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Abstract: Objectives: Accurate differentiation of temporary vs. permanent changes occurring following irreversible 
electroporation (IRE) holds immense importance for the early assessment of ablative treatment outcomes. Here, 
we investigated the benefits of advanced statistical learning models for an immediate evaluation of therapeutic out-
comes by interpreting quantitative characteristics captured with conventional MRI. Methods: The preclinical study 
integrated twenty-six rabbits with anatomical and perfusion MRI data acquired with a 3T clinical MRI scanner. T1w 
and T2w MRI data were quantitatively analyzed, and forty-six quantitative features were computed with four feature 
extraction methods. The candidate key features were determined by graph clustering following the filtering-based 
feature selection technique, RELIEFF algorithm. Kernel-based support vector machines (SVM) and random forest 
(RF) classifiers interpreting quantitative features of T1w, T2w, and combination (T1w+T2w) MRI were developed for 
replicating the underlying characteristics of the tissues to distinguish IRE ablation regions for immediate assess-
ment of treatment response. Accuracy, sensitivity, specificity, and area under the receiver operating characteristics 
curve were used to evaluate classification performance. Results: Following the analysis of quantitative variables, 
three features were integrated to develop a SVM classification model, while five features were utilized for generating 
RF classifiers. SVM classifiers demonstrated detection accuracy of 91.06%, 96.15%, and 98.04% for individual and 
combination MRI data, respectively. Besides, RF classifiers obtained slightly lower accuracy compared to SVM which 
were 95.06%, 89.40%, and 94.38% respectively. Conclusions: Quantitative models integrating structural charac-
teristics of conventional T1w and T2w MRI data with statistical learning techniques identified IRE ablation regions 
allowing early assessment of treatment status.
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Introduction

Liver cancer is ranked as the sixth most diag-
nosed and fourth deadliest cancer worldwide 
and is expected to cause 30,520 deaths and 
41,260 diagnoses in 2022 in the United States 

[1]. Surgical resection and partial transplanta-
tion are preferred curative options for patients 
with hepatocellular carcinoma (HCC); yet, sev-
eral factors, e.g., stage and location of the 
tumors, patient condition, and liver functions 
restrict the number of patients suitable for 
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these therapeutic approaches [2]. Hepatic tu- 
mor ablation, including radiofrequency abla-
tion, microwave ablation, or cryoablation, has 
shown great promise for complete remission in 
patients with HCC tumors smaller than 3 cm 
(about 1.18 in) in diameter [3]. However, effi-
cacy of these methods is challenged by loca-
tion, size, and number of tumors due to “heat-
sink” effect in which blood flow causes a cool-
ing effect by reducing the volume of ablated 
tumor region located near major blood vessels 
[4]. Irreversible electroporation (IRE) is a non-
thermal tissue ablation technique that insti-
gates cell death within the tumor structure by 
preserving the extracellular matrix and induc-
ing minimal inflammation [5]. During the IRE 
procedure, a high-frequency electrical current 
is delivered in short pulses without damag- 
ing surrounding tissues [6, 7]. Following the 
electroporation procedure, complete necrosis 
occurs in the center of the ablated region called 
the irreversibly electroporated (IRE) zone. In 
contrast, surrounding region includes viable 
cells due to the delivery of lower electric pulses 
[8]. The main clinical challenge in IRE ablation 
is accurately predicting the extent of irrevers-
ibly electroporated tumor (IRE zone, completely 
treated) and the surrounding reversibly electro-
porated tumor (RE zone, inadequately treated), 
regions that is needed to prevent local recur-
rence and protect normal liver parenchyma.

Advanced MRI sequences such as perfu- 
sion MRI (transcatheter intra-arterial perfusion 
(TRIP) MRI) sequences provide detailed intrin-
sic information about the tissues and demon-
strate the macro scale reflection of the activi-
ties occurring at the cellular level. Yet, these 
imaging sequences involve complicated acqui-
sition techniques that are sensitive to environ-
mental changes. Also, they require nonstan-
dard analysis approaches, challenging repeat-
ability and restricting the number of available 
imaging institutions [9, 10]. Therefore, stan-
dardized techniques that depend on the analy-
sis of reproducible MRI data are needed for the 
early assessment of electroporation.

