 ; o‘a ols nys ofr nfs afs ° clA nys oye o‘r nya n‘a o0 01 ?{?sk Thres;;\ " 04 05
Nomogram=Predicted Probability of 1=Year PFS ‘Nomogram~-Predicted Probability of 3-Year PFS Nomegram-Predicted Prebability of 5-Year PFS

2833 Am J Transl Res 2022;14(5):2825-2843



An RNA-binding protein-related risk signature in TGCTs

Figure 6. Nomogram. A nomogram was constructed (A), and the results of the calibration curve (B-D) and DCA (E) showed that the nomogram could appropriately
predict the survival probability of patients with TGCTs. DCA, decision curve analysis; TGCT, testicular germ cell tumor.
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Figure 7. Risk score and tumor immunity. The results obtained with the cohort from TCGA indicated that the infiltration levels of immune cells were closely related
to the risk score (A). The immune function scores of low-risk TGCT patients were significantly higher than those of high-risk TGCT patients (B). The expression levels
of most immune checkpoints in high-risk TGCT patients were lower than those in low-risk TGCT patients (C). The analysis of the GEO cohort yielded results that were
roughly the same as those obtained with the cohort from TCGA (D-F). GEO, Gene Expression Omnibus; TCGA, The Cancer Genome Atlas.
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Figure 9. Impact of the TME on survival. In the cohort from TCGA, decreased values of the immune score (A) and ESTIMATE score (B) suggested poor PFS, an in-
creased tumor purity (C) led to a worse prognosis, and the stromal score was not significantly related to survival (D). The analysis of the GEO cohort yielded results
that were roughly the same as those obtained with the cohort from TCGA (E-H). TME, tumor microenvironment; TCGA, The Cancer Genome Atlas; PFS, progression-
free survival; ESTIMATE, estimation of stromal and immune cells in malignant tumor tissues using expression data; GEO, Gene Expression Omnibus.
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Expression Omnibus.
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Table 3. Gene sets enriched in the high risk phenotype via GO

Gene set name NES NOM p-val FDR g-val
GOBP_FIBROBLAST_GROWTH_FACTOR_RECEPTOR_SIGNALING_PATHWAY 1.957 0.000 0.151
GOBP_SOMATIC_STEM_CELL_POPULATION_MAINTENANCE 1.901 0.000 0.109
GOMF_CELL_CELL_ADHESION_MEDIATOR_ACTIVITY 1.810 0.000 0.196
GOBP_GLUCOSE_6_PHOSPHATE_METABOLIC_PROCESS 1.804 0.010 0.198
GOBP_CHONDROCYTE_PROLIFERATION 1.783 0.004 0.220
GOMF_CELL_ADHESION_MEDIATOR_ACTIVITY 1.726 0.004 0.242
GOBP_EPITHELIAL_TO_MESENCHYMAL_TRANSITION 1.701 0.008 0.239
GOBP_GLUCOSE_CATABOLIC_PROCESS 1.699 0.010 0.238
GOBP_REGULATION_OF_EPITHELIAL_TO_MESENCHYMAL_TRANSITION 1.687 0.012 0.244
GOBP_POSITIVE_REGULATION_OF_WNT_SIGNALING_PATHWAY 1.649 0.004 0.249
GOBP_GLUCOSE_METABOLIC_PROCESS 1.647 0.000 0.248
GOBP_FIBROBLAST_GROWTH_FACTOR_RECEPTOR_SIGNALING_PATHWAY 1.957 0.000 0.151

GO, Gene Ontology; NES, Normalized enrichment score; NOM, Nominal; FDR, False discovery rate. Gene sets with NOM p-val <
0.05 and FDR g-val < 0.25 were considered significant.

