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Abstract: Objectives: To systematically explore the function and prognostic ability of tumor-driver genes (TDGs) in 
breast carcinoma (BRCA). Methods: Functional enrichment analysis of BRCA differentially expressed TDGs was as-
sesed. We used univariate Cox, lasso, and multivariate Cox regression to identify the independent prognostic TDGs 
of BRCA. Then we constructed a prognostic signature and verified its predictive performance. Gene set enrichment 
analysis of the signal pathway revealed the differences between the prognostic signature high- and low-risk groups. 
Finally, a nomogram related to the prognostic model was established and verified. Results: A total of 595 differen-
tially expressed TDGs were identified, which are related to various molecular mechanisms of BRCA progression. We 
identified 8 independent prognostic TDGs for BRCA and validated their expression and prognosis with public data 
and clinical samples. The BRCA cohort was divided into training and validation cohorts, and prognostic signatures 
were constructed separately. The log-rank test showed that the survival rate of the high-risk group was significantly 
lower than that of the low-risk group in the prognostic signature (P<0.001); the AUC in the three cohorts were 0.805, 
0.712, and 0.760, respectively; the nomogram also showed better predictive performance. Analyzing the differ-
ence between the two risk subtypes, the high-risk group is mainly enriched in angiogenesis, MTORC1, epithelial-
mesenchymal transition and glycolysis, which means it is highly malignant. Conclusions: The prognostic signature 
and nomogram was confirmed to accurately predict the prognosis of patients with BRCA and we validated the hub 
genes, suggesting their potential as future therapeutic targets.
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Introduction

Breast carcinoma (BRCA) is the most common 
malignant tumor in women and one of the main 
causes of tumor deaths in women. According to 
statistics for 2020, there are approximately 
2.26 million new cases of BRCA in women 
worldwide and 680,000 deaths, far exceeding 
other cancer types in women, replacing lung 
cancer, thus becoming the main type of can- 
cer in the world [1]. Therefore, it is crucial  
to achieve early diagnosis and treatment for 
BRCA. In recent years, massive research on on- 
cogenes and tumor suppressor genes, various 
heterologous proteins and tumor antigens, has 
made certain progress in the development and 
application of drugs for specific tumor markers 
[2]. A series of evidence has indicated that 

molecular targeted therapy is a promising 
research direction for cancer treatments [3]. 
High-throughput sequencing combined with 
bioinformatics to analyze genomics data con-
tributed to the exploration of markers that  
are related to the diagnosis, treatment and 
prognosis of malignant tumors from a molecu-
lar perspective [4]. The prediction of patients’ 
survival rate through molecular markers is help-
ful to provide individualized decision-making for 
patients is the clinic.

With the deepening of exploration, researchers 
gradually define tumors as “genomic diseases”, 
that is, tumors are the result of the continuous 
accumulation of mutations in the tumor cell’s 
genome [5]. Among tumor cell mutations, only  
a small part plays an important role in tumor 
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occurrence and progression. These mutations 
are called driver mutations, and these expres- 
sed genes that are affected by driver mutations 
are called driver genes [6]. Among them, Wang 
et al. identified FAM83H-AS1 as a driver gene 
for lung adenocarcinoma and also as a tar- 
get for the treatment of lung cancer [7]. In addi-
tion, Qian et al. showed that FMR1 Autosomal 
Homolog 1 is a novel driver gene in lung can- 
cer and can help to predict the prognosis of 
patients with lung cancer [8]. Cancer driver 
genes are involved in the regulation of multiple 
biological processes such as cell growth, cell 
cycle and DNA replication [9]. Chromodomain 
Helicase DNA Binding Protein 1 Like was shown 
to prevent lipopolysaccharide-induced hepato-
cellular carcinoma cell death [10]. Paired box 4 
can inhibit the expression of A disintegrin and 
metalloproteinase (ADAMs) to regulate epithe-
lial cell carcinoma metastasis [11]. Fibroblast 
growth factor 19 participates in the self-renew-
al of liver cancer stem cells and promotes the 
progression of liver cancer cells [12]. However, 
in current breast cancer research, the function 
and prognostic power of driver genes has not 
been systematically analyzed.

This study integrated the data of Genotype-
Tissue Expression (GTEx) database [13] and 
The Cancer Genome Atlas (TCGA) databases 
[14], analyzed the expression characteristics  
of driver genes in breast cancer, and their 
potential molecular biological functions, and 
also identified the key genes for independent 
prognosis. Based on the vital tumor driver 
genes obtained, a prognostic signature was 
constructed, and a variety of methods were 
used to analyze the accuracy of its prognosis. 
According to the signature, BRCA patients can 
be divided into two subtypes. We analyzed  
the clinicopathological characteristics and the 
differences among the signal pathways be- 
tween the two subtypes. In addition, we applied 
the nomogram to visualize the prognostic sig-
nature, which can intuitively help clinicians 
make precise and individualized treatment 
decisions.

Materials and methods

Identify differentially expressed tumor driver 
genes in BRCA

Transcript per million (TPM) data of normal 
breast tissue gene expression from GTEx was 

downloaded. The Fragments Per Kilobase Mi- 
llion (FPKM) sequencing data of BRCA and  
normal breast tissue in TCGA was downloaded 
and converted into TPM data. It was then run  
in the “sva” R package to integrate the two 
datasets, remove batch effects and perform 
background correction, and merge them into 
one data set. The relevant information of tumor 
driver genes was obtained from the network of 
cancer genes home (NCG, http://ncg.kcl.
ac.uk/) [15], and we extracted the expression  
of driver genes in each sample from the fu- 
sion dataset. Subsequently, using |log2 Fold 
Change (FC)|>1, and False Discovery Rate 
(FDR)<0.05 as the screening condition, the 
“limma” R package [16] identified differentially 
expressed tumor driver genes (DETDEs) in 
BRCA. The “ggplot2” R package [17] was used 
to draw volcano plots and heat maps for vi- 
sualization.