With technology advancement, quantitative 
analysis of clinical data and characterizing  
tissue properties via texture-based features 
gained popularity for diagnosis and prognosis 
of diseases, prediction of genomic architecture 

associated with malignancies, and evaluation 
of disease progression [11-14]. Descriptive fea-
tures were computed to represent characteris-
tics of the imaging data, and advanced stati- 
stical learning procedures were performed to 
develop an expert model by integrating select 
features [15]. Despite the benefits emphasized 
by previous investigations, there is limited data 
on the employment of texture-based quantita-
tive analysis of MRI data to differentiate IRE 
from RE zones for early evaluation of response 
to IRE ablation therapy. This study investigated 
the potential benefits of quantitative analysis 
of structural MRI texture to generate multivari-
able models for early assessment of IRE abla-
tion through differentiation of characteristic 
changes occurring on tissues with different 
underlying structures due to electroporation of 
liver and tumor tissues.

Materials and methods

Animal model and IRE ablation

A total of twenty-eight New Zealand white rab-
bits were included in our study with two rabbits 
used for VX2 tumors growth to implant in eigh-
teen other rabbits and the remaining eight rab-
bits were used for the normal liver group. These 
twenty-six rabbits were examined for analysis 
of structural changes after IRE ablation thera-
py. Following incubation of HCC tumor cells, 
1×106 tumor cells were injected into the 
hindlimbs of donor rabbits under anesthesia. 
Anesthesia was initiated with an intramuscular 
injection of ketamine (100 mg/kg) and xylazine 
(5 mg/kg) and maintained through isoflurane 
(2-3% in oxygen, 3 L/min). The growth pattern 
of the tumors was observed by anatomical  
MRI scans until the longest tumor diameter 
advanced to at least 3 cm. Following tumor size 
validation by an expert radiologist, donor rab-
bits were euthanized to collect tumor tissues, 
and 1 mm cube tumor fragments were implant-
ed on the left lobes of eighteen rabbits with a 
biopsy needle under ultrasound guidance. The 
rabbits were visually monitored daily, and tumor 
size was assessed with MRI until reaching the 
longest diameter of 1 cm. The rabbits with 
healthy livers were held in their cage for a simi-
lar period before the IRE ablation experiments. 

IRE ablation procedure was performed follow-
ing exposure of the left liver lobe via mini-lapa-
rotomy under anesthesia. Two platinum-iridium 
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electrodes were inserted at 5 mm depth of the 
liver tissue or tumor. Tissues were ablated 
using ECM830 BTX Electroporator (Harvard 
Apparatus, Holliston, MA) with previously re- 
ported parameters (2000 volts, 8 pulses, 0.1 
ms duration, and 100 ms interval) by two expe-
rienced researchers [16, 17]. The surgery was 
completed by performing two-layer closure 
stitching, and MRI scans were completed with 
ongoing anesthesia with the intra-arterial ad- 
ministration of 3 mL of 5% gadopentetate di- 
meglumine solution (Magnevist; Bayer Scher- 
ing Pharma, Whippany, NJ).

MRI acquisition

MRI data were acquired via a clinical 3T 
Siemens Magnetom Skyra MRI scanner with 
anatomical (T1w and T2w MRI) and perfusion 
MRI (TRIP MRI) sequences described in Table 1 
following the IRE ablation procedure. In our 
institution, TRIP MRI was extensively studied 
for various research projects, and acquisition 
and processing guidelines were prepared with 

the experience of the research personnel. 
During our study, perfusion characteristics of 
the liver and tumor tissues were examined with 
TRIP MRI to determine IRE ablation regions by 
interpreting underlying structural changes in 
the tissues. However, conventional T1w and 
T2w MRI data were analyzed to distinguish IRE 
ablation regions to improve reproducibility and 
repeatability at different institutions [16, 17]. 
With the consensus of two experienced ra- 
diologists under the guidance of a senior radi-
ologist, IRE ablation regions were outlined 
using ITK-SNAP (v3.8), and these mask images 
were applied to morphological MRI data for 
post-procedure experiments. A representative 
set of T1w and T2w MRI and ablation regions 
following the IRE treatment procedure is pre-
sented in Figure 1.

