Original Article Genomic mutation characteristics and prognosis of biliary tract cancer

Lingling Guo^{1*}, Fuping Zhou^{1*}, Huiying Liu¹, Xiaoxia Kou¹, Hongjuan Zhang¹, Xiaofeng Chen², Jinrong Qiu¹

¹Department of Biological Therapy, Eastern Hepatobiliary Surgery Hospital, Shanghai 201805, China; ²Department of Oncology, Jiangsu Province People's Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing, Jiangsu, China. *Equal contributors.

Received April 29, 2022; Accepted June 8, 2022; Epub July 15, 2022; Published July 30, 2022

Abstract: Background: The incidence of biliary system cancer is higher in the Chinese population than in the West. The overall prognosis of gallbladder cancer and cholangiocarcinoma is poor, and the current treatment is limited. In order to explore the pathogenesis of biliary tract cancers and potential targeted therapies, we mapped the mutation landscape of biliary tract cancer in the Chinese population and analyzed the molecular mechanism related to prognosis. Methods: A total of 59 formalin fixed paraffin-embedded (FFPE) tissue samples were obtained from patients with operable biliary tract cancer. We conducted targeted capture sequencing of 620 genes through high-through-put sequencing technology and analyzed the fusion information of 13 genes. Results: Mutations were detected in 88% samples, and the most frequent mutation base was C>T. Genes with higher single nucleotide variations (SNV) and copy number variations (CNV) frequency are *TP53*, *KRAS*, *ARID1A*, *VEGFA*, cyclin family related genes and cyclin-dependent kinase genes. Actionable mutations were detected in 59.3% samples, and germline mutations were detected in 22% samples. Patients with *KRAS* mutations, VEGFA pathway mutations and higher tumor mutation burden (TMB) may have poor prognosis. Conclusions: We explored the mutation characteristics and prognostic mechanism of biliary tract cancers in the Chinese population. This study provides potential evidence for targeted therapy and immunotherapy of biliary tract cancers.

Keywords: Gene mutation, somatic mutation, germline mutation, mutation landscape, biliary tract cancer, prognosis

Introduction

Biliary Tract Cancer (BTC) is a malignant tumor originating from the gallbladder and bile duct epithelium, including gallbladder cancer (GBC), intrahepatic cholangiocarcinoma (ICC) and extrahepatic cholangiocarcinoma (ECC). ECC consists of hilar cholangiocarcinoma and distal cholangiocarcinoma [1]. In Western countries, the incidence of cholangiocarcinoma is low, with an annual incidence of 0.35-2 per 100,000 [2]. In Asian countries, the incidence of cholangiocarcinoma is several times higher than that in Western countries. Gallbladder cancer is closely related to cholelithiasis and chronic cholecystitis, accounting for more than 80% of biliary system cancers. The global incidence of gallbladder cancer is 220,000, and the number of deaths is about 165,000 in 2018. In China, the incidence and mortality of gallbladder cancer are 52,800 and 40,700, and the morbidity and mortality are ranked 19th and 12th, respectively [3, 4].

Regardless of location, BTC has potentially high transfer and invasion ability. Due to its anatomical location and distribution along the bile duct, it is difficult to remove completely by surgical resection. Even if it is diagnosed at an early stage, BTC is associated with poor prognosis [5, 6]. Unfortunately, most BTC patients are diagnosed with advanced disease at their first visit and cannot be treated surgically. The 5-year survival rate of these patients is extremely low, about 10% for cholangiocarcinoma and less than 5% for gallbladder cancer [7-9].

There are no molecular markers related to clinical diagnosis, but drugs targeted to IDH1 and FGFR1/2/3 have shown superior performance

Total (n=59)	Any mutation (n=52, 88.1%)	No mutation (n=7, 11.9%)
57.2 (34-75)	56	65
33	29 (87.9)	4 (12.1)
26	23 (88.5)	3 (11.5)
9	8 (88.9)	1 (11.1)
26	23 (88.5)	3 (11.5)
12	10 (83.3)	2 (16.7)
12	11 (91.7)	1 (8.3)
42	37 (88.1)	5 (11.9)
17	15 (88.2)	2 (11.8)
1	1 (100)	0 (0)
7	5 (71.4)	2 (28.6)
14	12 (85.8)	2 (14.2)
21	21 (100)	0 (0)
16	13 (81.3)	3 (18.7)
	Total (n=59) 57.2 (34-75) 33 26 9 26 12 12 12 42 17 1 7 14 21 16	$\begin{array}{r c} \mbox{Total (n=59)} & \mbox{Any mutation} \\ (n=52, 88.1\%) \\ \end{tabular} \\ 57.2 (34-75) & 56 \\ 33 & 29 (87.9) \\ 26 & 23 (88.5) \\ \\ 9 & 8 (88.9) \\ 26 & 23 (88.5) \\ 12 & 10 (83.3) \\ 12 & 10 (83.3) \\ 12 & 11 (91.7) \\ \\ 42 & 37 (88.1) \\ 12 & 15 (88.2) \\ \\ 14 & 15 (88.2) \\ \\ 1 & 1 (100) \\ 7 & 5 (71.4) \\ 14 & 12 (85.8) \\ 21 & 21 (100) \\ 16 & 13 (81.3) \\ \end{array}$

 Table 1. Characteristics of patients with BTC

recently [10-12]. The phase III clinical trial ClarIDHy demonstrated IDH1 inhibitor Ivosidenib improved the medium progression free survival (Ivosidenib 2.7 months vs. placebo 1.4 months) of patients with ICC who have been treated by chemotherapy [13]. FGFR2 target drugs such as infigratinib, derazantinib and TAS-120 showed good efficacy and controllable toxicity in phase II study [10-12]. The disease control rate of Infigratinib, a tyrosine kinase inhibitor, as a second-line drug for FGFR2 fusion-positive patients with advanced cholangiocarcinoma was 75.4% [12]. Irreversible pan-FGFR inhibitor, TAS-120, inhibited secondary mutations of FGFR2 and have efficacy in four patients with FGFR2-fusion-positive ICC who developed resistance to BGJ398 or Debio1347 [10]. On April 17th, 2020, the U.S. Food and Drug Administration (FDA) approved pemigatinib for FGFR2 fused cholangiocarcinoma and grants priority review to a variety of FGFR inhibitors for their superior efficacy. The pathogenesis of BTC is still unclear. Several previous studies [14-16] have presented common gene mutation spectrums in BTC in Japanese and western populations. Few studies outline genomic mutation characteristics of such tumors in the Chinese population. The next-generation sequencing with high throughput and high efficiency can perform parallel detection on multiple genes, which has been widely used in recent years. In order to explore the molecular mechanism of BTC and the population that would benefit from targeted therapy, we sequenced 620 genes related to tumorigenesis in 59 BTC samples.