Gene ontology (GO) and Kyoto encyclopedia of 
genes and genomes (KEGG) function analysis

GO annotations provide a consistent descrip-
tion of gene function, help to develop a control-
lable vocabulary, and gives information that are 
non-species specific. It includes cellular com-
ponent (CC), molecular function (MF) and bio-
logical process (BP). The KEGG is a comprehen-
sive database that integrates genomic, chemi-
cal, and systemic functional information. To 
understand the function of DETDEs in BRCA 
and the molecular mechanisms involved, we 
performed GO and KEGG function enrichment 
analysis. With P<0.05 and FDR<0.05 as the 
screening conditions, the “clusterProfiler” R 
package [18] was used for enrichment analysis 
of this DETDEs, and the “GOplot” R packages 
[19] to visualize the obtained TOP 10 items for 
each section.

Identify independent prognostic hub tumor 
drive genes

We first used the “survival” R package to per-
form univariate Cox regression analysis of 
DETDEs in the TCGA-BRCA cohort. With P<0.05 
set to consider the prognostic-related tumor 
driver genes. Then we used the “glmnet” pack-
age to perform Least Absolute Shrinkage and 
Selection Operator (Lasso) regression to elimi-
nate the multicollinearity between the prognos-
tic-related tumor driver genes and obtained 
tumor driver genes that are significantly related 
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to the prognosis [20]. In addition, we randomly 
divided all TCGA-BRCA samples with clinical 
information into a training cohort and testing 
cohort. We used the “survival” R package to 
perform multivariate Cox regression analysis 
on the tumor driver genes obtained in the previ-
ous step in the training cohorts and obtained 
hub tumor driver genes that independently pre-
dict the prognosis of breast carcinoma.

Establishment and validation of prognostic 
signatures of tumor driver genes

In the training cohort, we established a novel 
prognostic model based on the obtained inde-
pendence prognostic tumor driver genes. Using 
multivariate Cox regression analysis, by com-
bining the coefficient (β) and expression (EXP) 
of each gene, according to the formula: Risk-
socres = β1 * EXP1 + β2 * EXP2 + … + βi * 
EXPi, the risk-score of each patient was calcu-
lated separately. According to the median of 
the scores, we divided all the patients in the 
training cohort into high- and low-risk groups. 
Further, we drew the Kaplan Meier (K-M) curve 
and performed Log-Rank test to analyze the  
differences in survival rate between the high 
and low risk groups. The 5-year receiver operat-
ing curve (ROC) was used to assess the accu-
racy of the prognostic model for predicting the 
5-year survival rate of breast cancer patients. 
Combining clinicopathological information and 
risk scores, univariate and multivariate Cox 
regression analysis verified the independent 
prognostic ability of risk-scores for breast can-
cer. For the verification cohort, we used the 
same method as the training cohort to con-
struct and verify the prognostic signature. We 
also integrated the training and verification 
cohorts to form a complete cohort for re- 
verification.

Clinicopathological characteristics and mo-
lecular mechanism analysis of different risk 
groups

To understand the potential differences be- 
tween the two risk groups, we conducted fur-
ther analysis in the TCGA-BRCA complete co- 
hort. First, we performed a dimensionality 
reduction analysis of the entire cohort using 
principal component analysis and analyzed dif-
ferences between the two risk groups. Sub- 
sequently, we performed a chi-square test to 
find the differences in clinicopathological char-

acteristics between the two risk groups. Fur- 
thermore, we used gene set enrichment analy-
sis (GSEA) [21] to enrich the high- and low-risk 
groups and analyzed the signal pathways that 
promote tumor progression in the high-risk 
group. Hallmark 7.4 was chosen as the refer-
ence gene set, and P<0.05 and FDR<0.05 are 
regarded as significant.

Construction and verification based on tumor 
driver gene nomogram

We drew a nomogram based on the indepen-
dent prognostic factors identified in the com-
plete cohort in the previous step (P<0.05) to 
help clinicians make accurate decisions about 
BRCA patients. By calculating the risk scores  
of BRCA patients and the corresponding age, 
pathological stage and pharmaceutical status, 
the corresponding scores were obtained, and 
the survival rate of the patients was calculated 
via the total score. Then we drew 5-year and 
10-year calibration curves to evaluate the pre-
dictive performance of the nomogram. Among 
them, the slope of the curve tends close to 1 is 
considered to an excellent predictive ability.

Hub tumor driver gene expression and prog-
nostic verification in public database

For the obtained hub-independent prognosis 
tumor driver genes, we used multiple public 
databases to verify their expression and prog-
nosis respectively. We first used the immuno-
histochemical data of hub tumor driver genes 
in the human protein atlas (HPA) database 
(https://www.proteinatlas.org) [22] to verify 
their protein expression differences in BRCA. 
Subsequently, we obtained the Paul A. North- 
cott dataset from the oncomine database 
(https://www.oncomine.org) [23], and extract-
ed the expression data of hub tumor driver 
genes to verify the expression of RNA. Kaplan-
Meier Plotter (http://kmplot.com) [24] includes 
prognostic information of multiple breast can-
cers, which contribute to elaborate on the re- 
lationship between genes and prognosis and 
draw Kaplan-Meier curves to verify the prog-
nostic ability of hub tumor driver genes.

Cell culture and rt-qPCR detection

To verify the expression differences of hub 
tumor driver genes in BRCA, we carried out 
experimental verification. Human normal mam-
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mary epithelial cell line MCF10A and breast 
cancer cell line MCF7 were obtained from the 
Chinese Academy of Sciences, and were cul-
tured in DMEM medium (Gibico, USA) contain-
ing 10% fetal bovine serum (Gibico, USA) at 
37°C and 5% CO2. We extracted total RNA  
from MCF10A and MCF7 cell lines according to 
the method of Trizol reagent (Thermo Fisher, 
USA). Subsequently, according to the instruc-
tion manual of the RR047A reverse transcrip-
tion kit (Takara, Japan), the gDNA of the total 
RNA was removed and the RNA was reverse 
transcribed into cDNA. Finally, we prepared the 
reaction system according to the instructions 
of the real-time quantitative qPCR kit RR820A 
(Takara, Japan), and used β-Actin as the inter-
nal reference gene to detect the difference in 
the expression of hub tumor driver genes in 
breast cancer in the 7900HT system (Applied 
Biosystems, USA). The primers used were syn-
thesized by Sangon Biotech (Shanghai) Co., 
Ltd., Shanghai, China, and the primer sequenc-
es were shown in Table 1.