Feature extraction and selection

The intensity of MRI is relative; therefore, it 
should be standardized to generate a uniform 
scale for images acquired from different sub-

Table 1. Magnetic resonance imaging acquisition parameters
Sequence Repetition time Echo time Flip angle Resolution Thickness
T1w MRI 200 ms 2.93 ms 70º 0.804 mm 2 mm
T2w MRI 4 s 39 ms 150º 0.938 mm 2 mm
Perfusion MRI 2.6 ms 1.02 ms 8º 1 mm 2 mm

Figure 1. Representative MRI slices following IRE ablation to examine electroporation associated changes in diverse 
types of tissues (normal liver and tumor). (A) and (C) demonstrate T1w and T2w MRI of tumor tissue, and (E) and (G) 
illustrate T1w and T2w MRI data of normal liver following IRE ablation. The histogram plots corresponding to T1w 
and T2w MRI of normal liver (B and D) and tumor tissue (F and H) show the overlapping MRI intensity restricting 
the differentiation of ablated regions. Irreversible electroporation zone was highlighted with orange while reversible 
electroporation zone was marked with blue color. Note: Irreversibly electroporated tissue in orange.
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jects. A fixed-bin size quantization approach 
was performed to reduce these effects while 
empirically detecting optimal bin size among 
four, eight, sixteen, and thirty-two levels of 
details [18]. IRE ablation regions were por-
trayed by interpreting the behavior of intensity 
distribution (six first-order statistics features) 
and texture components (nine co-occurrence 
matrix (CM) features, thirteen run-length ma- 
trix (RLM) features, thirteen size-zone matrix 
(SZM) features, and five neighborhood gray-
tone difference matrix (TDM) features) [19]. CM 
and RLM features were calculated in four direc-
tions and averaged to merge into a single vec-
tor. The variables were translated to zero mean 
and one standard deviation by performing min-
max normalization. The complete list of the 
quantitative imaging features was introduced 
within Supplementary Table 1.

The quantitative variables were analyzed with  
a two-step feature selection procedure to iden-
tify representative characteristic predictors. 
Initially, the pairwise correlation of the features 
was computed via Pearson correlation coeffi-
cient, and features were clustered depending 
on their similarity (Figure 2A-C). After evalua-
tion of the correlation of the features within 
each cluster, representative features were de- 
termined for each group (Figure 2D-F). The 
importance of the candidate variables was cal-
culated by performing a filter-based feature 
selection technique, RELIEFF algorithm, which 
interprets the interaction between quantitative 
MRI features and tissue characteristics th- 
rough ten nearest neighbors (Figure 2G-I) [20]. 
Afterward, ten features with the highest weights 
were selected while optimizing and developing 
machine learning models.

Statistical analysis

To characterize the biological effects of IRE 
ablation treatment, candidate quantitative fea-
tures were integrated to develop a decision 
support mechanism via support vector ma- 
chines (SVM) and random forest (RF) machine 
learning techniques. A total of three models 
were generated by analyzing quantitative fea-
tures extracted from fifty-two images: T1w, 
T2w, and a combination of T1w and T2w MRI. 
The number of predictors within the model was 
restricted to five to prevent learning bias asso-
ciated with model complexity and sample size. 

As classification models were built, a search 
optimization approach was followed to deter-
mine the optimal combination of quantitative 
imaging features for obtaining robust predic-
tion performance. Throughout the experiments, 
training was performed using the data by ex- 
cluding an individual sample for testing the 
model performance and repeating until all the 
data was utilized for training and testing the 
model. Accuracy, specificity, sensitivity, and 
area under receiver operating characteristics 
curve metrics were measured for the assess-
ment of the classification model performance. 
Delong method was utilized to compare signifi-
cant differences in the models in terms of  
AUC. P<0.05 was assumed to be significant in 
evaluating the statistical difference of the vari-
ables. All the analyses were accomplished 
using either pre-defined or in-house develop- 
ed scripts using MATLAB® v9.8 (MathWorks, 
Natick, MA).

Results

Feature extraction and selection

The quantitative predictors of the conventional 
MRI data were examined through a two-step 
feature selection procedure. At first, variables 
were clustered through analysis of pairwise  
correlation (Figure 2A-C) that resulted in 19, 
20, and 36 feature groups for T1w, T2w, and 
combination MRI data (Figure 2D-F). For T1w 
MRI data, seven SZM, five RLM, two-TDM, one 
CM, and four statistical order features were 
identified as representative variables. Throu- 
ghout the analysis of T2w MRI data, in addi- 
tion to kurtosis, nine SZM, four RLM, three CM, 
and three TDM features were determined as 
candidate variables. Four intensity distribution 
and fourteen texture features of T1w MRI, and 
one intensity distribution and seventeen tex-
ture features of T2w MRI were selected as rep-
resentative variables.