Materials and methods

Clinical samples

We collected 59 surgical tissue samples of BTC from Eastern Hepatobiliary Surgery Hospital of the Second Military Medical University (Shanghai, China). According to WHO 2015 classification criteria, the tumor samples including 17 cases of gallbladder cancer and 42 cases of cholangiocarcinoma. All tissue samples were paired with blood samples to rule out nonpathogenic germline mutations. Follow-up data of 26 sam-

ples were obtained from Eastern Hepatobiliary Surgery Hospital of the Second Military Medical University. The clinical features included sex, age, tumor location, TNM stage, ECOG score and other information that are presented in **Table 1**. All the patients in our study signed an informed consent.

Library building and sequencing

DNA was extracted from FFPE-fixed tumor tissue or peripheral blood using QIAamp DNA FFPE Tissue Kit (Qiagen). NimbleGen SeqCap EZ choice capture panel was used to capture the coding region of 620 genes (<u>Supplementary Table 1</u>) and the splicing sites. The DNA libraries were built according to the procedure of KAPA Hyper Prep protocols (KAPA). The final libraries were sequenced on the Illumina Novoseq6000 (PE150) sequencer, and the original FASTQ file was obtained. The final libraries were sequenced by Illumina Novoseq6000 (PE150).

SNV and indel calling

Trimmomatic was used to filter the sequenced FASTQ files, and Burrows-Wheeler Aligner (BWA) was used to align the reads with the reference genome GRCh37 (hg19). Duplicates generated by PCR were removed by SAMtools. SNVs were called by Mutect2 with a paired workflow. ANNOVAR was used to annotate the variants. We filtered the obtained SNVs according to the following conditions: (1) base quality value ≥ 20 ; (2) mutation reads depth ≥ 4 ; (3) variant allele frequency $\geq 1\%$; (4) reads supporting variation <4 in normal, tumor abundance/ normal abundance ≥ 8 ; (5) no strand bias (GATK parameter FS >60 for SNP and FS >200 for indel); (6) discard synonymous mutations; (7) variation not in the dbSNP database.

Copy number variation (CNV) analysis

When the dispersion is normal, we set the cutoff values for CNV as 1.5 and 0.5 copies. It is regarded as copy number amplification when the value is larger than 1.5, and it is regarded as copy number deletion when the value is smaller than 0.5.

TMB calculating

TMB is defined as the number of SNV mutations per megabase. We kept mutations with mutation frequency \geq 5% and removed synonymous mutations.

Driver mutation analysis

Driver genes were identified using oncodrive-CLUST software, which is based on mutation frequency. The loss-of-function (LoF) gene mutations in the coding region were used as background. Gain-of-function (GoF) gene mutations were analyzed as key points.

Germline variant calling

Filter germline variants were obtained by GATK according to the following conditions: (1) mutation depth \geq 50; (2) variation frequency \geq 30%; (3) discard synonymous mutations; (4) population frequency \leq 1/1,000 in ExAC, 1,000 genome and other database; (5) according to the ClinVar database, we reserved the splicing, stop-gain, frameshift, or (likely) pathogenic variants.

Survival analysis

All the analysis and graphs were based on R software. The survfit and survdiff functions in R were used to generate Kaplan-Meier survival curves and calculate the *P* value of the log-Rank test. Genes with more than 4 mutations were included in the survival analysis.

Results

Mutation signature

Target capture sequencing was conducted in all 59 BTC samples, with an average sequencing depth of 2.500X. At least one mutation was detected in 88% of tumor samples. In total, we identified 853 somatic mutations, including 736 SNVs and 99 indels. Among all the mutations, there were 649 missense, 77 nonsense, 78 frameshift, and 7 splicing mutations. The overall SNV mutation rate was 55.66 muts/Mb, and the Indel mutation rate was 7.49 muts/Mb. The mutation rates of cholangiocarcinoma and gallbladder cancer were 30.25 muts/Mb and 25.41 muts/Mb, respectively. In this study, C>T was found to be the most common type of mutation, accounting for 62.4% of all SNVs (Figure 1A). Non-negative matrix factorization (NMF) was used to identify mutant signatures of BTC. This analysis identified two different signatures: signature A is characterized by (A/C/ T/G) CG> (A/C/T/G) TG, and signature B is characterized by TC (A/C/T) <TG (A/C/T) and TC (A/T/C/G) <TT (A/T/C/G) (Figure 1A). We compared the identified signature with the COSMIC signature and found that signature A is similar to COSMIC signature SBS1 and SBS6 (cosine similarity is 0.66 and 0.68 respectively), and that signature B is similar to COSMIC SBS13 (cosine similarity is 0.78) (Figure 1B).

We profiled the somatic mutation maps of BTC (Figure 2A). A total of 603 genes were mutated in all BTC samples, and most of the gene mutations appeared at least in one sample. We found 47% of all 59 patients harbored the TP53 mutation, significantly higher than previously reported (33%, 26%) [15, 16]. The mutation frequencies of TP53 in cholangiocarcinoma and gallbladder cancer were 43% and 80%, respectively (Figure 2B, 2C), and both are higher than previously reported. TP53 gene mutations had no hot spot, but were mainly in the DNA binding domain (Figure 3). In previous reports, KRAS, with mutation frequency ranging from 5% to 18%, was the gene with the second most significant number of mutations after TP53 [15-17]. In this study, the KRAS mutation frequency was 19%, and the frequencies in cholangiocarcinoma and gallbladder cancer were 24% and 13%, respectively (Figure 2B, 2C). We used oncodriverCLUST to analyze the possible driver genes and found that KRAS and IDH1 muta-

Figure 1. Mutational signatures. A. Mutational signatures identified in BTC. Two mutational signatures were detected in 59 patients' tumor samples with BTC. B. Identified signatures compared to the COSMIC signatures. The two mutational signatures detected in the 59 BTC samples were compared with the corresponding COSMIC signatures determined by cosine similarity: signature A is similar to SBS1 (cosine similarity =0.66) and SBS6 (cosine similarity =0.68); signature B is similar to SBS13 (cosine similarity =0.78).

tions were driver mutations (<u>Supplementary</u> <u>Table 3</u>).

In addition to the above genes, other frequently mutated genes in this study included ARID1A, KMT2C, ATM, BRCA2, PBRM1, SMARCA4 et al. We estimated that ARID1A was mutated in 17% of all patients in this study, slightly higher than that was recorded in the COSMIC database (12%). The proteins encoded by the ARID1A, ARID1B, PBRM1 and ARID2 genes are all parts of the large ATP-dependent chromatin remodeling complex SNF/SWI. ARID1A is the largest subunit in the SWI/SNF chromatin remodeling complex, which has activities of helicase and ATPase, and regulates transcription by changing the chromatin structure of specific genes [18].

