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Abstract: Critical illness, particularly sepsis, is associated with high mortality, so prevention is more important than 
effective therapy. Advances in medical science have provided more opportunities for early warning and early inter-
vention to avoid the development of critical illness. Existing early warning systems (EWS) have the advantages of 
high efficiency and convenience. However, with the development of medical technology, they do not completely meet 
clinical needs. EWS should contain elements that meet many dimensions of clinical requirements, including risk 
warning, response warning, injury warning, critical warning, and death warning. By summarizing previous studies, 
we outlined a layered EWS that follows RISK bundles. RISK represents different warning sign categories: R: host re-
sponse, I: organ injury, S: changes in vital signs, and K: gradual appearance of “killed” organs. We plan to construct 
a complete layered EWS to guide clinical activities and subsequent clinical studies in the near future.
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Introduction

Critical illness is associated with a high mor- 
tality risk and requires appropriate therapy. 
Sepsis is a life-threatening critical illness 
caused by dysregulated host/organ response 
to various infections and is considered a ma- 
jor cause of mortality and financial loss world-
wide [1]. According to the Global Burden of 
Disease study, there were an estimated 48.9 
million sepsis patients worldwide in 2017; 
among them, 11.0 million mortalities were re- 
ported, accounting for 19.7% of deaths. Unlike 
many other chronic diseases, sepsis develops 
and progresses quickly without treatment [2]. 
Timely and effective treatment can greatly 
improve the prognosis [3-5]. In 2017, the Wor- 
ld Health Organization adopted the resolution 
“Improving the Prevention, Diagnosis and Cli- 
nical Management of Sepsis”. The prevention 
and early detection of sepsis are important 
issues in the future. Global efforts are needed 
to reduce mortality and mitigate the economic 
burden of this reversible disease. 

Early detection of sepsis is associated with 
lower mortality [4, 6]. Early warning systems 
(EWS) that allow the early detection of critical 
illness have been created for bedside assess-
ments, which is a key strategy for the mana- 
gement of sepsis patients [7]. The most fre-
quently used EWSs the Modified Early War- 
ning Score (MEWS), the National Early Warning 
Score (NEWS), and the Search Out Severity 
(SOS) score [8, 9]. The MEWS has been used to 
predict hospital admission rate and in-hospital 
mortality, [10] and the NEWS has been used to 
predict death and intensive care unit (ICU) 
admission [11, 12]. The SOS score, a scoring 
system derived from the MEWS, is also used as 
a screening tool for the early diagnosis and 
management of sepsis [13]. The 2016 guide-
lines introduced a new tool to assess possible 
sepsis, which is named the quick Sepsis-related 
Organ Failure Assessment (qSOFA). This scoring 
system has strong practicality because it con-
sists of only three elements (mental status, sys-
tolic blood pressure, and respiratory rate) but it 
has substantial advantages in predicting death 
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and ICU transfer rate in non-ICU patients [11, 
14]. However, all these tools share the problem 
that they focus only on host response and 
changes in vital signs. Earlier warning markers 
that have high sensitivity and specificity to sup-
port pathophysiological changes and risk fac-
tors have not received enough attention. The 
progress on exploratory work in recent years 
has identified more biomarkers for early warn-
ing and prognosis in sepsis, including uncou-
pling protein 2, the Fis1/parkin ratio, and inter-
leukin-6 (IL-6) [15, 16]. Current EWS need to be 
expanded into layered EWS (LEWS). Layered 
early warning signs can be broadly divided into 
the following categories: R: host response, I: 
organ injury, S: changes in vital signs, and K: 
the gradual appearance of “killed” organs. In 
this review, we clarify the pathophysiological 
changes in sepsis into four steps as RISK bun-
dles, and summarize LEWS at different levels, 
as described in previous studies. This analysis 
may help to develop better EWS in the future.

Key points RISK factors for Layered Early Warning System
R Host Response to Infections
I Organ Injury due to Reactions
S Changes of the Vital Signs
K ‘Killed’ organs gradually appear

Sepsis RISK bundles (Figure 1) for critical pa-
tients

As mentioned above, RISK stands for different 
levels of warning. Among them, R and I repre-
sent advance warning of sepsis in patients and 
range from general to severe. Early identifica-
tion and prompt intervention can prevent the 
development of disease. After experiencing 
reaction and injury, the internal environment 
changes considerably and there is a substan-
tial change in S, which indicates that S is a con-
sequence of R and I. S also indicates increased 
mortality risk. As vital signs can be measured 
easily and rapidly, the S level is the most com-
monly used [14]. If the disease continues to 
progress, organ dysfunction and organ failure 
occur, so-called “killed” organs. Multiple organ 
failure can sharply increase mortality.