The relative importance of the features was 
computed using RELIEFF algorithm and ten fea-
tures were further examined while developing 
classification models. For T1w MRI data, five 
SZM, three RLM features, kurtosis, and busy-
ness of TDM were included while three TDM, 
three SZM, three RLM features, and kurtosis 
were investigated during the experiments with 
T2w MRI for portraying the characteristic str- 
ucture of ablated tissues. Two RLM, two SZM 
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Figure 2. Multi-step feature selection framework for individual and combination MRI data. The interrelation of the features extracted using five different methods 
was demonstrated in (A-C). The graph diagram for the feature clusters is shown in (D-F). The number of features and importance of the representative features of 
the clusters were visualized in (G-I). FOS, first-order statistics features; CM, co-occurrence matrix features; RLM, run-length matrix features; SZM, size-zone matrix 
features; and TDM, neighborhood gray-tone difference matrix features.
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features, and busyness of TDM features were 
computed from T1w MRI, and two SZM, two 
TDM features, gray-level nonuniformity of RLM, 
and busyness of TDM features were extracted 
from T2w MRI. These features were included 
for optimizing experiments for combination MRI 
model. The list of the candidate features is pre-
sented in Supplementary Table 2.

Assessment of classification models

The set of key imaging features was determined 
through a comprehensive analysis of the model 
performance while developing classification 
models integrating up to five combined vari-
ables computed at various levels of intensities 
(Figure 3). The classification models to distin-
guish irreversibly and reversibly electroporated 
zones following IRE ablation were developed by 
feeding the SVM model with three features of 
MRI with sixteen quantization levels, while RF 
models included five features of MRI data sam-
pled with eight levels. T1w SVM classifier that 
interprets small zone high gray-level emphasis 
of SZM, long-run emphasis, and run-length vari-
ance of RLM obtained an accuracy of 91.06% 
for training and 82.69% for validation experi-
ments. Additionally, the model had a sensitivity 

of 92.38% and 88.46%, and a specificity of 
88.46%, and 89.74% for training and validation 
sets, respectively. The classifier developed by 
combining busyness of TDM, gray-level nonuni-
formity of SZM, and RLM of T2w MRI demon-
strated an accuracy of 96.15% for training and 
88.46% for validation. The classifier obtained a 
sensitivity of 100% and 88.46% in addition to 
the specificity of 88.46% and 92.31% for train-
ing and validation trials. On the other hand, the 
classification model built with features extract-
ed from T1w (long-run high gray-level emphasis 
of RLM) and T2w MRI data (zone-size variance 
of SZM and kurtosis) had improved perfor-
mance compared to individual MRI models. The 
classifier obtained an accuracy of 98.04% and 
92.31%, a sensitivity of 98.31% and 100%, and 
a specificity of 92.31% and 96.08% for training 
and validation sets. The AUC of the classifica-
tion models (Figure 4A) were measured as 
0.986, 0.941, and 0.983 for individual and 
combination MRI models. Random forest (RF) 
classification model that included five predic-
tors has obtained stronger predictive power 
than classifiers interpreting features of indi- 
vidual MRI data (Figure 4B). SVM classifiers 
showed less variation in terms of model perfor-
mance throughout the cross-validation proce-

Figure 3. The performance of the classification models generated using kernel-based support vector machines (A) 
and random forest techniques (B). The increasing complexity of the classification models improved the accuracy yet 
affected the variation of model performance with details of image level.
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dure than RF models which supported the 
superiority of the SVM classifiers compared to 
RF model outcome.

RF classification models demonstrated similar 
performance to SVM while distinguishing re- 
versibly and irreversibly electroporated tissue 
regions. The classifier integrating five featur- 
es of T1w MRI data reached an accuracy of 
95.06% for training and 86.54% for validation 
experiments. The model also had a sensitivity 
of 90.86% and 73.08% and specificity of 
73.08% and 99.25% for training and validation. 
On the other hand, T2w MRI model was gener-
ated by involving gray-level nonuniformity and 
long-run high gray-level emphasis of RLM,  
busyness, and coarseness of TDM and kurto-
sis. It obtained 89.41% and 80.77% accuracy,  
a sensitivity of 91.54% and 84.62%, and a 
specificity of 84.62% and 87.24% for training 
and validation. The combination prediction 
model consists of three features extracted 
from T1w (long-run high gray-level emphasis of 
RLM, large zone low gray-level emphasis of 
SZM, and busyness of TDM) and two features 
of T2w MRI data (busyness of TDM and kurto-
sis), with an accuracy of 94.34% for training 
and 84.62% for validation. Moreover, the mo- 
del had a sensitivity of 95.17% and 84.62%, 
and a specificity of 84.62% and 93.58% for 
training and validation. AUC values of the mod-
els (Figure 4B) were measured as 0.994, 0.972, 

identified by developing a generalized statisti-
cal learning model that adopts quantitative fea-
tures reflecting underlying components on a 
macroscale.