Copy number variation (CNV)

CNV is one of the driver factors of carcinogenesis and can directly affect gene transcription and protein expression. In this study, CNV was calculated based on the relative coverage of tumor samples and normal samples. We used GISTIC2.0 to analyze statistically significant local amplifications or deletions, and found that CNV occurred in 35.6% of patient samples (**Figure 4A**). Frequently amplified or deleted

Am J Transl Res 2022;14(7):4990-5002

Figure 3. Mutation sites of TP53. Distribution of spot mutations on full length TP53 gene with a bar code representing their frequency was presented. Twenty-eight of 59 BTC patients' samples were identified with TP53 mutated spots. No hot spot was found, and mutations were mainly in the DNA binding domains. A color key is at the bottom.

genes included vascular endothelial growth factor A encoding gene VEGFA, cyclin family genes (CCND1, CCND2, CCND3), cyclin dependent kinase genes (CDK12, CDK6), cyclin dependent kinase inhibition genes (CDKN2A, CDKN2B), Erb-B2 receptor tyrosine kinase encoding gene ERBB2 and other genes such as MYC, MDM4, MDM2.

Statistical analysis showed that the chromosome segments that are more prone to amplification and deletion were 6p21.1 and 5q35.3, respectively (**Figure 4B**). The 6p21.1 region occurs in a variety of cancer types in Chinese population, including lung cancer and esophageal cancer, and is also associated with various familial genetic diseases such as hypertension and atherosclerosis [19]. CNV in the 5q35.3 region is relatively rare and has been reported in pancreatic cancer [20].

Pathway enrichment analysis

In order to explore the molecular mechanism of BTC, KEGG pathway enrichment analysis was used to enrich somatic mutant genes into important signaling pathways. Among these pathways, the tumor associated signal pathways with frequent gene mutations are PI3K-Akt, MAPK and Ras signaling pathways (**Figure 5**). PI3K-AKT signaling pathway (<u>Supplementary</u> <u>Figure 1A</u>) not only regulates tumor cell proliferation, but also is closely related to tumor angiogenesis [21]. The Ras-Raf-MAPK signal transduction pathway (<u>Supplementary Figure</u> <u>1B</u>) is involved in the signal transduction of various activated growth factors, cytokines, mitogens and hormone receptors, and plays an important role in regulating cell proliferation, growth and differentiation. Mitogen activated protein kinase (MAPK) can promote vascular endothelial cell proliferation and neovascularization, which can provide more nutrients for tumors, accelerate tumor growth, and promote the spread of cancer cells [22].

Germline variants in BTC patients

In order to explore the genetic characteristics of cancer in the biliary system, we analyzed germline mutations in 61 genes (Supplementary Table 2) associated with genetic susceptibility. Germline mutations in BTC have been reported in several studies, and the reported detection frequency is 10%-20% [23]. Germline mutations were found in 13 (22%) patients' samples in this study. Each germline mutation was detected in only one patient sample, and most of them were truncated, frameshift or splicing variations with high evidence of pathogenicity. Germline mutations are mostly DNA damage repair related genes, such as Lynch syndrome related mismatch repair genes MLH3, MSH6 [24, 25], nucleotide excision repair gene ERCC4, DNA single-strand damage repair gene XRCC1. Germline mutations have also occurred in other genes including POLD1, XRCC1, IKZF1, ERCC4, TLR4, EPPK1, CDKN1A, NCOA3 and FGFR1. So far all these mutation nucleotide sites above have not been reported in biliary tract cancers (Table 2).

Survival impacts of molecular characteristics

To analyze the relationship between molecular characteristics and prognosis, we obtained sur-

Figure 4. Somatic copy number variation (CNV) spectrum of BTC. A. Waterfall plots showing the frequency and types of the TOP 28 somatic CNV found in BTC. Each column represents one of the 59 BTC samples and each row represents a feature. From top to bottom, the name and the mutated frequency of each gene are given. A color key is at the bottom. B. CNVs concentration region of 59 BTC patients on the chromosome.

vival information of 26 patients and plotted Kaplan-Meier survival curves by univariate analysis. Patients with KRAS mutations had worse median overall survival (OS, 108 d vs. 320.5 d, p=0.00057) (**Figure 6A**) among all patients in this study. We also compared the effects of mutations in various signaling pathways on survival and found that gene mutations in the VEGFR signal pathway had a significantly negative impact on OS (144.5 d vs. 324.5 d, p=0.0077) (**Figure 6B**). In addition, we analyzed the correlation between TMB and survival in stage IV patients. Patients whose TMB was higher than the median TMB had worse prognosis than those below (172.5 d vs. 474 d, p=0.05) (Figure 6C).

Discussion

We identified some molecular characteristics of biliary tract cancers through targeted capture sequencing. Among all the mutated bases, C>T bases accounted for the largest proportion, which is consistent with previous reports

Figure 5. Signal transduction pathway enrichment. Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were conducted using the clusterProfiler package of R software. *P* value <0.05 was set as the cutoff criterion. The tumor associated signal pathways with frequent gene mutations are PI3K-Akt, MAPK, and Ras signaling pathways.

[15-17]. The mutation signatures were similar to COSMIC signature SBS1, SBS6 and SBS13. Signature SBS1 is an endogenous mutation process, triggered by spontaneous or enzymatic deamination of 5-methylcytosine to thymine, resulting in G:T mismatch in double-stranded DNA. Failure to detect and eliminate these mismatches before DNA replication always causes C to replace T. Signature SBS6 is associated with DNA mismatch repair deficiency, and often occurs in microsatellite unstable tumors. SBS13 is related to the cytosine deaminase activity of the AID/APOBEC family which may be caused by the replication of the basic site generated by the error-prone polymerase (such as REV1) during base excision and repair of uracil [26]. Series of DNA damage and repair deficiency may be the internal cause of biliary tract cancers.

TP53 encodes a tumor suppressor protein which contains transcriptional activation, DNA binding and oligomeric domains. The protein encoded by TP53 responds to various cell pressures, regulates target gene expression, and thereby induces cell cycle arrest, apoptosis, aging, DNA repair or metabolic changes. TP53 mutations are ubiquitous in many cancer types, most of which are frameshift or nonsense mutations that lead to protein inactivation. These mutations are widely distributed throughout the whole gene, and occur most frequently in the DNA binding domain [27, 28]. KRAS mutation is a key driver of oncogenesis [29]. We also found that frequently mutation of KRAS might be the driver mutation of BTC. Ongoing cancer driver gene discovery efforts have identified many new drivers within the RAS pathway [30, 31]. In addition, there are already preliminary results of clinical trials, and AMG510 targeting KRAS G12C is particularly prominent [32]. It has opened a historic gap and helped patients with KRAS mutation. Adagrassib (mrtx849) has excellent clinical data recently [33]. Genes encoding SWI/SNF chromatin remodeling complexes such as ARID1A, ARID1B, PBRM1 and ARID2 were also frequently mutated in this study. Recent studies have found that ARID1A mutation is associated with microsatellite instability, C>T mutation pattern, and increased mutational burden in many kinds of tumors. Those tumors formed by ARID1A-deficient ovarian cancer cell lines in mice have increased mutations, more tumor-