Predictors and pathogenic microorganisms

Before discussing RISK systems, we must men-
tion the host factor. Sepsis was first described 
in gram-negative bacterial infections [17]. In 
fact, sepsis can develop from any infection, and 
considerably varies in its clinical presentation. 

Approximately 80% of cases arise in the com-
munity [18]. Extremes of age (either very old or 
very young), inadequate exercise, catheteriza-
tion or other factors that affect skin integrity, 
alcohol abuse, diabetes, cancer, acquired im- 
mune deficiency syndrome, and immunosup-
pressive medications predispose patients to 
infection [19]. 

Studies have shown that the most frequent 
infectious site for sepsis is the lung (64%), fol-
lowed by the abdomen (20%), bloodstream 
(15%), and urinary tract (14%) [18, 20, 21]. 
Bacterial infection is the most common cause 
of sepsis; however, whether the prevalence  
of gram-positive or gram-negative bacteria is 
more common remains controversial [22]. Se- 
rological evidence of infection includes bacte-
ria, parasites or fungus cultured in various body 
fluids such as blood, urine, stool, pleural effu-
sion, and ascites; virus DNA or RNA; and 1,3-
beta glucan tests. Through serological exami-
nation, clinicians can identify the pathogen and 
provide targeted drug therapy.

R: host response 

The host response in sepsis is recognized as 
acute inflammation caused by the activation  
of the innate immune system in response to 
infection. It mainly includes changes in vital 
signs, inflammatory response, procoagulant 
response, immune system activation, neuroen-
docrine reaction, and metabolic changes. Cy- 
tokines play a key role in balancing proinflam-
matory and anti-inflammatory responses, acti-
vating and resolving the coagulation and im- 
mune response. Sustained production of cyto-
kines in sepsis patients may be necessary to 
control the infection, and enhances the expres-
sion of adhesion molecules on neutrophils and 
endothelial cells (ECs) [23]. However, comple-
ment activation products can be fatal and pro- 
bably contribute to organ injury in sepsis [23]. 
Early detection of abnormal cytokines may help 
to predict occurrence of sepsis. Table 1 shows 
the simplified host response monitoring table 
we have set up. The table lists the available 
inflammatory factors and nonspecific markers 
of inflammation.

Inflammatory response (The Innate Immune 
System): After pathogenic invasion, pathogen-
associated molecular patterns can bind to  
pattern-recognition receptors to trigger intra-
cellular signaling pathways that initiate the pro-
duction of proinflammatory cytokines such as 
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Figure 1. RISK bundles for Layered Early Warning System. RAGE: receptor for advanced glycation end products, KL-
6: krebs von den lungen-6, NSE: neuron- specific enolase, NFL: neurofilament light chain protein, UCH-L1: ubiquitin 
car- boxy-terminal hydrolase l1, IGFBP-7: growth factor-binding protein-7, KIM-1: kidney injury biomarkers include 
molecule-1, I-FABP: intestinal fatty acid-binding protein, IMA: Ischemia modified albumin, GST: glutathione S-trans-
ferase, ALT: alanine aminotransferase, AST: aspartate aminotransferase, ALP: Alkaline Phosphatase, GGT: gamma 
glutamyl transpeptidase, AMY: amylase, Lip: lipase.
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IL-1, IL-6, IL-8, IL-12, IL-17, IL-18, tumor necrosis 
factor-α (TNF-α), and interferon-γ (IFN-γ) [24-
26]. Clinically, IFN-γ causes fever, chills, head-
ache, dizziness, and fatigue, and fever can be 
elicited by IL-1, IL-6, and TNF-α [27]. Highly ele-
vated IL-6 contributes to vascular hyperperme-
ability, resulting in hypotension, and pulmonary 
dysfunction through IL-2, IL-5, and IL-17 expres-
sion on ECs [28]. TNF-α regulates immunity and 
induces cellular apoptosis as well as inducing 
fever and activating antimicrobial responses 
[28]. IL-18 promotes T helper-1-type inflamma-
tory responses by stimulating secretion of IFN-γ 
[29]. The elevated levels of C3 and C5 in the 
complement system and immunoglobulin initi-
ate the recruitment of leukocytes and activate 
ECs and platelets [30]. 

After the activation of proinflammatory cyto-
kines, anti-inflammatory cytokines, such as 
IL-4, IL-10, and IL-13, are secreted to maintain  

a balance. The elevation of other biomarkers 
such as C-reactive protein correlate with res- 
ponse severity [31]. The innate immune system 
also includes natural killer cells, neutrophils, 
eosinophils, basophils, mast cells, macroph- 
ages, and dendritic cells. 