Results

A total of 595 DETDGs were identified in 
breast cancer

We downloaded 459 normal breast tissue sam-
ples from GTEx and obtained data from 113 
normal breast tissues and 1,109 breast carci-
noma tissues from TCGA. After data conver-
sion, background removal, batch effect remov-
al, and background correction, we obtained a 
sequencing data matrix containing information 
from 572 normal breasts and 1,109 breast 
cancers. After the tumor gene names were 
obtained from NCG, we extracted the expres-
sion data of 2,595 tumor-drive genes from the 
integrated data matrix. According to the screen-

We conducted enrichment analysis on the ob- 
tained DETDGs to explore their functions and 
the molecular mechanisms involved. Among 
them, the BP of GO is mainly enriched in:  
gland development, protein kinase B signaling 
(AKT), peptidyl-tyrosine modification, peptidyl-
tyrosine phosphorylation, urogenital system de- 
velopment, epithelial tube morphogenesis, ino-
sitol lipid-mediated signaling, phosphatidylino-
sitol-mediated signaling, phosphatidylinositol 
3-kinase signaling (PI3K), and morphogenesis 
of a branching epithelium (Figure 2A). The CC 
of GO is mainly enriched in: banded collagen 
fibril, fibrillar collagen trimer, collagen-contain-
ing extracellular matrix, membrane region, 
membrane microdomain, membrane raft, cell-
substrate junction, cell-cell junction, complex 
of collagen trimers, and condensed chromo-
some (Figure 2B). The MF of GO is mainly en- 
riched in: growth factor binding, protein tyro-
sine kinase activity, transmembrane receptor 
protein tyrosine kinase activity, transmem-
brane receptor protein kinase activity, extra- 
cellular matrix structural constituent, protein 
phosphatase binding, cytokine binding, phos-
phatase binding, and platelet-derived growth 
factor binding (Figure 2C). For KEGG, the main 
enriched ones were Rap1 signaling pathway, 
Ras signaling pathway, Transcriptional misre- 
gulation in cancer, Proteoglycans in cancer, 
mitogen-activated protein kinase (MAPK) sig-
naling pathway, and PI3K/AKT signaling path-
way (Figure 2D).

We identified 8 independent prognostic hub 
tumor driver genes

In TCGA-BRCA, a total of 1090 samples had 
overall survival information. Through univariate 
Cox regression analysis, we identified 28 tumor 
driver genes associated with prognosis from 

Table 1. Primer sequences used in this study
ID Forward primer (5’-3’) Reverse primer (5’-3’)
ACTB CACCATTGGCAATGAGCGGTTC AGGTCTTTGCGGATGTCCACGT
CHST1 ATTGATCTCGGGGTCCATCTG GTCCTGCAATCACACACAGAG
LEF1 TGCCAAATATGAATAACGACCCA GAGAAAAGTGCTCGTCACTGT
LCP1 GATCAGTGTCCGATGAGGAAATG CCAGATCACCTGTAGCCATCA
FLT3 CTGAATTGCCAGCCACATTTTG GGAACGCTCTCAGATATGCAG
SAV1 GTGCTCCTAGTGTACCTCGGT CTCGTGCGTAAACCTGAAGC
EZR ACCAATCAATGTCCGAGTTACC GCCGATAGTCTTTACCACCTGA
ABCC9 TCAACCTGGTCCCTCATGTCT CAGGAGAGCGAATGTAAGAATCC
MERTK CTCTGGCGTAGAGCTATCACT AGGCTGGGTTGGTGAAAACA

ing conditions of “limma”, we 
identified 595 dysregulated tu- 
mor driver genes of breast carci-
noma, including 268 that were 
up-regulated and 327 that we- 
re down-regulated (Figure 1A). 
We visualized the expression of 
DETDEGs in both normal tissue 
and breast cancer with a heat 
map (Figure 1B).

The functional enrichment analy-
sis of GO and KEGG of DETDGs
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596 DETDEs. Among them, there were 9 tumor 
driver genes with hazard ratios (HR)>1, and 19 
driver genes with HR<1 (Figure 3A). Then, we 
performed Lasso regression analysis to remo- 
ve the collinearity of each tumor driver gene, 
from which 21 candidate genes were identified 
(Figure 3B). Then, we randomly divided breast 
cancer samples with prognostic information 
into a training cohort (n=546) and a validation 
cohort (n=544). In the training cohort, multi-
variate Cox regression analysis identified 8  
hub independent prognostic tumor driver genes 
from the candidate genes. Among them (Fig- 
ure 3C), we found a HR>1 for MER Receptor 
Tyrosine Kinase (MERTK), ATP Binding Cassette 
Subfamily C Member 9 (ABCC9), Carbohydrate 
Sulfotransferase 1 (CHST1), and Ezrin (EZR); 
and a HR<1 for Salvador Family WW Domain 
Containing Protein 1 (SAV1), Fms Related Re- 
ceptor Tyrosine Kinase 3 (FLT3), Lymphocyte 
Cytosolic Protein 1 (LCP1), and Lymphoid En- 
hancer Binding Factor 1 (LEF1).