Table 4. Gene sets enriched in the high risk phenotype via KEGG

Gene set name NES NOM p-val FDR g-val
KEGG_GALACTOSE_METABOLISM 1.702 0.008 0.132
KEGG_GLYCINE_SERINE_AND_THREONINE_METABOLISM 1.697 0.011 0.124
KEGG_GLYCOLYSIS_GLUCONEOGENESIS 1.677 0.016 0.131
KEGG_CELL_CYCLE 1.616 0.038 0.146
KEGG_TGF_BETA_SIGNALING_PATHWAY 1.609 0.036 0.145
KEGG_HUNTINGTONS_DISEASE 1.573 0.036 0.149
KEGG_PYRIMIDINE_METABOLISM 1.549 0.038 0.166
KEGG_GLYCOSPHINGOLIPID_BIOSYNTHESIS_LACTO_AND_NEOLACTO_SERIES  1.507 0.042 0.197
KEGG_INSULIN_SIGNALING_PATHWAY 1.396 0.046 0.256
KEGG_GALACTOSE_METABOLISM 1.702 0.008 0.132
KEGG_GLYCINE_SERINE_AND_THREONINE_METABOLISM 1.697 0.011 0.124
KEGG_GLYCOLYSIS_GLUCONEOGENESIS 1.677 0.016 0.131

KEGG, Kyoto Encyclopedia of Genes and Genomes; NES, Normalized enrichment score; NOM, Nominal; FDR, False discovery
rate. Gene sets with NOM p-val < 0.05 and FDR g-val < 0.25 were considered significant.

Table 5. Gene sets enriched in the low risk phenotype via KEGG

Gene set name NES NOM p-val FDR g-val
KEGG_INTESTINAL_IMMUNE_NETWORK_FOR_IGA_PRODUCTION -1.607 0.066 0.272
KEGG_JAK_STAT_SIGNALING_PATHWAY -1.602 0.045 0.224
KEGG_PRIMARY_IMMUNODEFICIENCY -1.584 0.068 0.213
KEGG_T_CELL_RECEPTOR_SIGNALING_PATHWAY -1.552 0.053 0.230
KEGG_ANTIGEN_PROCESSING_AND_PRESENTATION -1.465 0.140 0.237
KEGG_B_CELL_RECEPTOR_SIGNALING_PATHWAY -1.440 0.116 0.234
KEGG_TOLL_LIKE_RECEPTOR_SIGNALING_PATHWAY -1.382 0.171 0.247
KEGG_NOD_LIKE_RECEPTOR_SIGNALING_PATHWAY -1.378 0.158 0.240
KEGG_INTESTINAL_IMMUNE_NETWORK_FOR_IGA_PRODUCTION -1.607 0.066 0.272

KEGG, Kyoto Encyclopedia of Genes and Genomes; NES, Normalized enrichment score; NOM, Nominal; FDR, False discovery
rate. Gene sets with NOM p-val < 0.05 and FDR g-val < 0.25 were considered significant.
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prehensive. In this study, we established a risk
signature based on RBPs to predict the survival
and treatment benefits of patients with TGCTs.
A total of 4 genes (PARP12, USB1, POLR2E and
EED) were included in the construction of the
risk signature. The log-rank test and Cox analy-
sis confirmed that the risk score could be used
as a factor to independently predict the prog-
nosis of patients with TGCTs. Previous studies
have revealed the connections between these
4 genes and tumors. PARP12 deficiency accel-
erated HCC cell migration and invasion via reg-
ulation of the EMT process [26]. USB1 inhibits
thyroid cancer cell proliferation by inducing
cell cycle arrest [27]. The overexpression of
POLR2E significantly reduced the survival rate
of patients with acute myeloid leukemia [28].
Increased expression of EED was associated
with advanced clinical characteristics and
worse disease-free survival (DFS) in patients
with colorectal cancer [29]. These genes includ-
ed in the gene signature deserve further in-
depth study as potential targets in TGCT thera-
py. We also validated the signature using the
GEO cohort. In addition, a nomogram com-
posed of various clinical features and the risk
score was built to predict the PFS of patients
with TGCTs. Calibration curves were used to
estimate the effectiveness of the nomogram.
The DCA suggested that the net benefit of the
nomogram was greater than that of the risk
score and the clinical characteristics alone.
Therefore, the clinical applicability and robust-
ness of the signature were both satisfactory.

