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Abstract: Propionic acid (PA) is a major component of short-chain fatty acids produced by Bacteroidetes spp. Lysine 
propionylation is a novel type of protein regulatory posttranslational modification that is widespread in prokaryotes 
and eukaryotes, as well as in cellular processes, it affects DNA binding affinity, protein stability, and enzyme activity. 
In this review of published literature, we provide evidence that the level of propionyl modification is influenced by the 
concentration of PA and the PA metabolic intermediate (propionyl-CoA) and discuss the possibility of PA affecting en-
teropathogenic bacterial virulence. The understanding of propionyl modification is helpful to better understand the 
mechanism of PA-producing Bacteroidetes affecting the virulence of pathogenic intestinal bacteria. It may provide 
novel choices for the prevention and treatment of pathogenic intestinal bacteria.
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Introduction

Propionic acid (PA) is a major component of 
short-chain fatty acids (SCFAs). PA is produced 
by anaerobic bacteria (especially members  
of Bacteroides) that ferment sugars in the gut 
[1]. SCFAs are the main metabolite of anaero- 
bic fermentation in the mammalian gut and  
are mainly composed of acetate, propionate, 
and butyrate in the human gut (molar ratio 
60:20:20). Concentrations range from 7-20 
mM in the ileum to 60 mM-150 mM in the large 
intestine, depending on the host diet and mi- 
crobial community composition [2]. SCFAs are 
effectively absorbed by the intestinal mucosa, 
providing energy to intestinal cells, maintaining 
the acidic intestinal environment, promoting 
integrity of the epithelial barrier, and reducing 
the production of pro-inflammatory molecules 
[3, 4]. In addition, SCFAs regulate the replica-
tion, colonization, and expression of virulence 
genes of intestinal pathogens (including Kle- 
bsiella, enterohemorrhagic Escherichia coli, 
and Salmonella) in vitro and in vivo [5-7].

Posttranslational modification (PTM) is an im- 
portant molecular regulatory mechanism in all 

kingdoms of organisms [8-10]. Acylation of 
Nε-lysine residues is an important PTM in bo- 
th Eukaryotes and Prokaryotes [11-13], which 
widely affects DNA binding affinity, protein-pro-
tein interactions, protein stability, enzyme ac- 
tivity, or protein localization [14-17]. With the 
development of posttranslational modified pro-
teomics based on high throughput and sensi-
tive mass spectrometry, many new PTMs such 
as short-chain lysine acylation have been iden-
tified. SCFA can be converted into homologous 
acyl-coenzyme A (CoAs) and then used directly 
as a cofactor in the acylation of certain proteins 
such as propionylation [18, 19], malonylation 
[20], butyrylation [18], 2-hydroxyisobutyrylation 
[21, 22], β-hydroxybutyrylation [23], crotonyl-
ation [24], succinylation [25-27], and glutaryla-
tion [28, 29]. These findings give us a better 
understanding of PTM. 

More than 60,000 acetylated and approximate-
ly 20,000 propionylated and succinylated gut 
microbial peptides were recently identified from 
human microbiome samples [26]. These find-
ings indicate that acylation modification is com-
mon in intestinal microflora. At present, the 
most studied lysine acylation is acetylation. 
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Protein acetylation participates in bacterial 
chemotaxis, metabolism, DNA replication, and 
other cellular processes. However, there is 
growing evidence that propionate in intestinal 
SCFAs and its intermediate, propionyl-CoA, are 
closely related to propionylation. Propionylation 
may also be involved in affecting the virulence 
of bacteria. In this review, we summarize the 
advances in knowledge of propionylation of 
bacterial proteins and its relationship to propio-
nate and propionyl-CoA. We also discuss the 
potential of propionate as a propionylation-
mediated virulence factor of intestinal patho-
genic bacteria.