Table 2. Germline gene mutations

Patient ID	Cancer Type	Gene	Chrom	Start_Position	End_Position	Nucleotide change	Protein change	Location	Variant classification
1810276	cholangiocarcinoma	IKZF1	chr7	50459525	50459525	c.688G>A	p.A230T	exon6	Missense
1810285	gallbladder carcinoma	TLR4	chr9	120476505	120476505	c.2099dupT	p.P701fs	exon3	Frame_Shift_Ins
1810285	gallbladder carcinoma	POLD1	chr19	50912119	50912119	c.1853dupA	p.Y618_T619delinsX	exon15	Nonsense
1810455	cholangiocarcinoma	EPPK1	chr8	144947313	144947313	c.108dupC	p.R37fs	exon2	Frame_Shift_Ins
1810558	gallbladder carcinoma	RFWD2	chr1	176054978	176054978	c.1075C>T	p.R359X	exon10	Nonsense
1830007	gallbladder carcinoma	XRCC1	chr19	44079097	44079097	c.109A>T	p.K37X	exon2	Nonsense
1830027	cholangiocarcinoma	CDKN1A	chr6	36652317	36652317	c.439A>G	p.M147V	exon2	Missense
1910201	cholangiocarcinoma	NCOA3	chr20	46279949	46279949	c.3875T>C	p.M1292T	exon20	Missense
1910783	cholangiocarcinoma	FGFR1	chr8	38271190	38271190	c.2518C>T	p.R840X	exon19	Nonsense_Mutation
1912566	cholangiocarcinoma	ERCC4	chr16	14026143	14026143	c.1102+1G>A		intron6/7	Splice_Site
1912694	cholangiocarcinoma	INSRR	chr1	156816322	156816322	c.1798dupA	p.T600fs	exon8	Frame_Shift_Ins
1912695	cholangiocarcinoma	TRAF3	chr14	103342048	103342048	c.385A>G	p.M129V	exon4	Translation_Start_Site
1930095	cholangiocarcinoma	MLH3	chr14	75513610	75513610	c.2749C>T	p.Q917X	exon2	Nonsense
1930184	cholangiocarcinoma	MSH6	chr2	48033987	48033987	c.4068_4071dupGATT	p.K1358fs	exon10	Frame_Shift_Ins

infiltrating lymphocytes and PD-L1 expression. PD-L1 monoclonal antibodies can reduce tumor burden and prolong survival of mice, but it cannot inhibit ARID1A wild-type ovarian tumors. ARID1A deficiency may lead to tumor MMR deficiency, and patients with ARID1A deficiency may benefit from immune checkpoint inhibitors [34].

Genes encoding vascular endothelial growth factor A (VEGFA), cyclin family, cyclin-dependent kinase, cyclin-dependent kinase inhibitor and others had higher frequency of CNV than others. The protein encoded by VEGFA belongs to the PDGF/VEGF family whose products play an important role in angiogenesis and endothelial cell growth. The expression of VEGFA is upregulated in various tumors including cholangiocarcinoma, which can induce endothelial cell proliferation, promote tumor cell migration and inhibit apoptosis [35-37]. Given the importance of CCND and CDK, the development of CDK4/CDK6 inhibitors has been a strategy for the generation of new anticancer drugs [38, 39].

In this study, the incidence of germline mutations was 22%, slightly higher than previously reported [23]. Germline mutations of DDR genes are associated with increased mutation load, which causes patients with these mutations to possibly be more sensitive to PARP inhibitors and platinum-based treatments. Germline mutations may be a susceptible factor for the occurrence of BTC. Screening for germline mutations in susceptible people is of great importance in prevention and treatment of biliary tract cancers. Patients with KRAS mutations and VEGF signaling pathway mutations have shorter overall survival. As a cancer-driven event, KRAS mutation is a predictor of drug resistance and poor prognosis for various cancers [29]. Abnormal VEGF signaling pathway promotes tumor cell proliferation and migration, often leading to poor prognosis [40, 41]. In addition, TMB-H patients also exhibited poor OS in this study. possibly due to complicated tumor clone composition and carcinogenesis mechanism. In clinical practice, patients with poor prognosis are suggested to adopt more aggressive treatment and rigorous and regular follow up. Patients with high TMB may be eligible for immunotherapy such as PD-1/PD-L1 inhibitors.

According to the classification of oncoKB, the proportion of actionable gene mutations in the study was up to 59.3% (Supplementary Table <u>4</u>). As more therapeutic targets are in research and more targeted drugs are being approved, there are more opportunities for biliary tract cancer patients with actionable gene mutations to receive precision medicine in the future. With the rapid development of the next-generation genome sequencing technology, defining of somatic or germline mutation in BTC patients could help accurately identify patients benefiting from drugs such as PARP inhibitors and immune checkpoint inhibitors.

The limited number of samples, insufficient clinical information and not using the whole exon sequencing may be deficiencies of this study. In later research, it is necessary to expand the research cohort with comprehensive clinical information and analyze samples with the whole exon sequencing and other necessary methods. Future prospective research is needed to verify the correlation between specific molecular characteristics and prognosis.

Acknowledgements

We acknowledge the work of geneticists involved in the analysis of the gene mutations of samples in this study (Zhiyong Li, Ning He, Panpan Song).

Disclosure of conflict of interest

None.

Address correspondence to: Jinrong Qiu, Department of Biological Therapy, Eastern Hepatobiliary Surgery Hospital, No. 700, North Moyu Road, Jiading District, Shanghai 201805, China. Tel: +86-18001657788; E-mail: jrqiu@njmu.edu.cn; Xiaofeng Chen, Department of Oncology, Jiangsu Province People's Hospital and Nanjing Medical University First Affiliated Hospital, No. 300, Guangzhou Road, Gulou District, Nanjing, Jiangsu, China. Tel: +86-13585172066; E-mail: chenxiaofengnjmu@163. com