5-hydroxytryptamine, prostaglandin, and bra-
dykinin are released. Various blood-count ab- 
normalities can be detected, as well as elevat-
ed ferritin, fibrinogen, and D-dimer levels. 

Procoagulant response: In sepsis patients, the 
imbalance in coagulation and fibrinolysis is a 
serious reaction caused by diffuse activation  
of the endothelium by proinflammatory cyto-
kines, leukocytes, and other proteins, which is 
an important part of the host response [32, 
33]. The release of C3a and C5a initiates the 
recruitment of leukocytes and activation of 
platelets and ECs, which further releases cyto-
kines [30]. When neutrophils are activated, 
extracellular traps are released to limit infec-
tion and minimize injury. DNA, histones, and 
other neutrophil proteins are the main compo-
nents of neutrophil extracellular traps, which 
are prothrombotic [34]. 

Early in infection, activated ECs express tissue 
factor, a critical component of the extrinsic 
coagulation pathway, and release other mic-
roparticles that initiate systemic and local 
coagulation [35]. In addition, activated protein 
C and tissue factor pathway inhibitor are re- 
duced, promoting clot generation [36]. ECs  
and non-ECs release plasminogen activator 
inhibitor-1 (PAI-1) during sepsis [37]. During the 
systemic inflammation phase in sepsis, levels 
of PAI-1, fibrin/fibrinogen degradation prod-
ucts, and D-dimer are markedly elevated, which 
leads to increased mortality [38, 39]. Intere- 
stingly, during Klebsiella pneumoniae infection, 
PAI-1 inhibition results in attenuated hyperco-
agulation and lower mortality rate in animal 
models [40]. Recombinant tissue plasminogen 
activator and antithrombin III supplementation 
may reduce organ failure and mortality [41]. 

Platelets also play an important role in aggre-
gating adherence to the endothelium, amplify-
ing inflammation, and impairing tissue perfu-
sion, leading to sepsis-related coagulopathy 
[42]. Platelets are also an important source of 
microparticles, which amplify systemic proco-
agulant [43]. Red blood cells in sepsis patients 
are more spherical and lower in deformability, 
which promotes aggregation and microvascular 
thrombosis [44].

Table 1. Simplified host response monitoring 
table
Name
Time
Proinflammatory Cytokines
    IL-6 (Interleukin 6)
    IL-8 (Interleukin 8)
    TNF-α (Tumor Necrosis Factor-α)
Anti-inflammatory Cytokines
    IL-10 (Interleukin 10)
Other inflammatory markers
    CRP (C-Reactive Protein)
    ESR (Erythrocyte Sedimentation Rate)
Infection Related Markers
    White Blood Count
    Neutrophilic granulocyte percentage
    procalcitonin
Immune-related Biomarkers
    C3 (complement 3)
    C4 (complement 4)
    IgG (immunoglobulin G)
    IgM (immunoglobulin M)
Coagulation Related Biomarkers
    Fibrinogen
    D-dimer
Vital Signs
    Heart Rate
    Blood Pressure
    Temperature
    Respiratory Rate
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Adaptive immune response: Although slower  
to respond, the adaptive immune system can 
recognize and memorize unique antigens, 
which enhances the immune response to the 
reinvasion of pathogens. The system plays an 
important role in limiting inflammation after 
infection and returning the body to homeosta-
sis. Impairments in the system during sepsis 
increase the likelihood of reinfection and mor-
tality, leading to inadequate defense against 
infection [45]. 