Overview of propionylation

Lysine is one of the 15 amino acid residues 
encoded by modified ribosomes [30]. The elec-
tron-rich and nucleophilic properties of the 
lysine side chain make it suitable for covalent 
PTM reactions with different substrates. Ace- 
tylation is the earliest and most comprehen-
sively studied of all lysine acylation, which are 
mechanisms of acetylation that include regula-
tion of transcriptional regulators of bacterial 
virulence, and roles of acetylation in biofilm for-
mation and antibiotic resistance that have 
been previously reviewed in detail [31-34].  
In bacteria, acetyl-metabolizing intermediates, 
such as acetylphosphates and acetyl-CoA, can 
perform enzymatic lysine acetylation by deen-
zymatic acetate metabolizing enzymes or by 
providing acetyl donors. Up to 40% of proteins 
can be acetylated due to both enzymatic and 
nonenzymatic acetylation mechanisms [35-
38]. Acetylation demonstrated higher levels in 
microorganisms compared to other PTMs that 
regulate metabolic processes, such as phos-
phorylation [9]. So, microbes evolved an ele-
gant mechanism for regulating cellular metabo-
lism through acetylation [39]. In 2007, Zhao et 
al. first described data that found that propio-
nyl-CoA and acetyl-CoA are the same high-ener-
gy molecule, with a structure close to that of 
acetyl-CoA. Here the novel post-translational 
modification involving propionylation of lysine 
residues were first reported [18].

Propionylation involves the addition of propio-
nyl (CH3-CH2-CO-) supplied by propionyl-CoA  
to the epsilon amino group of the target ly- 
sine residue catalyzed by propionyl transfer-
ase, which changes the charge state of lysine 

from +1 to 0. Propionylation of lysine was first 
discovered in histone proteins [18]. Subse- 
quently, propionylation of non-histone sub-
strates in mammals was demonstrated [40]. 
Propionylation is a dynamic process in which 
propionyl is bound to the substrate protein by 
some p300/CBP acetyltransferases. In pro-
karyotes, Salmonella enterica and Bacillus 
subtilis Gcn-5-associated N-acetyltransferas- 
es Pat and AcuA can catalyze the propionyl-
ation of lysine at site 592 of propionyl-CoA syn-
thetase PrpE from S. enterica [41]. The corre-
sponding class of sirtuin deacetyltransferase of 
S. enterica CobB catalyzes the removal of pro-
pionyl modifications from PrpE under NAD (+) 
conditions. In bacteria, acetylphosphate (ACP) 
produced by acetyl-CoA can also chemically 
acetylate lysine residues [38, 42, 43] without 
enzyme catalysis. Similarly, high concentra-
tions of propionyl-CoA induce non-enzymatic 
propionylation in vitro. However, non-enzymatic 
propionylation has less effect on protein activi-
ty (< 20%) than enzymatic propionylation involv-
ing acyltransferase AcuA [44]. This also reflects 
the differences in the mechanism and effects 
of propionylation via two different pathways 
[45] (Figure 1). Interestingly, the authors also 
found that human SIRT2 (hSirT2), SIRT3 (hSirT3) 
and bacteria T. maritima Sir2 (Sir2Tm) proteins 
were able to remove propionyl modifications 
within one hour, but human (hSirT1), human 
SIRT4 (hSirT4), and mouse SIRT1 (mSirT1) sh- 
owed no depropionylase activity [41]. This stu- 
dy provided important guidance for subse- 
quent propionation-related studies. By combin-
ing high-affinity anti-propionyl-lysine pan-anti-
bodies with high-precision mass spectrometry 
(MS) analysis, propionylation of proteins has 
been established as being common in bacteria 
and fungi at different growth stages, with dif- 
ferences in propionylation levels in different 
species. 

The consortium of propionylated proteins is 
often called the propionylome. For example, 
121 propionyl sites were identified in 80 pro-
teins at the intermediate exponential stage  
and 323 propionyl sites were identified in 163 
proteins at the late stable stage in a proteomic 
study of Thermus thermophilus HB8, the num-
ber of sites and the degree of propionylation 
showed significant differences independent of 
protein abundance [46]. The proteome of T. 
rubrum was analyzed by propionylation in the 
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conidia and mycelium stages. Seventy pro- 
pionyl sites of 54 proteins were identified in 
conidia and 96 propionyl sites of 70 proteins 
were identified in mycelium. The propionyl sites 
of each protein were slightly more in mycelium 
than in conidia [47]. A protein propionylation 
test based on the results of propionylation of 
PCC 6803 (Synechocystis) under various stress 
conditions during the growth process suggest-
ed that propionylation was related to the stress 
response of Synechocystis [48]. In E. coli, pro-
pionylated proteomics analysis identified 956 