We established and verified the prognostic sig-
nature of tumor driver genes

Based on the obtained 8 hub tumor driver 
genes, we performed multivariate Cox regres-
sion analysis to establish a prognostic model. 
According to the formula: Risk-score = (0.376 * 
EXPMERTK) + (0.393 * EXPABCC9) + (-0.691 * 
EXPSAV1) + (0.153 * EXPCHST1) + (0.399 * EXPEZR) 
+ (-0.210 * EXPFLT3) + (-0.271 * EXPLCP1) + 
(-0.333 * EXPLEF1), we calculated the risk-score 
of each sample. In terms of the median risk-
score of the training cohort, we divided the 

samples into high- and low-risk groups. In the 
validation cohort, risk grouping is evaluated 
through the same method. We merged the 
training and validation cohort to form a TCGA-
BRCA complete cohort for revalidation. First, 
the K-M curves in the three cohorts indicated 
that there are significant differences in survival 
rates between different risk groups, and the 
low-risk group reflects a better survival status 
(Figure 4A, 4E, 4I, P<0.0001). The high-risk 
group had higher mortality and shorter survi- 
val time in the complete cohort (Figure 4K).  
The area under curve (AUC) of the five-year  
ROC curves calculated for the three cohorts 
were 0.805, 0.712, and 0.760, respectively, 
which reflected the intermediate prognostic 
ability of the prognostic signature (Figure 4B, 
4F, 4J). Univariate and multivariate Cox regres-
sion analysis determined that risk-score in the 
three cohorts is an independent prognostic  
factor for BRCA patients (Figure 4C, 4D, 4G, 
4H, 4L, 4M).

High-risk BRCA samples are more malignant

We performed a 3D principal component analy-
sis for dimensionality reduction of the two risk 
groups in the complete cohort. The results are 
shown in Figure 5A, the high and low risk 
groups have significant differences, which was 
regarded as different subtypes of BRCA. Sub- 
sequently, we analyzed the association of the 
two risk groups with the clinicopathological fea-
tures of BRCA. The analysis results of the chi-
square test showed (Figure 5B) that risk group-
ing was correlated with N stage, T stage, patho-

Figure 1. Identification of 595 differentially expressed drive genes in breast cancer. A. Volcano plots show differen-
tially expressed driver genes, with green dots representing 327 down-regulated genes and red dots representing 
268 up-regulated genes. B. Volcano plot showing the 535 differentially expressed tumor driver gene expression.
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Figure 2. Functional enrichment analysis of the 535 differentially expressed driver genes, Top 10 results for each section. A. Cellular components of gene ontology. 
B. Molecular function of gene ontology. C. Biological process of gene ontology. D. Kyoto encyclopedia of genes and genomes function enrichment analysis.



Constructing a TDGs prognostic signature for BRCA

4521 Am J Transl Res 2022;14(7):4515-4531

logical stage, and age (P<0.01). We performed 
gene set enrichment analysis to find the di- 
fferences in molecular mechanisms between 
high and low risk groups. The high-risk groups 
are mainly enriched in angiogenesis, glycolysis, 

Mammalian target of rapamycin complex 1 
(MTORC1), PI3K/AKT/MTOR, epithelial mesen-
chymal transition (EMT) signaling pathway 
(Figure 5C). The above signals are closely relat-
ed to malignant biological processes such as 

Figure 3. Identification of the 8 breast cancer hub independent prognostic drive genes. A. Univariate Cox regression 
analysis screened 28 prognostic related tumor driver genes. B. Lasso regression analysis identified 21 candidate 
genes from 28 prognostic related genes. C. Multivariate Cox regression analysis identified 8 hub-independent prog-
nostic breast cancer driver genes from candidate genes.
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Figure 4. Identification and construction of tumor driver gene-related prognostic signatures. A, E, I. Kaplan-Meier curve showed that the survival rate of the high-risk 
group was significantly lower than that of the low-risk group. B, F, J. The area under the 5-year subject-operable curve was calculated to assess the predictive perfor-
mance of the prognostic signature. C, G, L. Univariate Cox regression analysis identifies clinicopathological characteristics, risk scores and the prognosis of breast 
cancer patients. D, H, M. Univariate Cox regression analysis identified clinicopathological characteristics with risk score independent prognostic performance. K. 
Distribution map of survival status in the complete cohort.

Figure 5. Analysis of the difference between the high and low risk groups. A. Principal component analysis showed significant differences between the two risk 
groups. B. Risk grouping is related to Nstage, T stage, pathological analysis, and age. C. Gene Set Enrichment Analysis showed that the high-risk group was enriched 
in angiogenesis, epithelial-mesenchymal transition, glycolysis, MTORC1 signaling, and PI3K/Akt/MTOR signaling.
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tumor proliferation, invasion, and metastasis, 
suggesting that the high-risk group is more 
malignant.

Nomogram help clinical decision-making

The nomogram is made to visualize the con-
structed prognostic signature, and the survival 
rate of COAD patients can be calculated more 
intuitively. Integrating multiple predictors is in 
favor of better predictive power. We identified 
independent prognostic factors from the multi-
variate Cox regression analysis in the complete 
cohort, and constructed a nomogram based on 
this. We included age, pharmaceutical, patho-
logic stage, and risk scores, and assigned cor-
responding scores according to each patient’s 
situation. Therefore, the total score we obtained 
can directly and accurately predict the 1-5 year 
survival rate of BRCA patients (Figure 6A). 
Subsequently, we plotted 5- and 10-year cali-
bration curves to understand the predictive 
power of the nomogram. The results showed 
that the actual predicted survival rates of  
the two calibration curves were almost identi-
cal to the ideal values, demonstrating the excel-
lent predictive performance of the nomogram 
(Figure 6B).

Hub-driver gene expression and prognostic 
verification

From our analysis in BRCA, a total of 8 hub-
independent tumor driver genes were identi-
fied, which are potential targets for BRCA treat-
ment. According to the immunohistochemical 
data from the HPA database, EZR was highly 
expressed in BRCA, while METRTK, ABCC9, and 
SAV1 were down-regulation (Figure 7A). In the 
oncomine database, we analyzed the mRNA 
expression of hub tumor driver genes. The re- 
sults showed that LEF1, LCP1, FLT3, EZR, and 
CHST1 were up-regulated in BRCA, while the 
expression of SAV1, ABCC9, and MERTK we- 
re down-regulated (Figure 7B). In addition, we 
analyzed the expression of hub tumor genes in 
human normal mammary epithelial cell line 
MCF10A and breast cancer cell line MCF7 by 
rt-qPCR. The results of the in vitro experiments 
were consistent with those of oncomine data-
base (Figure 7C). Subsequently, the relation-
ship between hub-driven gene expression and 
prognosis was verified. High expression of 
LCP1, LEF1, SAV1, FLT3 was associated with  
a better prognosis, and high expression of 

METRK, ABCC9, CHST1, and EZR were associ-
ated with a poor prognosis (Figure 7D).