References

- [1] Banales JM, Cardinale V, Carpino G, Marzioni M, Andersen JB, Invernizzi P, Lind GE, Folseraas T, Forbes SJ, Fouassier L, Geier A, Calvisi DF, Mertens JC, Trauner M, Benedetti A, Maroni L, Vaquero J, Macias RI, Raggi C, Perugorria MJ, Gaudio E, Boberg KM, Marin JJ and Alvaro D. Expert consensus document: cholangiocarcinoma: current knowledge and future perspectives consensus statement from the European Network for the Study of Cholangiocarcinoma (ENS-CCA). Nat Rev Gastroenterol Hepatol 2016; 13: 261-280.
- [2] Bridgewater JA, Goodman KA, Kalyan A and Mulcahy MF. Biliary tract cancer: epidemiology, radiotherapy, and molecular profiling. Am Soc Clin Oncol Educ Book 2016; 35: e194-203.
- [3] Chen W, Zheng R, Baade PD, Zhang S, Zeng H, Bray F, Jemal A, Yu XQ and He J. Cancer statistics in China, 2015. CA Cancer J Clin 2016; 66: 115-132.
- [4] Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA and Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2018; 68: 394-424.
- [5] Jarnagin WR, Fong Y, DeMatteo RP, Gonen M, Burke EC, Bodniewicz BS J, Youssef BA M, Klimstra D and Blumgart LH. Staging, resectability, and outcome in 225 patients with hilar cholangiocarcinoma. Ann Surg 2001; 234: 507-517; discussion 517-519.
- [6] Roa I, Ibacache G, Munoz S and de Aretxabala X. Gallbladder cancer in Chile: pathologic characteristics of survival and prognostic factors: analysis of 1,366 cases. Am J Clin Pathol 2014; 141: 675-682.
- [7] Razumilava N and Gores GJ. Cholangiocarcinoma. Lancet 2014; 383: 2168-2179.
- [8] Hundal R and Shaffer EA. Gallbladder cancer: epidemiology and outcome. Clin Epidemiol 2014; 6: 99-109.
- [9] Wakai T, Shirai Y, Moroda T, Yokoyama N and Hatakeyama K. Impact of ductal resection margin status on long-term survival in patients undergoing resection for extrahepatic cholangiocarcinoma. Cancer 2005; 103: 1210-1216.
- [10] Goyal L, Shi L, Liu LY, Fece de la Cruz F, Lennerz JK, Raghavan S, Leschiner I, Elagina L, Sir-

avegna G, Ng RWS, Vu P, Patra KC, Saha SK, Uppot RN, Arellano R, Reyes S, Sagara T, Otsuki S, Nadres B, Shahzade HA, Dey-Guha I, Fetter IJ, Baiev I, Van Seventer EE, Murphy JE, Ferrone CR, Tanabe KK, Deshpande V, Harding JJ, Yaeger R, Kelley RK, Bardelli A, Iafrate AJ, Hahn WC, Benes CH, Ting DT, Hirai H, Getz G, Juric D, Zhu AX, Corcoran RB and Bardeesy N. TAS-120 overcomes resistance to ATP-competitive FGFR inhibitors in patients with FGFR2 fusion-positive intrahepatic cholangiocarcinoma. Cancer Discov 2019; 9: 1064-1079.

- [11] Mazzaferro V, El-Rayes BF, Droz Dit Busset M, Cotsoglou C, Harris WP, Damjanov N, Masi G, Rimassa L, Personeni N, Braiteh F, Zagonel V, Papadopoulos KP, Hall T, Wang Y, Schwartz B, Kazakin J, Bhoori S, de Braud F and Shaib WL. Derazantinib (ARQ 087) in advanced or inoperable FGFR2 gene fusion-positive intrahepatic cholangiocarcinoma. Br J Cancer 2019; 120: 165-171.
- [12] Javle M, Lowery M, Shroff RT, Weiss KH, Springfeld C, Borad MJ, Ramanathan RK, Goyal L, Sadeghi S, Macarulla T, El-Khoueiry A, Kelley RK, Borbath I, Choo SP, Oh DY, Philip PA, Chen LT, Reungwetwattana T, Van Cutsem E, Yeh KH, Ciombor K, Finn RS, Patel A, Sen S, Porter D, Isaacs R, Zhu AX, Abou-Alfa GK and Bekaii-Saab T. Phase II study of BGJ398 in patients with FGFR-altered advanced cholangiocarcinoma. J Clin Oncol 2018; 36: 276-282.
- [13] Abou-Alfa GK, Macarulla Mercade T, Javle M, Kelley RK, Lubner S, Adeva J, Cleary JM, Catenacci DV, Borad MJ, Bridgewater JA, Harris WP, Murphy AG, Oh DY, Whisenant J, Wu B, Jiang L, Gliser C, Pandya SS, Valle JW and Zhu AX. LBA10_PR - ClarIDHy: a global, phase III, randomized, double-blind study of ivosidenib (IVO) vs. placebo in patients with advanced cholangiocarcinoma (CC) with an isocitrate dehydrogenase 1 (IDH1) mutation. Ann Oncol 2019; 30: v872-v873.
- [14] Maynard H, Stadler ZK, Berger MF, Solit DB, Ly M, Lowery MA, Mandelker D, Zhang L, Jordan E, El Dika I, Kemel Y, Ladanyi M, Robson ME, O'Reilly EM and Abou-Alfa GK. Germline alterations in patients with biliary tract cancers: a spectrum of significant and previously underappreciated findings. Cancer 2020; 126: 1995-2002.
- [15] Nakamura H, Arai Y, Totoki Y, Shirota T, Elzawahry A, Kato M, Hama N, Hosoda F, Urushidate T, Ohashi S, Hiraoka N, Ojima H, Shimada K, Okusaka T, Kosuge T, Miyagawa S and Shibata T. Genomic spectra of biliary tract cancer. Nat Genet 2015; 47: 1003-1010.
- [16] Wardell CP, Fujita M, Yamada T, Simbolo M, Fassan M, Karlic R, Polak P, Kim J, Hatanaka Y, Maejima K, Lawlor RT, Nakanishi Y, Mitsuhashi T, Fujimoto A, Furuta M, Ruzzenente A, Conci S,

Oosawa A, Sasaki-Oku A, Nakano K, Tanaka H, Yamamoto Y, Michiaki K, Kawakami Y, Aikata H, Ueno M, Hayami S, Gotoh K, Ariizumi SI, Yamamoto M, Yamaue H, Chayama K, Miyano S, Getz G, Scarpa A, Hirano S, Nakamura T and Nakagawa H. Genomic characterization of biliary tract cancers identifies driver genes and predisposing mutations. J Hepatol 2018; 68: 959-969.