nite. The latter is then cleaved by methyl isoci-
trate lyase (PrpB) to produce pyruvic acid and 
succinic acid. Interestingly, ACS, PrpE, PrpC, 
PrpD, and PrpB can be propionylated in the 
presence of PA [49]. The activities of PrpE and 
ACS are simultaneously controlled by acetyla-
tion and propionylation (Figure 2). 

Increasing evidence indicates that PA and its 
intermediate, propionyl-CoA, are closely related 
to propionylation. Proteomics studies in E. coli 
have demonstrated the marked increases in 

Figure 1. Mechanisms of propionylation in Salmonella enterica. Propionyl-
ation can be catalyzed by lysine acyltransferase using propionyl-CoA as the 
propionyl donor, or non-enzymatically by propionyl-CoA. Some, but not all, 
propionylation can be reversed by lysine deacylase. Pat, AcuA: acylaed trans-
ferases; CobB, Sir2Tm: deacylated transferases; K, Lysine.

Table 1. Characterization of propionylation of lysine residues of 
proteins

Species Kpr proteins Kpr sites Percentage of
total proteins (%) Reference

T. rubrum 115 157 1.1 [47]
T. thermophilus 183 361 8 [46]
G. kaustophilus 55 83 1.6 [81]
E. coli 603 1467 9.5 [49]
Synechocystis 68 111 1.9 [48]
A. hydrophila 59 98 1.4 [82]
M. smegmatis 18 19 0.3 [83]
Kpr: propionylation.

propionylation (Kpr) sites in  
LB culture and 126 Kpr sites 
in M9 medium supplemented 
with 0.8% glucose. Following 
the addition of glucose to LB 
medium (0.8%), 166 Kpr sit- 
es were identified, indicating 
extensive substrate diversity 
[49] (Table 1).

Propionate and propionyl-CoA 
can affect propionylation

Enzymatic acylation modifica-
tion cannot occur in prokary-
otes without the acylating tr- 
ansferases Pat [41] and AcuA 
[41], and the CobB deacylat-
ing transferase [41, 49]. In ad- 
dition, propionyl-CoA is need-
ed as a propionyl source. 
Propionyl-CoA is the substrate 
of the propionylation reacti- 
on, and its concentration can 
directly affect the level of the 
reaction [47]. Propionyl-CoA is 
an intermediate product of PA 
metabolism and can be dire- 
ctly produced from PA by pr- 
opionyl-CoA synthase (PrpE) 
and acetyl-CoA synthase (ACS) 
[50, 51]. In the methyl citrate 
cycle, PA is first activated by 
PrpE to yield propionyl-CoA. 
Propionyl-CoA then condens-
es with oxalacetic acid, as 
catalyzed by methyl citrate 
synthase (PrpC), to form me- 
thyl 2-citrate. Methyl citrate 
dehydratase/hydratase (PrpD) 
then dehydrates methyl 2-ci- 
trate to produce methyl aco-
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the global propionylation level of lysine and  
the number of propionylation sites (increase of 
713) [49] after propionate treatment. Among 
69 proteins from PCC 6803 (Synechocystis), 
111 lysine propionyl sites were identified [48]. 
A total of 157 propionyl sites were identified in 
115 T. rubrum proteins. The level of propionyl 
modification was closely related to the concen-
tration of propionyl-CoA and sodium propiona- 
te [47]. Similarly, the excess supply of pro- 
pionyl-CoA during erythromycin production in 
Saccharpolyspora erythraea results in excess 
propionylation that affects erythromycin pro-

duction [44, 52]. The link between propionylat-
ed modification and propionate was revisited  
in a transcriptional activity study of phosphate 
regulator PhoP in S. erythraea. The authors 
reported that the addition of propionate in- 
creased the level of propionylated modification 
in PhoP cells, resulting in a loss of the response 
to phosphate [19].