Discussion

In this study, we integrated the data of TCGA 
and GTEx to identify the differentially express- 
ed tumor driver genes of BRCA. Firstly, we ex- 
plored the potential molecular biological func-
tions of these genes; the results are mainly 
enriched in the Ras, MAPK, PI3K/Akt and Rap1 
signal pathways. These signals mutually regu-
late crosstalk and promote tumor progression. 
Among them, the Ras gene of Ras signaling is  
a classic tumor driver gene, which is activated 
to form an oncogene with oncogenic activity, 
causing cells to proliferate uncontrollably and 
become malignant [25]. Furthermore, Rap1 is  
a member of the Ras small GTPases family, 
which activates extracellular regulated protein 
kinases independent of Ras in an environment-
dependent manner, thereby playing an impor-
tant role in tumor EMT and metabolic repro-
gramming [26]. In addition, The N-terminus of 
the Ras protein can be combined with Raf and 
is a serine/threonine protein kinase (MAPKKK) 
that is activated during this period, and fur- 
ther transduces and activates MAPK into the 
nucleus, which activates various transcription 
factors [27]. The MAPK signaling pathway con-
sists of four distinct cascades, including ex- 
tracellular signal-related kinases (ERK1/2), Jun 
N-terminal kinases (JNK1/2/3), p38-MAPK and 
ERK5, the above signal activation is related  
to tumor cell differentiation, migration, senes-
cence and apoptosis [28]. By directly activating 
p110α and p110δ of PI3K, Ras mediates tu- 
mor cell growth, autophagy, and triggers down-
stream signaling events including Akt [29]. Ta- 
ken together these signals suggest that these 
differentially expressed tumor driver genes play 
crucial roles in BRCA progression.

Subsequently, we used a variety of statistical 
methods and constructed a prognostic signa-
ture based on 8 hubs driver genes. We drew 
K-M and ROC curves to identify the excellent 
predictive performance. According to the prog-
nostic model, BRCA samples were divided in- 
to high- and low-risk groups. We analyzed the 
differences in clinical pathological characteris-
tics and molecular pathways. Among them, the 
risk-group is related to the age, TMN stage  
and pathological stage of BRCA patients. GSEA 
showed that high-risk patients are mainly en- 
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Figure 6. Nomogram construction and verification. A. A nomogram based on the prognostic signature of the driver gene and clinicopathological characteristics. B. 
5-year calibration curve validated nomogram. C. 10-year calibration curve validated nomogram.
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riched in EMT, Angiogenesis, MTORC1 and 
Glycolysis. EMT is a process in which epithelial 
cells separate from their neighboring cells and 
acquire the characteristics of interstitial cell 
migration, which is crucial for initiating the met-
astatic cascade that allows cancer cells to 
leave the primary tumor, which causes tumor 
cells to spread to distant organs [30]. Pas- 
tushenko et al. found that FAT1, the most fre-
quently mutated driver gene in multiple tumors, 
has a tumor suppressor effect, and that the 
loss of FAT1 function will promote heterozygous 
EMT, metastasis and drug resistance [31]. 
Importantly, the growth of tumor tissues must 
rely on angiogenesis to provide sufficient oxy-
gen and nutrients to maintain growth. The  
most common driver gene, vascular endothelial 
growth factor (VEGF), not only directly promotes 
angiogenesiss, also indirectly stimulates angio-
genesis by recruiting tumor-associated macro-
phages that support angiogenesis and secrete 
VEGF into the tumor microenvironment [32]. In 
addition, the energy metabolism of tumor cells 
has special characteristics. In normal cells,  
glycolysis is a highly regulated and conserved 
metabolic process in the cytoplasm, and oxida-
tive phosphorylation is the main energy pro- 
duction process [33]. Although glycolysis is a 
metabolic method that produces less energy, 
Warburg confirmed that the conversion rate  
of glucose to lactic acid in rat liver cancer tis-
sue increased by about 10 times in the pres-
ence of oxygen [34]. Chen et al. found that the 
new ovarian cancer driver genes TBC1D8 and 
TBC1D8 are amplified in ovarian cancer tis-
sues, which combined with the key rate-limiting 
enzyme of sugar metabolism in tumor cells, 
PKM2, and inhibit the tetramerization of PKM2 
and the activity of pyruvate metabolizing en- 
zymes, then mediating the metabolic repro-
gramming of ovarian cancer cells, and ultimate-
ly driving the occurrence, development, and 
invasion of ovarian cancer [35]. The treatment 
of specific energy metabolism of tumor cells 
will be an effective anti-cancer strategy [35]. 
For mTORC1, it regulates mutations in a lot  
of oncogenic pathways, such as the Ras/Raf/
Mek/Erk (MAPK) pathway and the PI3K/Akt 
pathway, and controls tumor cell proliferation 

and migration [36]. The above information sug-
gested that BRCA samples in the high-risk 
group of clinical cases and molecular mecha-
nisms have a higher malignancy and a worse 
prognosis.