- [17] Li M, Zhang Z, Li X, Ye J, Wu X, Tan Z, Liu C, Shen B, Wang XA, Wu W, Zhou D, Zhang D, Wang T, Liu B, Qu K, Ding Q, Weng H, Ding Q, Mu J, Shu Y, Bao R, Cao Y, Chen P, Liu T, Jiang L, Hu Y, Dong P, Gu J, Lu W, Shi W, Lu J, Gong W, Tang Z, Zhang Y, Wang X, Chin YE, Weng X, Zhang H, Tang W, Zheng Y, He L, Wang H, Liu Y and Liu Y. Whole-exome and targeted gene sequencing of gallbladder carcinoma identifies recurrent mutations in the ErbB pathway. Nat Genet 2014; 46: 872-876.
- [18] Guan B, Wang TL and Shih le M. ARID1A, a factor that promotes formation of SWI/SNF-mediated chromatin remodeling, is a tumor suppressor in gynecologic cancers. Cancer Res 2011; 71: 6718-6727.
- [19] Jin G, Ma H, Wu C, Dai J, Zhang R, Shi Y, Lu J, Miao X, Wang M, Zhou Y, Chen J, Li H, Pan S, Chu M, Lu F, Yu D, Jiang Y, Dong J, Hu L, Chen Y, Xu L, Shu Y, Pan S, Tan W, Zhou B, Lu D, Wu T, Zhang Z, Chen F, Wang X, Hu Z, Lin D and Shen H. Genetic variants at 6p21.1 and 7p15.3 are associated with risk of multiple cancers in Han Chinese. Am J Hum Genet 2012; 91: 928-934.
- [20] Fidalgo F, Gomes EE, Moredo Facure L, Da Silva FC, Carraro DM, de Sa BC, Duprat Neto JP and Krepischi AC. Association of melanoma with intraepithelial neoplasia of the pancreas in three patients. Exp Mol Pathol 2014; 97: 144-147.
- [21] Chen J, Somanath PR, Razorenova O, Chen WS, Hay N, Bornstein P and Byzova TV. Akt1 regulates pathological angiogenesis, vascular maturation and permeability in vivo. Nat Med 2005; 11: 1188-1196.
- [22] Fehrenbacher N, Bar-Sagi D and Philips M. Ras/MAPK signaling from endomembranes. Mol Oncol 2009; 3: 297-307.
- [23] Mondaca S, Nervi B, Pinto M and Abou-Alfa GK. Biliary tract cancer prognostic and predictive genomics. Chin Clin Oncol 2019; 8: 42.
- [24] Lipkin SM, Wang V, Stoler DL, Anderson GR, Kirsch I, Hadley D, Lynch HT and Collins FS. Germline and somatic mutation analyses in the DNA mismatch repair gene MLH3: evidence for somatic mutation in colorectal cancers. Hum Mutat 2001; 17: 389-396.
- [25] Baglietto L, Lindor NM, Dowty JG, White DM, Wagner A, Gomez Garcia EB, Vriends AH; Dutch Lynch Syndrome Study Group, Cartwright NR,

Barnetson RA, Farrington SM, Tenesa A, Hampel H, Buchanan D, Arnold S, Young J, Walsh MD, Jass J, Macrae F, Antill Y, Winship IM, Giles GG, Goldblatt J, Parry S, Suthers G, Leggett B, Butz M, Aronson M, Poynter JN, Baron JA, Le Marchand L, Haile R, Gallinger S, Hopper JL, Potter J, de la Chapelle A, Vasen HF, Dunlop MG, Thibodeau SN and Jenkins MA. Risks of Lynch syndrome cancers for MSH6 mutation carriers. J Natl Cancer Inst 2010; 102: 193-201.

- [26] https://cancer.sanger.ac.uk/cosmic/signatures/SBS/.
- [27] Yin Y, Stephen CW, Luciani MG and Fahraeus R. p53 stability and activity is regulated by MDM2-mediated induction of alternative p53 translation products. Nat Cell Biol 2002; 4: 462-467.
- [28] Olivier M, Hollstein M and Hainaut P. TP53 mutations in human cancers: origins, consequences, and clinical use. Cold Spring Harb Perspect Biol 2010; 2: a001008.
- [29] Prior IA, Lewis PD and Mattos C. A comprehensive survey of Ras mutations in cancer. Cancer Res 2012; 72: 2457-2467.
- [30] Bailey MH, Tokheim C, Porta-Pardo E, Sengupta S, Bertrand D, Weerasinghe A, Colaprico A, Wendl MC, Kim J, Reardon B, Ng PK, Jeong KJ, Cao S, Wang Z, Gao J, Gao Q, Wang F, Liu EM, Mularoni L, Rubio-Perez C, Nagarajan N, Cortés-Ciriano I, Zhou DC, Liang WW, Hess JM, Yellapantula VD, Tamborero D, Gonzalez-Perez A, Suphavilai C, Ko JY, Khurana E, Park PJ, Van Allen EM, Liang H; MC3 Working Group; Cancer Genome Atlas Research Network, Lawrence MS, Godzik A, Lopez-Bigas N, Stuart J, Wheeler D, Getz G, Chen K, Lazar AJ, Mills GB, Karchin R and Ding L. Comprehensive characterization of cancer driver genes and mutations. Cell 2018; 174: 1034-1035.
- [31] Horn H, Lawrence MS, Chouinard CR, Shrestha Y, Hu JX, Worstell E, Shea E, Ilic N, Kim E, Kamburov A, Kashani A, Hahn WC, Campbell JD, Boehm JS, Getz G and Lage K. NetSig: networkbased discovery from cancer genomes. Nat Methods 2018; 15: 61-66.
- [32] Canon J, Rex K, Saiki AY, Mohr C, Cooke K, Bagal D, Gaida K, Holt T, Knutson CG, Koppada N, Lanman BA, Werner J, Rapaport AS, San Miguel T, Ortiz R, Osgood T, Sun JR, Zhu X, Mc-Carter JD, Volak LP, Houk BE, Fakih MG, O'Neil BH, Price TJ, Falchook GS, Desai J, Kuo J, Govindan R, Hong DS, Ouyang W, Henary H, Arvedson T, Cee VJ and Lipford JR. The clinical KRAS(G12C) inhibitor AMG 510 drives anti-tumour immunity. Nature 2019; 575: 217-223.

- [33] Ou SI, Jänne PA, Leal TA, Rybkin II, Sabari JK, Barve MA, Bazhenova L, Johnson ML, Velastegui KL, Cilliers C, Christensen JG, Yan X, Chao RC and Papadopoulos KP. First-in-human phase I/IB dose-finding study of adagrasib (MRTX849) in patients with advanced KRAS(G12C) solid tumors (KRYSTAL-1). J Clin Oncol 2022; [Epub ahead of print].
- [34] Shen J, Ju Z, Zhao W, Wang L, Peng Y, Ge Z, Nagel ZD, Zou J, Wang C, Kapoor P, Ma X, Ma D, Liang J, Song S, Liu J, Samson LD, Ajani JA, Li GM, Liang H, Shen X, Mills GB and Peng G. ARID1A deficiency promotes mutability and potentiates therapeutic antitumor immunity unleashed by immune checkpoint blockade. Nat Med 2018; 24: 556-562.
- [35] Claesson-Welsh L and Welsh M. VEGFA and tumour angiogenesis. J Intern Med 2013; 273: 114-127.
- [36] Shibuya M. Vascular endothelial growth factor (VEGF) and its receptor (VEGFR) signaling in angiogenesis: a crucial target for anti- and proangiogenic therapies. Genes Cancer 2011; 2: 1097-1105.
- [37] Peng H, Zhang Q, Li J, Zhang N, Hua Y, Xu L, Deng Y, Lai J, Peng Z, Peng B, Chen M, Peng S and Kuang M. Apatinib inhibits VEGF signaling and promotes apoptosis in intrahepatic cholangiocarcinoma. Oncotarget 2016; 7: 17220-17229.
- [38] Casimiro MC, Velasco-Velazquez M, Aguirre-Alvarado C and Pestell RG. Overview of cyclins D1 function in cancer and the CDK inhibitor landscape: past and present. Expert Opin Investig Drugs 2014; 23: 295-304.
- [39] Graf F, Mosch B, Koehler L, Bergmann R, Wuest F and Pietzsch J. Cyclin-dependent kinase 4/6 (cdk4/6) inhibitors: perspectives in cancer therapy and imaging. Mini Rev Med Chem 2010; 10: 527-539.
- [40] Song G, Li Y and Jiang G. Role of VEGF/VEGFR in the pathogenesis of leukemias and as treatment targets (Review). Oncol Rep 2012; 28: 1935-1944.
- [41] Sha M, Jeong S, Chen XS, Tong Y, Cao J, Sun HY, Xia L, Xu N, Wang X, Han LZ, Xi ZF, Zhang JJ, Kong XN and Xia Q. Expression of VEGFR-3 in intrahepatic cholangiocarcinoma correlates with unfavorable prognosis through lymphangiogenesis. Int J Biol Sci 2018; 14: 1333-1342.