There are related reports in eukaryotic cells. 
For example, propionate-induced acetylation 
and propionylation in SCFAs reportedly up-reg-
ulated MICA/B expression on colon cancer 

Figure 2. Simplified model of propionate catabolism in E. coli. Two enzymes involved in propionate metabolism 
(ACS and PrpE), as well as enzymes involved in the methylcitrate cycle (PrpC, PrpD, and PrpB), are propionylated 
in response to propionate treatment. TCA: tricarboxylic acid cycle; ACS: acetyl-CoA synthase; PrpE: propionyl-CoA 
synthase; PrpC: methyl citrate synthase; PrpD: Methyl citrate dehydratase/hydratase; PrpB: methyl isocitrate lyase.
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cells [53]. In another study, cells were similar to 
propionate as a model to study the increased 
propionylation of proteins [54]. These studies 
demonstrated that the propionylation of lysine 
occurs in a variety of proteins and affects a 
variety of biological functions. In particular, the 
propionylation of lysine contributes to the over-
all metabolic regulation and cellular stress res- 
ponse in mice [55]. This may be one of the 
mechanisms regulating cell metabolism and 
response to stress conditions in bacteria and 
mammals [46], and has important associa- 
tions with propionate.

Effects of PA on bacterial virulence

PA is an abundant carbon source in nature and 
can be used as the only carbon source by many 
aerobic bacteria and some anaerobic bacteria. 
In contrast, the addition of propionate to grow- 
th media inhibits the growth of most microor-
ganisms, even in the presence of other carbon 
sources, due to the accumulation of toxic me- 
tabolic intermediate propionate-CoA. Reflecting 
this, high concentrations of PA are widely used 
as an antimicrobial agent in food and agricul-
ture. However, despite its widespread use, how 
propionate affects microbial growth remains 
unclear [56, 57]. S. enterica serovar Typhim- 
urium exposed to propionate reduces the ex- 
pression of Salmonella pathogenic island 1 
(SPI-1). The propionyl-CoA metabolic intermedi-
ate can modify and decrease the stability of 
HilD, affect the expression of invasion-related 
genes, and ultimately inhibit the invasion of 
Salmonella [58]. In addition, preincubation of 
S. enteritidis with propionate and butyrate can 
decrease epithelial cell invasion [59]. Infection 
rates of salmonella were reduced in a pig mo- 
del of infection by adding a mixture of organic 
acids, including propionate, to their food [60]. 
Recent findings have demonstrated that pro- 
pionate can directly affect bacterial virulence. 
Propionate produced by Bacteroides fragilis in 
the gut directly inhibited the growth of patho-
gens in vitro by disrupting intracellular pH 
homeostasis, to mediate the relationship bet- 
ween colonization resistance of S. Typhimu- 
rium [61]. Therefore, supplementing the diet 
with SCFAs, especially propionate, may be a 
promising intervention strategy to reduce Sal- 
monella infection. Propionate produced by the 
host through the intestinal microflora may pre-
vent local inflammation and tissue damage by 

controlling the host’s response to symbiosis 
[62].

PA is generally considered safe for human and 
animal use. However, a study that examined on 
the adherence of invasive E. coli (AIEC) demon-
strated that PA positively regulated the viru-
lence of strain LF82. Increased exposure to PA 
and increased intestinal concentrations in mice 
resulted in a more than 20-fold increase in per-
sistence and increased the most prominent 
phenotypic features of AIEC, such as intestinal 
epithelial adhesion, invasion, and biofilm for-
mation [63]. Another study reported that intes-
tinal PA resulted in increased ethanolamine 
metabolism by AIEC. To overcome the toxic by-
products associated with the use of ethanol-
amine, AIEC synthesized and then excreted 
bacterial microcompartments (MCPs). In addi-
tion, the use of a concentration of ethanol-
amine comparable to that in the human gut in 
the external environment of macrophages sti- 
mulated rapid proliferation of AIEC [64]. A re- 
cent report also described that S. Typhimurium 
can overcome propionate inhibition by using 
propionate as a carbon source for anaerobic 
respiration. Nitrate-dependent propionate me- 
tabolism by S. Typhimurium provided an infla- 
mmation-dependent colonization advantage 
[65]. Therefore, in addition to promoting colo- 
nization resistance, propionate from microbial 
populations may also contribute to colonization 
by intestinal pathogens during infection.