We identified 8 hub-driven genes with indepen-
dent prognosis, MERTK, ABCC9, CHST1, EZR 
with a HR>1, which were considered as danger-
ous genes; and SAV1, FTL3, LCP1, LEF1 with  
a HR<1, which were considered as protective 
genes. We have conducted multiple types of 
verification on the expression and prognosis of 
these genes, confirming our analysis. MERTK is 
a TAM tyrosine kinase that participates in mul-
tiple biological processes, including cell pro- 
liferation, survival, migration and immune regu-
lation, apoptotic cell clearance, platelet aggre-
gation, which leads to the activation of seve- 
ral classic carcinogenic signal pathways [37]. 
Huang et al. showed that MerTK inhibition in 
tumor leukocytes reduced the growth and 
metastasis of breast cancer [38]. MERTK also 
promotes breast cancer progression by com-
bining oncogenic signals and host anti-tumor 
immunity evasion [39]. Studies in renal cancer 
may shed light on the tumor-promoting mecha-
nism of MERTK, and Xu et al. reported that 
MERTK-mediated phosphorylation of Akt dri- 
ves tumorigenesis and therapy resistance [40]. 
ABCC9 is a member of the ABC transporter 
family, which utilizes the energy of ATP to trans-
port specific substrates and is closely related 
to the drug resistance of tumors [41]. EZR is a 
member of the ERM protein family, which acts 
as an intermediate between the plasma mem-
brane and the actin cytoskeleton [42-44]. This 
protein plays a key role in the adhesion, migra-
tion, and organization of cell surface structures, 
and it is associated with various human can-
cers. Zhang et al. showed that the high expres-
sion of EZR in breast cancer is associated with 
poor prognosis [42]. It not only promotes the 
proliferation of cancer cells, but also promotes 
drug resistance by anchoring drug-resistant 
proteins on the cell membrane [40, 43, 44]. Xu 
et al believe that the mechanism by which EZR 
promotes tumor progression is through the 
activation of Akt signaling [45]. For risk genes, 

Figure 7. Verification of the expression and prognosis of the 8 hub tumor driven genes. A. HPA database verifies 
MERTK, ABCC9, EZR, SAV1 protein expression. B. Oncomine verifies the 8 hub tumor driver gene mRNA expression. 
C. The expression of eight hub tumor driver genes in MCF10A and MCF 7 was verified by rt-PCR. D. Kaplan-Meier 
plotter verifies the prognosis of the 8 hub genes.
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the specific role of CHST1 in tumors has not 
been reported, and the research evidence of 
the same protective gene FTL3 is also insuffi-
cient. For SAV1, it’s a member of the Hippo 
pathway, and studies proved that it inhibits the 
proliferation and metastasis of tumor cells and 
plays a tumor suppressor role [46]. However, 
LCP1 and LEF1 have shown their cancer-pro-
moting effects in multiple reports. As shown by 
Nir Pillar and others, inhibiting LCP1 limits the 
progression of breast cancer [47]. The expres-
sion of LEF1 can combine the expression of 
Homeobox 2 with Slug and zinc finger E-box and 
MMP7 to promote tumor proliferation and inva-
sion [48, 49]. This may be due to the heteroge-
neity of tumor cells resulting in changes in the 
role of genes.

In general, this is the first study to explore the 
expression characteristics of tumor-drive genes 
in BRCA, and analyze their potential molecu- 
lar mechanisms. The potential ability of driver 
genes to predict breast cancer prognosis was 
also explored by bioinformatics methods. A 
prognostic model and nomogram were con-
structed through multiple validation methods, 
which confirmed its accurate predictive per- 
formance.

Acknowledgements

Natural Science Foundation of Jiangxi Provin- 
ce, Grant/Award Numbers: 20192BAB205079. 
Special clinical research project of the Se- 
cond Affiliated Hospital of Nanchang University, 
Grant/Award Numbers: 2019YNLZ12002.

Disclosure of conflict of interest

None.

Address correspondence to: Chuan Liu and Zhiqing 
Chen, Key Laboratory of Molecular Medicine of 
Jiangxi Province, The Second Affiliated Hospital  
of Nanchang University, Nanchang 330006, Jiang- 
xi, China. E-mail: lc61116@126.com (CL); czq033- 
021@163.com (ZQC)

References

[1] Sung H, Ferlay J, Siegel RL, Laversanne M, 
Soerjomataram I, Jemal A and Bray F. Global 
cancer statistics 2020: GLOBOCAN estimates 
of incidence and mortality worldwide for 36 
cancers in 185 countries. CA Cancer J Clin 
2021; 71: 209-249.

[2] Pernas S, Barroso-Sousa R and Tolaney SM. 
Optimal treatment of early stage HER2-positive 
breast cancer. Cancer 2018; 124: 4455-4466.

[3] Koshiba M. Molecular targeted therapy and 
laboratory tests. Rinsho Byori 2016; 64: 709-
716.

[4] Beane J, Campbell JD, Lel J, Vick J and Spira  
A. Genomic approaches to accelerate cancer 
interception. Lancet Oncol 2017; 18: e494-
e502.

[5] Weber BL. Cancer genomics. Cancer Cell 
2002; 1: 37-47.

[6] Cheng FX, Zhao JF and Zhao ZM. Advances in 
computational approaches for prioritizing driv-
er mutations and significantly mutated genes 
in cancer genomes. Brief Bioinform 2016; 17: 
642-656.

[7] Wang SW, Han CC, Liu TY, Ma ZF, Qiu MT, Wang 
J, You QJ, Zheng XF, Xu WZ, Xia WJ, Xu YT, Hu 
JW, Xu L and Yin R. FAM83H-AS1 is a noncod-
ing oncogenic driver and therapeutic target of 
lung adenocarcinoma. Clin Transl Med 2021; 
11: e316.

[8] Qian J, Hassanein M, Hoeksema MD, Harris 
BK, Zou Y, Chen HD, Lu PC, Eisenberg R, Wang 
J, Espinosa A, Ji XM, Harris FT, Rahman SM 
and Massion PP. The RNA binding protein FXR1 
is a new driver in the 3q26-29 amplicon and 
predicts poor prognosis in human cancers. 
Proc Natl Acad Sci U S A 2015; 112: 3469-
3474.

[9] Martínez-Jiménez F, Muiños F, Sentís I, Deu-
Pons J, Reyes-Salazar I, Arnedo-Pac C, Mularoni 
L, Pich O, Bonet J, Kranas H, Gonzalez-Perez A 
and Lopez-Bigas N. A compendium of muta-
tional cancer driver genes. Nat Rev Cancer 
2020; 20: 555-572.