IRE ablation therapy holds great promise for 
patients with surgically unresectable solid tu- 
mors with superiority over thermal ablation 
techniques, e.g., safe application near arteries, 
minimal damage to surrounding regions, and 
facilitation of immune anti-tumor response [16, 
20, 21]. Moreover, the permeability of the cell 
membranes is increased temporarily or perma-
nently, allowing for the introduction of thera-
peutic molecules in the tumor cells for en- 
hanced therapeutic efficacy. Previous studies 
have utilized various noninvasive imaging te- 
chniques e.g., CT [22-24], US [25-27], PET [28, 
29], and MRI [16, 17] to investigate post-IRE 
ablation changes and differentiate permanent 
(IRE) and temporary (RE) ablation regions. Mo- 
reover, the safety and feasibility characteristics 
of the IRE ablation therapy have been demon-
strated in small and large animal models [21]. 
Guo et al. investigated the mid-term effects of 
IRE ablation using a rat model of HCC [30]. The 
animal study demonstrated the promising 
advantages of IRE ablation treatment. Fur- 
thermore, long-term effects of IRE ablation 
have been studied through a murine model of 
colorectal cancer liver metastasis by another 
research group [31]. The results demonstrated 

Figure 4. The receiver operating characteristics curve of the final classifi-
cation models represents the characteristic performance of the mono and 
combination MRI models. Support vector machine (SVM) classifier gener-
ated with three features of combination MRI data demonstrated slightly 
better performance compared to classification models integrated with three 
features of T1w and T2w, respectively (A). Correspondingly, random forest 
(RF) classification model that included five predictors obtained stronger pre-
dictive power than classifiers interpreting features of individual MRI data 
(B). SVM classifiers showed less variation in terms of model performance 
throughout the cross-validation procedure than RF models which supported 
the superiority of the SVM classifiers compared to RF model outcome.

and 0.990 for single and com-
binatory MRI models.

Discussion

In this study, we developed 
advanced statistical learning 
models by interpreting texture 
characteristics of convention-
al MRI data to determine bio-
logical changes following IRE 
ablation for early assessment 
of therapeutic outcomes. The 
classification model integrat-
ing quantitative MRI features 
of electroporated tissues ac- 
curately distinguished com-
pletely and partially ablated 
tumor or liver regions. The re- 
sults showed that characteris-
tic changes captured with per-
fusion imaging occurring due 
to IRE ablation treatment are 
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that IRE ablation improved the overall survival 
length of the mice in the treatment group sig-
nificantly and increased tumor necrosis. 

Throughout the last decade, revealing hidden 
characteristics via texture analysis has been  
a focus of interpretion of underlying biological 
variability to describe tissue classification using 
medical imaging data [32, 33]. The earlier stud-
ies involving quantitative image texture analy-
sis demonstrated successful implementation 
of statistical learning models for disease diag-
nosis and prognosis, assessment of therapeu-
tic response, genomic signature prediction, 
classification of tumor types, and prediction of 
overall survival [34, 35]. However, the charac-
terization of IRE ablation regions through the 
integration of quantitative texture features and 
statistical learning models has not been well 
investigated. In this present study, the underly-
ing structure of the tissues post-IRE ablation 
was examined to develop a learning frame- 
work for the early assessment of therapeutic 
response. Throughout the quantitative analysis 
of standard T1w and T2w MRI data, key imaging 
features were utilized to develop a classifica-
tion model by employing two well-established 
machine learning techniques for recognizing 
the underlying cellular level alterations. While 
classification models developed with kernel-
based SVM techniques obtained the best per-
formance by interpreting three imaging fea-
tures, RF classifiers included five features to 
reach their highest performance. SVM classifi-
ers demonstrated more robust results than RF 
classifiers for our dataset in terms of general-
ization. For both approaches, combination 
models acquired slightly better accuracy, im-
proving specificity and sensitivity for training 
and validation experiments. The SVM classifier 
of the combination MRI showed comparatively 
better accuracy than RF models by obtaining 
98.04% for training and 92.31% for validation. 
The overall results demonstrated that underly-
ing functional changes of the tissues following 
electroporation captured with structural MRI 
data can be interpreted to identify IRE vs RE 
ablation zones immediately after the proce-
dure. It will enable dynamic monitoring of the- 
rapeutic response, adjustment of IRE parame-
ters, and modifications to treatment plans for 
better overall survival of patients with solid 
tumors.