Owing to apoptosis, substantial depletion of 
immune cells has been detected in patients of 
different ages and etiologies who have died 
from sepsis [46, 47]. Elevations of caspase 8 
and caspase 9 have been detected in T cells in 
septic patients, indicating the initiation of the 
programmed cell death process [47]. Pro- and 
anti-inflammatory cytokine levels and persis-
tently elevated antigen load are prerequisites 
for T cell exhaustion [48], which is marked by 
an increase in programmed cell death-1 (PD1) 
and a decrease in IFN-γ and TNF-α [49]. An ele-
vated level of PD1 in sepsis patients is associ-
ated with increased susceptibility to superin-
fections, which correlates with mortality [50], 
while inhibition of PD1 reduces mortality in sep-
tic animals [51]. CD4+ T cells are most active 
during sepsis [47, 52]. It has been demonstrat-
ed that IL-2, IL-12, and IFN-γ decline in sepsis 
patients [53]. The regulatory function of T hel- 
per-17 cells also deteriorates [54]. Impaired 
poly-functionality of CD8+ T cells has been 
found in sepsis patients with cytomegalovirus 
infection [55]. Higher mortality rates correlate 
with a depletion in the number of γδ T cells in 
sepsis patients [56], and impaired γδ T cell 
function has been detected in patients with 
sepsis [57, 58]. The number and function of 
regulatory T cells increases because these are 
needed to fight infection [59, 60]. The percent-
age of exhausted CD21+ B cells is substan- 
tially higher in sepsis patients, so is the level of 
serum immunoglobin M [61, 62]. The number 
of dendritic cells declines in patients with sep-
sis [63], and dendritic cell production of proin-
flammatory cytokines (except IL-10) is reduced 
[64]. One study showed that sepsis-induced T 
cell apoptosis sharply decreased in mice with 
overexpression of Bcl-2 in T cells, and the ani-
mals showed a higher survival rate [65]. Se- 
lective inhibition of caspase-3 also prevents T 
cell apoptosis and improves the overall survival 

of septic mice [66]. PD-1 is upregulated in T 
cells, B cells, and monocytes in sepsis. Anti-
PD-L1 antibody greatly improves the survival 
rate in cecal ligation and puncture mice [67]. 

Neural and neuroendocrine responses: The 
central nervous system is considered both a 
trigger and target organ of sepsis. The neuroen-
docrine system, the interaction between the 
nervous system and the endocrine system, is 
primarily responsible for neural modulation of 
endocrine function. Sepsis-induced cytokine 
release promotes blood-brain barrier damage 
and sepsis-associated encephalopathy. As a 
result, immune-inflammatory homeostasis is 
disrupted, and the hemodynamics of the brain 
change substantially [68, 69]. 

Neural responses: The autonomic nervous sys-
tem (ANS) plays a key role in the regulation of 
bodily responses, which is the main process 
involved in the pathophysiological mechanism 
of sepsis [70, 71]. ANS dysregulation may be  
an early warning sign of sepsis before the 
occurrence of clinical deterioration [72]. The 
monitoring of heart rate can indicate the likeli-
hood of deterioration in the next 24 hours in 
infants with sepsis, and can thus help to reduce 
mortality by 22% [73]. A hypotension prediction 
index based on hemodynamic changes has 
recently been proposed [74].

The parasympathetic and sympathetic nervous 
systems are the two components that comprise 
the ANS. The former system reduces inflamma-
tion through the cholinergic anti-inflammatory 
pathway; however, sepsis is characterized by 
excessive activation of the sympathetic ner-
vous system and the release of endogenous 
catecholamines [75]. The strong stimulation  
of the adrenergic receptors in ECs can activate 
all the mechanisms described above [76]. 
Reduced vascular tone leads to difficulty in 
maintaining blood pressure, hypoperfusion, 
and other consequences. Some analgesic and 
sedative drugs and beta-blockers can help to 
regulate ANS overactivation.

Neuroendocrine responses: The main compo-
nents of the neuroendocrine system are the 
hypothalamus and the pituitary gland. Hypo- 
thalamic dysfunction in sepsis can cause multi-
system failure, include problems with respira-
tion, cardiac output, and vasomotor and other 
reflex activities [77]. In the early phase of infec-
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tion, which is characterized by the local produc-
tion of proinflammatory factors, neuroendo-
crine hormones are secreted in response to 
bodily demand, while the activity of processes 
that are less essential to survival is reduced 
[78]. Extreme responses of the neuroendocrine 
system (both overactivation and under-activa-
tion) are associated with higher mortality [79].

Hormones secreted by the anterior pituitary: In 
the early stages of sepsis, serum cortisol and 
adrenocorticotropic hormone levels increase 
owing to the activation of the hypothalamic-
pituitary-adrenal axis, which is stimulated by 
IL-1 and IL-6 [80]. Reduced levels of cortisone 
have been observed in non-survivors of sepsis, 
whereas corticotropin-releasing hormone is 
higher in survivors, indicating pituitary or adre-
nal dysfunction [81, 82]. 

Thyroidal function is also affected in sepsis 
[83]. Examination of patients who died from 
sepsis has shown a reduction in the size and 
weight of the thyroid gland, as well as reduction 
in triiodothyronine concentrations [84]. Growth 
hormone levels are substantially elevated dur-
ing the early stages of sepsis. However, owing 
to the development of resistance to growth  
hormones triggered by TNF-α and IL-6, serum 
concentration of insulin-like growth factor-1 is 
reduced [85, 86]. The secretion of luteinizing 
hormone declines during sepsis. Lower levels 
of testosterone levels in men and estrogen lev-
els in pre-menopausal women have been de- 
tected [87]. In one study, lipopolysaccharide 
substantially reduced the secretion of luteiniz-
ing hormone and gonadotropin releasing hor-
mone [88].