PA can affect bacterial virulence via propionyl-
ation

Acetylation has recently been widely reported 
to affect toxicity in a variety of ways, includ- 
ing intracellular survival [66, 67], regulation of 
transcription factors [68-70], biofilm formation 
[71, 72], interaction with the host [73, 74], and 
antibiotic resistance [75, 76]. In the genus 
Salmonella, propionate is involved in posttrans-
lational modification of HilD via propionyl-CoA. 
Propionyl-CoA reduces the stability of HilD and 
affects the expression of invasion-related ge- 
nes [58]. The stability and DNA binding ability 
of HilD are related to reversible acetylation [77, 
78]. However, these studies focused on the 
absence of Pat in the acyltransferase and 
ignoring both Pat and AcuA can act as propion-
yltransferases (AcuA has 5.5-times higher pro-
pionylating activity than Pat; [41]). Thus, it is 
likely that the post-translational modification 
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related to HilD is also closely related to pro- 
pionylation. PhoP has been shown in S. 
Typhimurium. In the presence of acetyl-CoA, 
the K201 and K88 sites were acetylated by 
acetyltransferase Pat and ACP respectively, 
which affected PhoP activity, and significantly 
decreased the ability of S. Typhimurium survive 
in macrophages [79, 80]. In Saccharopolyspora 
erythraea, a propionate level of 20 mM enhanc-
es propionyl modification of PhoP and affects 
nucleic acid binding [19]. Similarly, in the pres-
ence of propionate, binding of PhoP to bind to 
nucleic acids was restored when the sites of 
PhoP K198 and K203 were mutated simul- 
taneously to arginine to mimic non-propiony- 
lated modifications [19]. The environment of 
pathogenic intestinal bacteria naturally con-
tains PA. It has been demonstrated that PA 
treatment can significantly enhance propionyl-
ation-related modification. Given the similari-
ties between propionylation and acetylation, 
and the fact that both can be modified by acyl-
transferase, Pat, and CobB deacetyltransfer-
ase, the binding of nucleic acids by modified 
protein usually decreases. It is conceivable that 
propionate-enhanced propionyl-related modifi-
cation can modulate the pathogenicity of intes-
tinal bacteria.

Bacterial propionylated proteins are involved 
in metabolism

Propionylated proteins are involved in various 
metabolic processes and play an important 
role in metabolic regulation (Table 2).

As mentioned above, propionylation is a ubi- 
quitous protein modification involved in many 
cellular physiological processes. These inclu- 
de carbon source utilization, gluconeogenesis, 
two-component systems, and others.

Research strategies of propionylation

Propionylation is generally studied by combin-
ing proteomics with in vivo and in vitro tech-
niques. In the past, mass spectrometry-based 
proteomics was used to identify and verify pro-
pionyl sites. With the refinement of the technol-
ogy, stable isotope labeling can be used for 
quantitative propionyl group analysis of specific 
proteins and their sites. In this approach, pro-
teins are deranged and digested with trypsin. 
Peptides were labeled by light or heavy stable 
isotope dimethyl reagents, Solutions of formal-
dehyde (CH2O, light-labeled) and deuterated 
formaldehyde (CD2O, heavy-labeled) are added 
to the peptide mixture of different groups [49]. 
Propionyl lysine peptides can be enriched by 
affinity chromatography with pan-anti-propionyl 
lysine antibody bound to agarose beads and 
analyzed by nanoscale high-performance li- 
quid chromatography coupled to tandem mass 
spectrometry. Compared with the previously 
used mass spectrometry propionyl group an- 
alysis method, the refined method more direct-
ly compares the differences in levels of pro- 
pionyl between the control and experimental 
groups. Western blot, immunohistochemistry, 
and enzyme-linked immunosorbent assays ba- 
sed on propionylated antibody can be used to 