AKT1	ALK	BRAF	DDR2	EGFR	FGFR1	ERBB2	KRAS	MAP2K1	MET
GAPDH	RPP30	APC	TSC1	TSC2	CDK4	CDKN2A	NF1	NF2	NTRK1
MSH2	MSH6	PMS2	EPCAM	POLD1	POLE	CHEK2	RAD50	AR	ARAF
FGFR3	FLT3	GNA11	GNAQ	HRAS	IDH1	IDH2	KDR	KIT	MAP2K2
SMO	AXIN2	BLM	BMPR1A	CDC73	CDH1	CDKN1B	CDKN1C	EXT1	EXT2
SDHA	SDHB	SDHC	SDHD	TMEM127	WT1	WRN	VHL	MDC1	ATR
FANCL	FANCM	SLX4	ERCC1	ERCC2	ERCC3	ERCC4	RAD1	XPA	XPC
PMS1	PCNA	RRM1	RFC1	CHEK1	HDAC1	HDAC2	IFNGR1	IFNGR2	IRF1
MUC17	KMT2C	KMT2D	FAT1	ATRX	NAV3	PTPRT	SMARCA4	MXRA5	ANK3
CTNNB1	KDM6A	KEAP1	EP300	EPHA5	EPHA3	COL5A1	MED12	RBM10	CIC
KMT2A	ERG	TSHZ3	PIK3CG	ALPK2	ARHGAP35	STAG2	BCLAF1	NOTCH2	NSD1
TAF1	TET1	ASXL1	SETBP1	CUX1	PAK7	EPHB1	CHD8	USP9X	KDM5C
SOX9	CDK12	AMER1	IRS2	EPHA7	TSHZ2	ASXL2	TP53BP1	IKZF1	KEL
TGFBR2	EPHB6	RECOL4	SOX17	ARID5B	CNBD1	LATS2	RUNX1	RPTOR	CTCF
AXL	INSR	NFE2L2	FOXP1	SLC26A3	EPPK1	PLCG2	PPP2R1A	TCF7L2	INPPL1
MAP3K13	INPP4B	HNF1A	ERCC5	GNPTAB	DDX3X	MAP4K3	DIS3	CSF1R	IL7R
PGR	FGFR4	CBL	RPS6KA4	FUBP1	SMAD3	TSHR	MORC4	ETV6	MST1R
PIK3C3	MBD1	TRAF7	CUL4B	SLC1A3	CUL3	SNX25	NCOA3	EZH2	RPL22
IRF4	AKT3	RARA	BTK	TOP1	ETV1	MPO	PAX5	TNFAIP3	PRX
IP07	OTUD7A	WASF3	U2AF1	CSF3R	MYCN	SYK	CD1D	TBC1D12	FOX01
RXRA	TPX2	TRAF3	MPL	NUP93	ALOX12B	LCTL	MICALCL	TCP11L2	TDRD10
EZH1	MEF2B	STAT5B	CRIPAK	MAPK8IP1	RPL5	RSBN1L	MITE	SH2B3	HIST1H3B
AKT2	PAK1	RAD21	SUZ12	GNA13	GUSB	RPS6KB2	CBFB	BRE	DIAPH1
RAD54I	TNFRSF14	YAP1	PIK3R3	YES1	F2F3	SUFU	RAC1	FAM166A	BIRC3
SH01	FAM46C	BCI 2	AURKA	FRRFI1	AZGP1	HI A-B	KI HI 8	TAP1	NEKBIA
7NF620	CD79B	INHA	IGF2	MYD88	STAT5A	CCNF1	FIF4A2	C3orf70	HIST1H4F
HIST1H2BD	EIF2S2	STX2	MAPK1	MYCL	XIAP	CRLF2	ICOSLG	VTCN1	PPP6C
CD70	FGFBP1	STK19	CDKN2C	ZRSR2	CXCR4	CALR	STK40	SH2D1A	FAM175A
PCBP1	APOL2	HIST1H3G	PNRC1	VEGFA	NKX3-1	POU2AF1	CDKN2B	HIST3H3	H3F3A
HIST1H3D	RAB35	RHEB	LM01	HIST1H3I	TACC3	BCL10	RPS2	TNF	HIST1H3F
KIF5B	FOX01	HIST1H3A	NAB2	FIP1L1	CENPA	ID3	MST1	CCDC6	CDKN2B-AS1
NRAS	PIK3CA	PTEN	RET	ROS1	SMAD4	ATM	BRCA1	BRCA2	TP53
STK11	BRIP1	PALB2	BARD1	BAP1	NBN	RAD51C	RAD51D	MRE11A	MLH1
BCL2L11	CCND1	CCND2	CCND3	CDK6	ERBB3	ERBB4	ESR1	FBXW7	FGFR2
MDM2	MTOR	NOTCH1	NTRK2	NTRK3	PDGFRA	PIK3R1	PTCH1	PTPN11	RAF1
FH	FLCN	HOXB13	MAX	MEN1	MLH3	MUTYH	PRKAR1A	RB1	SDHAF2
RAD9A	RAD17	FANCA	FANCB	FANCC	FANCD2	FANCE	FANCF	FANCG	FANCI
XRCC1	PARP1	RAD51B	RAD51	XRCC2	XRCC3	XRCC4	XRCC5	XRCC6	PRKDC
JAK1	JAK2	TYK2	B2M	MDM4	DNMT3A	TERT	FLG	ARID1A	XIRP2
SETD2	CREBBP	PTPRD	SACS	PBRM1	ARID2	GRIN2A	NOTCH3	ZFHX3	SPEN
NCOR1	NOTCH4	ARID1B	BCOR	LRRK2	CHD4	MGA	PTPRS	CARD11	GATA3
PIK3C2G	TMPRSS2	POLO	TBX3	MAP3K1	FLT1	RNF43	FLT4	TET2	COL5A3
DOT1L	SF3B1	FOXA1	HGF	ANKRD11	KMT2B	MYOCD	KDM5A	DICER1	TLR4
SOS1	TP63	IGF1R	GLI1	SELP	RASA1	JAK3	LATS1	NUP210L	BRD4
SMC1A	MECOM	PDGFRB	SETDB1	SLC4A5	DNMT1	IRS1	DNER	GNAS	RICTOR
OR4A16	AXIN1	FRMD7	SGK1	ABL1	SPOP	MAP2K4	CASP8	MED23	PIK3CB
DNMT3B	LIFR	SMC3	ZNF471	TGFBR1	EPHA2	ITPKB	PIK3CD	DAXX	SMAD2
INPP4A	INHBA	SIN3A	ADNP	ZRANB3	RHOA	PARK2	PRDM1	DNAH12	HSP90AB1
ACVR1B	0R52N1	RFWD2	ACO1	IRF6	PIK3R2	XP01	CDC27	ZNF483	PLK2
CDKN1A	CNKSR1	SERPINB13	ZNF180	ZNF750	BCL6	IKBKE	SMARCB1	HIST1H1C	HIST1H1E
PPM1D	AJUBA	NFE2L3	PHF6	TBL1XR1	CAP2	MYB	NTN4	MYC	CDK8
TRIM23	PDCD1	KLF4	GATA2	TTLL9	STAT3	REL	HLA-A	NEGR1	DDX5