Several limitations were present in our study. 
Due to the nature of the preclinical studies,  
the experiments were accomplished within the 
same environment at a single institution. The 
study emphasized the utilization of standard 
T1w and T2w MRI data with a widely available 
clinical 3T MRI scanner which will further allow 
replication of this study in all institutions per-
forming IRE ablation therapy. Moreover, our 
study has identified the characteristics of the 
IRE ablation regions in the different types of  
tissues demonstrating the ability of the devel-
oped classification models to distinguish ablat-
ed regions. In these experiments, the sample 
size was smaller compared to clinical studies 
yet superior to preclinical studies focusing on 
therapeutic response. Our study employed 
machine learning models to handle smaller 
sample sizes, resulting in a robust and reliable 
outcome. Future studies with larger patient 
cohorts may allow the utilization of data-driven 
deep learning techniques to advantage au- 
tonomous image characterization.

In conclusion, the present study investigated 
the benefits of texture analysis for differentia-
tion of IRE ablation vs. RE ablation regions 
immediately after therapy. The advanced sta-
tistical learning model integrating the quantita-
tive features of the structural MRI data identi-
fied underlying characteristics of the tissues 
following the IRE ablation procedure. The re- 
sults demonstrated that quantitative assess-
ment by conventional MRI data enables nonin-
vasive early evaluation of the IRE ablation 
response.
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Supplementary Table 1. List of quantitative imaging features
Feature type Feature extraction method Descriptions

Intensity FOS: First order statistics Mean
Standard deviation
Third moment
Entropy
Kurtosis
Skewness

Texture Co-occurrence matrix features Energy
Contrast
Entropy
Homogeneity
Correlation
Sum average
Variance
Dissimilarity
Autocorrelation

Run-length matrix features Short-run emphasis
Long run emphasis
Gray-level nonuniformity
Run length nonuniformity
Run percentage
Low gray-level run emphasis
High gray-level run emphasis
Short-run low gray-level emphasis
Short-run high gray-level emphasis
Long run low gray-level emphasis
Long run high gray-level emphasis
Gray-level variance
Run-length variance

Size-zone matrix features Small zone emphasis
Large zone emphasis
Gray-level nonuniformity
Zone-size nonuniformity
Zone percentage
Low gray-level zone emphasis
High gray-level zone emphasis
Small zone low gray-level emphasis
Small zone high gray-level emphasis
Large zone low gray-level emphasis
Large zone high gray-level emphasis
Gray-level variance
Zone-size variance

Neighborhood gray-tone-difference matrix features Coarseness
Contrast
Busyness
Complexity
Strength
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Supplementary Table 2. List of the selected candidate features
Model Feature extraction method Description
T1w MRI FoS Kurtosis

RLM Long run high gray-level emphasis
RLM Long run emphasis
RLM Run-length variance
SZM Zone-size variance
SZM Large zone low gray-level emphasis
SZM Small zone high gray-level emphasis
SZM Small zone emphasis
SZM Small zone low gray-level emphasis
TDM Busyness

T2w MRI FoS Kurtosis
RLM Long run low gray-level emphasis
RLM Gray-level nonuniformity
RLM Long run high gray-level emphasis
SZM Zone-size variance
SZM Gray-level nonuniformity
SZM Small zone low gray-level emphasis
TDM Coarseness
TDM Strength
TDM Busyness

T1w + T2w MRI TDM Busyness
FoS2 Kurtosis
RLM1 Long run emphasis
RLM1 Long run high gray-level emphasis
RLM2 Gray-level nonuniformity
SZM1 Zone-size variance
SZM1 Large zone low gray-level emphasis
SZM2 Zone-size variance
SZM2 Gray-level nonuniformity
TDM1 Busyness
TDM2 Busyness

1The features were computed from T1w MRI data. 2The features were computed from T2w MRI data. 