[10] Wang GL, Zhang XF, Cheng W, Mo YX, Chen J, 
Cao ZM, Chen XG, Cui HQ, Liu SS, Huang L, Liu 
M, Ma L and Ma NF. CHD1L prevents lipopoly-
saccharide-induced hepatocellular carcinomar 
cell death by activating hnRNP A2/B1-nmMYLK 
axis. Cell Death Dis 2021; 12: 891.

[11] Zhang J, Qin X, Sun Q, Guo H, Wu X, Xie F, Xu Q, 
Yan M, Liu J, Han Z and Chen W. Transcriptional 
control of PAX4-regulated miR-144/451 modu-
lates metastasis by suppressing ADAMs ex-
pression. Oncogene 2015; 34: 3283-3295.

[12] Wang JC, Zhao HK, Zheng L, Zhou Y, Wu L, Xu 
YQ, Zhang X, Yan GF, Sheng HL, Xin R, Jiang L, 
Lei J, Zhang JG, Chen Y, Peng J, Chen Q, Yang 
S, Yu K, Li DS, Xie QC and Li YS. FGF19/SOCE/
NFATc2 signaling circuit facilitates the self-re-
newal of liver cancer stem cells. Theranostics 
2021; 11: 5045-5060.

[13] GTEx Consortium. The genotype-tissue expres-
sion (GTEx) project. Nat Genet 2013; 45: 580-
585.

mailto:lc61116@126.com
mailto:czq033021@163.com
mailto:czq033021@163.com


Constructing a TDGs prognostic signature for BRCA

4530 Am J Transl Res 2022;14(7):4515-4531

[14] Cancer Genome Atlas Research Network, 
Weinstein JN, Collisson EA, Mills GB, Shaw KR, 
Ozenberger BA, Ellrott K, Shmulevich I, Sander 
C and Stuart JM. The cancer genome atlas 
pan-cancer analysis project. Nat Genet 2013; 
45: 1113-1120.

[15] Repana D, Nulsen J, Dressler L, Bortolomeazzi 
M, Venkata SK, Tourna A, Yakovleva A, Palmieri 
T and Ciccarelli FD. The network of cancer 
genes (NCG): a comprehensive catalogue of 
known and candidate cancer genes from can-
cer sequencing screens. Genome Biol 2019; 
20: 1.

[16] Ritchie ME, Phipson B, Wu D, Hu YF, Law CW, 
Shi W and Smyth GK. limma powers differen-
tial expression analyses for RNA-sequencing 
and microarray studies. Nucleic Acids Res 
2015; 43: e47.

[17] Ito K and Murphy D. Application of ggplot2 to 
pharmacometric graphics. CPT Pharmacome- 
trics Syst Pharmacol 2013; 2: e79.

[18] Wu TZ, Hu EQ, Xu SB, Chen MJ, Guo PF, Dai ZH, 
Feng TZ, Zhou L, Tang WL, Zhan L, Fu XC, Liu 
SS, Bo XC and Yu GC. clusterProfiler 4.0: a uni-
versal enrichment tool for interpreting omics 
data. Innovation (Camb) 2021; 2: 100141.

[19] Walter W, Sanchez-Cabo F and Ricote M. 
GOplot: an R package for visually combining 
expression data with functional analysis. Bio- 
informatics 2015; 31: 2912-2914.

[20] Engebretsen S and Bohlin J. Statistical predic-
tions with glmnet. Clin Epigenetics 2019; 11: 
123.

[21] Subramanian A, Tamayo P, Mootha VK, Muk- 
herjee S, Ebert BL, Gillette MA, Paulovich A, 
Pomeroy SL, Golub TR, Lander ES and Mesirov 
JP. Gene set enrichment analysis: a knowl-
edge-based approach for interpreting genome-
wide expression profiles. Proc Natl Acad Sci U 
S A 2005; 102: 15545-15550.

[22] Uhlen M, Zhang C, Lee S, Sjöstedt E, Fagerberg 
L, Bidkhori G, Benfeitas R, Arif M, Liu Z, Edfors 
F, Sanli K, von Feilitzen K, Oksvold P, Lundberg 
E, Hober S, Nilsson P, Mattsson J, Schwenk  
JM, Brunnström H, Glimelius B, Sjöblom T, 
Edqvist PH, Djureinovic D, Micke P, Lindskog C, 
Mardinoglu A and Ponten F. A pathology atlas 
of the human cancer transcriptome. Science 
2017; 357: eaan2507.

[23] Rhodes DR, Yu JJ, Shanker K, Deshpande N, 
Varambally R, Ghosh D, Barrette T, Pandey A 
and Chinnaiyan AM. ONCOMINE: a cancer mi-
croarray database and integrated data-mining 
platform. Neoplasia 2004; 6: 1-6.

[24] Gyorffy B. Survival analysis across the entire 
transcriptome identifies biomarkers with the 
highest prognostic power in breast cancer. 
Comput Struct Biotechnol J 2021; 19: 4101-
4109.

[25] Moore AR, Rosenberg SC, McCormick F and 
Malek S. RAS-targeted therapies: is the un-
druggable drugged? Nat Rev Drug Discov 
2020; 19: 533-552.

[26] Shah S, Brock EJ, Ji K and Mattingly RR. Ras 
and Rap1: a tale of two GTPases. Semin Can- 
cer Biol 2019; 54: 29-39.

[27] Drosten M and Barbacid M. Targeting the 
MAPK pathway in KRAS-driven tumors. Cancer 
Cell 2020; 37: 543-550.

[28] Fang JY and Richardson BC. The MAPK signal-
ling pathways and colorectal cancer. Lancet 
Oncol 2005; 6: 322-327.

[29] Fruman DA, Chiu H, Hopkins BD, Bagrodia S, 
Cantley LC and Abraham RT. The PI3K pathway 
in human disease. Cell 2017; 170: 605-635.