The relationships between various tumor im-
mune-related parameters and the risk score
were analyzed in our study. We found that
tumor-related immunity features (including vari-
ous effector immune cells and immune func-
tions) were significantly activated in low-risk
patients. Disorder of the immune system was
recently confirmed as a vital process of tumori-
genesis, and immunotherapy has also become
an emerging treatment method for tumors,
including TGCTs [30, 31]. The infiltration of T
cells could improve the prognosis of patients
with TGCTs [32]. Interestingly, the expression
of immune checkpoints, which cause immune
escape to suppress the immune response, was
significantly increased in low-risk patients in
both the GEO and TCGA cohorts [33]. According
to literature, the immune checkpoint inhibi-
tors exhibit significant effects in some tumors,
and the frequent expression of PD-1 can be

2840

observed in TGCT tissues [34, 35]. Anti-PD-1
therapy has been administered to patients with
TGCTs who were not sensitive to radiotherapy
and chemotherapy [36]. However, we should
also acknowledge that the effect of immuno-
therapy varies greatly among patients, and
some patients do not respond to this type of
treatment [37, 38]. Our study revealed that the
immune response and immune checkpoint lev-
els were increased in low-risk TGCT patients
with a better survival rate, which indicated that
the immune response enhancement effect in
low-risk patients was greater than the effect of
immune checkpoints on immune response inhi-
bition; thus, the application of immune check-
point inhibitors to low-risk TGCT patients could
further activate the immune response and
exert better anticancer effects.

The stromal score (level of stromal cells), im-
mune score (level of immune cells), ESTIMATE
score (stromal score plus immune score) and
tumor purity were calculated via ESTIMATE. In
the cohort from TCGA, increases in the risk
score were associated with a decrease in the
level of immune cell infiltration and a shorter
PFS, but no significant difference in the stro-
mal infiltration level was found. Moreover, the
increase in tumor purity caused by a decrease
in the level of immune cell infiltration also led
to poor survival. These results were consistent
with the ssGSEA results. Similar results were
obtained with the GEO cohort.

TGCTs characteristically show sensitivity to che-
motherapy drugs, we therefore assessed whe-
ther the risk score reflected drug sensitivity
[39]. The results demonstrated that high-risk
patients were more sensitive to 6 common
chemotherapy drugs. This suggested that the
administration of adjuvant chemotherapy to
high-risk TGCT patients and that of immune
checkpoints to low-risk TGCT patients could
achieve more significant clinical effects. The
results from the KEGG analysis of the low-risk
group indicated that a variety of immune-relat-
ed pathways were enriched, which suggested
that the immune functions of low-risk TGCT
patients were significantly enhanced, and this
finding was consistent with the results from the
analysis of immune parameters. The results
from the KEGG and GO analyses revealed that
some pathways related to glucose metabolism
were significantly enriched in high-risk TGCT
patients. The enhancement of glucose metabo-
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lism could provide the energy needed for the
biological behavior of tumors (cell division and
metastasis); thus, glucose metabolism is con-
sidered to be closely related to the pernicious
phenotype [40]. The product of glucose metab-
olism, lactic acid, can strongly inhibit the func-
tion of natural killer (NK) cells and T cells and
thereby suppress the immune response [41].
These results showed that targeting glucose
metabolism might also serve as a new direction
for the treatment of patients with TGCTs.

Nevertheless, our study had some limitations.
First, although we performed a systematic bio-
informatics analysis of the RBP-related signa-
ture of TGCTSs, these results still need to be con-
firmed by further basic experiments and clini-
cal analyses in the future. Second, the clinical
information from TCGA and GEO data was not
specific, TCGA data did not include details of
patients receiving systemic treatment, and the
GEO data only contained survival data, which
might affect the effect of the signature. Third,
the histology of our research was not strictly
differentiated, and TGCT seminomas and non-
seminomas were pooled; we thus look forward
to improving this analysis in the future.

Conclusion

A risk signature including four selected RBPs
in TGCTs was constructed and could predict
the prognosis, tumor-related immunity charac-
teristics and treatment benefits of patients
with TGCTs. The use of this signature could
help clinicians make personalized treatment
decisions.
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