Supplementary Table 1. 620 gene list

NKX2-1	EIF1AX	ING1	EWSR1	GATA1	FOXL2	MYOD1	CCDC120	POU2F2	SEPT12
SOX2	SRC	GSK3B	ELF3	VEZF1	ACVR2A	FGF3	TCF3	CEP76	OMA1
PHOX2B	MCL1	MALT1	JUN	BHMT2	INTS12	PAPD5	PIM1	FYN	EED
GPS2	SMARCD1	ACVR2B	GNB1	ODAM	FOXA2	IGF1	RAD52	QKI	SLC44A3
ITGB7	NBPF1	H3F3C	ACVR1	GOT1	PDCD2L	TRAF2	DNAJB1	CTLA4	RYBP
MAPK3	EML4	ATP5B	PDSS2	RAB40A	SRSF2	FGF19	AURKB	CEBPA	SOCS1
FGF4	BBC3	NPM1	CD276	IL10	RIT1	TIMM17A	CD274	CD79A	EGR3
GREM1	EGFL7	ALKBH6	TXNDC8	FLI1	HIST1H3C	HIST1H3H	H3F3B	PDAP1	SIRT4
B4GALT3	HIST1H3E	HIST1H3J	CRKL	EIF4E	CD74	RPS15	PDPK1	BCL2L1	DCUN1D1
INSRR	STAT6	TFE3	PMAIP1	PRKACA	HIST2H3D	SND1	TCEB1	BICC1	EZR

Supplementary Table 2. Germline gene list

			- 0						
APC	ATM	AXIN2	BAP1	BARD1	BLM	BMPR1A	BRCA1	BRCA2	BRIP1
FH	FLCN	HOXB13	MAX	MEN1	MET	MLH1	MLH3	MRE11A	MSH2
PRKAR1A	PTEN	RAD50	RAD51C	RAD51D	RB1	RET	SDHA	SDHAF2	SDHB
CDC73	CDH1	CDK4	CDKN1B	CDKN1C	CDKN2A	CHEK2	EPCAM	EXT1	EXT2
MSH6	MUTYH	NBN	NF1	NF2	NTRK1	PALB2	PMS2	POLD1	POLE
SDHC	SDHD	SMAD4	STK11	TMEM127	TP53	TSC1	TSC2	VHL	WRN
WT1									

Supplementary Table 3. Driver genes

Symbol	ENSID	CGC	Chrom	Strand	Coordinates	MAX_ Coord	Width	N_ Mut	N_ Samples	Fra_ Uniq_ Samples	Ρ
KRAS	ENSG00000133703	TRUE	12	-	2,539,828,425,398,280	25398284	2	10	10	1	0.0006
IDH1	ENSG0000138413	TRUE	2	-	209,113,113,209,113,000	209113113	1	2	2	1	0.0415

Data on KEGG graph Rendered by Pathview **Supplementary Figure 1.** Mutated genes in the signaling pathway. A. Mutated genes (red box) of 59 BTC patients in the PI3K-AKT signaling pathway. B. Mutated genes (red box) of 59 BTC patients in the MAPK signaling pathway.

Patient ID	Gene	Protein change
1810011	KRAS	p.G12V
1810011	CDKN2A	p.T95fs
1810233	KRAS	p.A146V
1810276	BRCA2	p.E2175Q
1810286	U2AF1	p.S34F
1810433	KRAS	p.G12S
1810433	BRCA2	p.K3267N
1810433	HRAS	p.V14M
1810433	ATM	p.D661N
1810455	KRAS	p.G12D
1810456	ATM	p.Q1839X;p.H1847D
1810558	PIK3CA	p.E542K
1810558	KRAS	p.G12S
1810595	IDH2	p.R172K
1810709	KRAS	p.G12C
1810709	MAP2K1	p.C121S
1830027	IDH1	p.R132C
1830027	PTEN	p.V255E
1910134	TSC2	p.L717V
1910201	KRAS	p.G12D
1910313	MET	Amplification
1910463	BRCA2	p.L1390fs
1910611	MAP2K1	p.C121S
1910783	KRAS	p.G12D
1910783	CDKN2A	p.L31P
1910937	MET	Amplification
1911157	PIK3CA	p.H1047R
1911364	FGFR3	p.E364K
1911364	BRAF	p.N581S
1911369	ALK	p.L93V
1911369	BRCA2	p.L977F
1911369	IDH1	p.L88F
1911369	CDKN2A	p.R98L
1911369	ATM	p.P884A
1911369	NF1	p.I334M;p.S382F
1911518	MDM2	Amplification
1911551	BRCA1	p.M751L
1911551	KRAS	p.G12A
1912208	KRAS	p.G12C
1912208	RET	p.R313Q
1912564	TSC2	p.L493I
1912564	BRCA2	p.T3033fs
1912564	FGFR1	p.R601W
1912564	CDKN2A	p.G23fs

Supplemental Table 4. Actionable mutations

1912568	EGFR	Amplification
1912569	ERBB2	p.S310Y
1912694	IDH1	p.R132C
1912695	PTEN	p.R55fs
1930033	EGFR	Amplification
1930033	CDK4	Amplification
1930095	BRCA1	p.G1738del
1930095	KDM6A	p.Q710del
1930095	NF1	p.S2687fs
1930162	KRAS	p.G12V
1930179	MDM2	Amplification
1930184	BRAF	p.G469E
1930629	ATM	p.Y1957fs