Table 2. The effect of propionylation on protein function

Species Kpr protein Functional
Kpr site Function Consequence of propionylation Reference

S. enterica PrpE K592 Activate propionate to 
propionyl-CoA

inhibits enzymatic activity [41]

M. smegmatis FadD35 K519 synthesizes CoA esters from 
short to long-chain fatty acids

inhibits enzymatic activity [83]

Synechocystis FbpI K156, K336 photosynthetic carbon fixation 
and gluconeogenesis

inhibits enzymatic activity [48]

PsaD K132 associated with photosynthesis decreased structural stability of PsaD [48]
A. hydrophila MDH K168 Involved in glucose metabolism inhibits enzymatic activity [82]
S. erythraea SACE_0337 

SACE_4729 
SACE_3848

Multiple Synthesis of propionyl-CoA inhibits enzymatic activity [44]

mmsA2 K94 synthesis of propionyl-CoA inhibits enzymatic activity [52]
PhoP K198, K203 two-component system inhibits DNA binding [19]

E. coli ACS K609 rate-limiting enzyme in  
propionate metabolism

inhibits enzymatic activity [49]

Kpr: propionylation; PrpE: propionyl-CoA synthase; FbpI: bifunctional enzyme fructose-1,6/sedoheptulose-1,7-bisphosphatase; PsaD: subunit II of 
photosystem I; MDH: malate dehydrogenase; ACS: acetyl-coenzyme A synthetase.
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verify the difference of protein modification in 
different samples, such as control and experi-
mental groups. In molecular biology examina-
tions, the propionylation state can be simulated 
by site-directed mutagenesis of propionylation 
sites in vitro, using glutamine (Q) instead of 
neutralizing positive charge to simulate propio-
nylation. The substitution of arginine (R) or ala-
nine (A) with a simulated unpropionated state. 
(R) can maintain a positive charge while avoid-
ing propionylation, instead, (A) only removes 
the charge [19, 49]. These results can be vali-
dated in vivo and in vitro by a combination of 
phenotypic tests. In addition, the determina- 
tion of the concentration of propionyl-CoA and 
analyses of propionyl transferase and depropi-
onyl transferase mutants can also help to de- 
termine the mechanism of propionylation and 
the corresponding effects (Figure 3).

Challenges in propionylation research 

Propionylation is a ubiquitous protein modifica-
tion involved in many cellular physiological pro-

cesses, such as carbon source utilization, glu-
coneogenesis, two-component systems, and 
others. This modification can inhibit the activity 
of many kinds of enzymes. However, whether 
propionylation can directly affect the virulen- 
ce of bacteria in a manner like acetylation is 
unclear. This is worth exploring since the ubiq-
uity and diversity of propionylation also means 
that it has more potential. In this context, the 
foregoing findings are helpful to provide a theo-
retical basis for studies of the pathogenicity 
and drug resistance of bacteria.

Conclusions

PA produced by the intestinal resident anae- 
robic Bacteroides spp. and propionyl-CoA, an 
intermediate metabolite of bacterial metabo-
lism PA, affects a novel protein post-transla-
tional modification (PTM)-lysine propionylation 
(Kpr) in a concentration-dependent manner. 
This mechanism has a wide variety of sub-
strates and can be dynamically regulated un- 
der different nutrient conditions. It can affect 

Figure 3. Strategies of propionylation research. Identification and quantification of lysine propionylation substrates 
can be achieved using quantitative proteomic analysis and the stable isotope dimethyl labeling method. Strains 
are cultured for protein extraction. After digestion, peptides are labeled by light or heavy stable isotope dimethyl 
reagents. Antibody to propionyl lysine is used for modified peptide enrichment. Samples are analyzed by high-
resolution mass spectrometry. In combination with phenotypic and molecular experimental data, the function of 
propionylated proteins is verified.
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the metabolism of bacteria by regulating DNA 
binding affinity, changing protein stability and 
enzyme activity, and even affect the expre- 
ssion of virulence factors of enteric pathogenic 
bacteria. The study of propionylation of lysine 
provides a new opportunity to understand the 
mechanism by which PA-producing Bacteroides 
affects the virulence of enteric pathogens. 
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