[30] Dongre A and Weinberg RA. New insights in- 
to the mechanisms of epithelial-mesenchymal 
transition and implications for cancer. Nat Rev 
Mol Cell Biol 2019; 20: 69-84.

[31] Liao CC, Wang Q, An JX, Long Q, Wang H, Xiang 
ML, Xiang ML, Zhao YJ, Liu YL, Liu JG and Guan 
XY. Partial EMT in squamous cell carcinoma: a 
snapshot. Int J Biol Sci 2021; 17: 3036-3047.

[32] Fukumura D, Kloepper J, Amoozgar Z, Duda 
DG and Jain RK. Enhancing cancer immuno-
therapy using antiangiogenics: opportunities 
and challenges. Nat Rev Clin Oncol 2018; 15: 
325-340.

[33] Wu M, Neilson A, Swift AL, Moran R, Tamagnine 
J, Parslow D, Armistead S, Lemire K, Orrell J, 
Teich J, Chomicz S and Ferrick DA. Multipara- 
meter metabolic analysis reveals a close link 
between attenuated mitochondrial bioener-
getic function and enhanced glycolysis depen-
dency in human tumor cells. Am J Physiol Cell 
Physiol 2007; 292: C125-136.

[34] Warburg O. über den Stoffwechsel der Car- 
cinomzelle. Klin Wochenschr 1925; 4: 534-
536.

[35] Cheong JH, Park ES, Liang J, Dennison JB, 
Tsavachidou D, Nguyen-Charles C, Wa Cheng 
K, Hall H, Zhang D, Lu Y, Ravoori M, Kundra V, 
Ajani J, Lee JS, Ki Hong W and Mills GB. Dual 
inhibition of tumor energy pathway by 2-deoxy-
glucose and metformin is effective against a 
broad spectrum of preclinical cancer models. 
Mol Cancer Ther 2011; 10: 2350-2362.

[36] Saxton RA and Sabatini DM. mTOR signaling in 
growth, metabolism, and disease. Cell 2017; 
168: 960-976.

[37] Cummings CT, Deryckere D, Earp HS and 
Graham DK. Molecular pathways: MERTK sig-
naling in cancer. Clin Cancer Res 2013; 19: 
5275-5280.

[38] Cook RS, Jacobsen KM, Wofford AM, De- 
Ryckere D, Stanford J, Prieto AL, Redente E, 
Sandahl M, Hunter DM, Strunk KE, Graham DK 
and Earp HS 3rd. MerTK inhibition in tumor 



Constructing a TDGs prognostic signature for BRCA

4531 Am J Transl Res 2022;14(7):4515-4531

leukocytes decreases tumor growth and me-
tastasis. J Clin Invest 2013; 123: 3231-3242.

[39] Davra V, Kumar S, Geng K, Calianese D, Mehta 
D, Gadiyar V, Kasikara C, Lahey KC, Chang YJ, 
Wichroski M, Gao C, De Lorenzo MS, Kotenko 
SV, Bergsbaken T, Mishra PK, Gause WC, 
Quigley M, Spires TE and Birge RB. Axl and 
mertk receptors cooperate to promote breast 
cancer progression by combined oncogenic 
signaling and evasion of host antitumor immu-
nity. Cancer Res 2021; 81: 698-712.

[40] Jiang Y, Zhang YQ, Leung JY, Fan C, Popov KI, 
Su SY, Qian JY, Wang XD, Holtzhausen A, Ubil E, 
Xiang Y, Davis I, Dokholyan NV, Wu G, Perou 
CM, Kim WY, Earp HS and Liu PD. MERTK me-
diated novel site Akt phosphorylation allevi-
ates SAV1 suppression. Nat Commun 2019; 
10: 1515.

[41] Zhang RN, Li SW, Liu LJ, Yang J, Huang GF  
and Sang Y. TRIM11 facilitates chemoresis-
tance in nasopharyngeal carcinoma by activat-
ing the β-catenin/ABCC9 axis via p62-selective 
autophagic degradation of Daple. Oncogenesis 
2020; 9: 45.

[42] Zhang RJ, Zhang SH, Xing RG and Zhang Q. 
High expression of EZR (ezrin) gene is corre-
lated with the poor overall survival of breast 
cancer patients. Thorac Cancer 2019; 10: 
1953-1961.

[43] Yano K, Okabe C, Fujii K, Kato Y and Ogihara T. 
Regulation of breast cancer resistance protein 
and P-glycoprotein by ezrin, radixin and moesin 
in lung, intestinal and renal cancer cell lines. J 
Pharm Pharmacol 2020; 72: 575-582.

[44] Konstantinovsky S, Davidson B and Reich R. 
Ezrin and BCAR1/p130Cas mediate breast 
cancer growth as 3-D spheroids. Clin Exp 
Metastasis 2012; 29: 527-540.

[45] Xu J and Zhang W. EZR promotes pancreatic 
cancer proliferation and metastasis by activat-
ing FAK/AKT signaling pathway. Cancer Cell Int 
2021; 21: 521.

[46] Lin ZJ, Xie RL, Guan KL and Zhang MJ. A WW 
tandem-mediated dimerization mode of SAV1 
essential for hippo signaling. Cell Rep 2020; 
32: 108118.

[47] Pillar N, Polsky AL and Shomron N. Dual inhibi-
tion of ABCE1 and LCP1 by microRNA-96 re-
sults in an additive effect in breast cancer 
mouse model. Oncotarget 2019; 10: 2086-
2094.

[48] Bucan V, Mandel K, Bertram C, Lazaridis A, 
Reimers K, Park-Simon TW, Vogt PM and Hass 
R. LEF-1 regulates proliferation and MMP-7 
transcription in breast cancer cells. Genes 
Cells 2012; 17: 559-567.

[49] Huang FI, Chen YL, Chang CN, Yuan RH and 
Jeng YM. Hepatocyte growth factor activates 
Wnt pathway by transcriptional activation of 
LEF1 to facilitate tumor invasion. Carcino- 
genesis 2012; 33: 1142-1148.