Hormones secreted by the posterior pituitary: 
Arginine-vasopressin (AVP) and oxytocin are 
secreted by the posterior pituitary gland. AVP is 
a major hormone in the regulation of water bal-
ance and blood pressure, whereas oxytocin 
plays an important role in the contraction of 
smooth muscle. AVP levels increase when 
blood pressure drops at the very beginning of 
sepsis but increase despite hypotension in  
the later phase. Oxytocin shows the same pat-
tern. A possible mechanism for the reduction in 
AVP secretion is the depletion of neurohypophy-
sis neurosecretory AVP granules during sepsis 
[78]. 

Metabolic response: The neuroendocrine alter-
ations in response to sepsis also induce meta-

bolic changes, such as stress hyperglycemia 
and anorexia. Hyperglycemia is stimulated by 
hormones and proinflammatory cytokines and 
is associated with an increased mortality risk in 
sepsis [89]. Tight blood glucose control, (i.e., 
normoglycemia in critical patients) reduces 
morbidity and mortality in critically ill patients 
[90]. Anorexia often occurs as a result of stress-
associated central nervous system and periph-
eral proinflammatory cytokine production [91]. 
Although anorexia may have some survival ben-
efits, long-term underfeeding is undoubtedly 
harmful to patients. Clinical practice guidelines 
recommend early enteral nutrition supplement-
ed by parenteral nutrition for critical patients 
[92].

I: Organ injury

Organ injury is the pathophysiological change 
prior to organ failure. Early and timely detection 
of organ injury and timely adjustment of com-
prehensive treatment based on hemodyna- 
mic therapy can prevent organ dysfunction and 
improve prognosis. There are many widely used 
biomarkers of organ injury and more are gradu-
ally being developed. The organ injury monitor-
ing table is shown in Table 2.

Heart and skeletal muscle: Indicators of heart 
and skeletal muscle injury are well established. 
When myocardial cells are injured, many pro-
teins and enzymes are released into the peri- 
pheral blood. The most commonly used myo-
cardial-specific indicators include troponin and 
creatine kinase MB isoenzyme. Skeletal mus-
cle-specific injury markers include myoglobin 
and creatine kinase.

Lung: Alveolar type 1 cells contribute to both 
alveolar fluid clearance and barrier integrity. 
The receptor for advanced glycation end prod-
ucts (RAGE) in alveolar type 1 cells is a trans-
membrane pattern-recognition receptor in the 
immunoglobulin superfamily, and is abundantly 
expressed in the lung. The soluble form of the 
RAGE receptor can be considered a marker of 
lung injury [93]; and plays an important role in 
formulating mechanical ventilation strategies, 
diagnosis of acute respiratory distress syn-
drome, and differentiating direct and indirect 
acute respiratory distress syndrome [94]. Kre- 
bs von den Lungen-6 is secreted by alveolar 
type 2 cells, and Clara cell protein16 is secret-
ed by bronchiolar Clara cells. Both are associ-
ated with lung injury and inflammation. The 
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soluble intercellular adhesion molecule-1 is an 
inducible glycoprotein expressed on the sur-
face of vascular ECs, and indicates lung injury 
in both plasma and lung edema fluid [95]. 
Another EC indicator is angiopoietin-2, which 
has an important role in increasing endothelial 
junction instability, enhancing vascular leak, 
naturally antagonizing angiopoietin-1, and in- 

ducing vascular regression and EC apoptosis 
[96].

Brain: The dysregulated host response in sep-
sis results in vascular injury, increased blood-
brain barrier permeability, and activation of 
glial cells, which leads to a less robust interac-
tion between astrocytes and the blood-brain 
barrier, causing low neuronal synapse main- 
tenance. As a result, a network of cytokines, 
chemokines, proteolytic enzymes, oxidants, 
immune cells, and glial cells is produced and 
released, which directly affects neurofunction 
[97]. The most frequently used markers of  
brain injury include neuron-specific enolase, 
which is the only guideline-recommended 
marker [98], and neurofilament light chain  
protein, a neuroaxonal marker which has previ-
ously demonstrated high prognostic accuracy 
[99]. Studies have also focused on the neuroax-
onal marker total tau, the neuronal cell body 
marker ubiquitin carboxy-terminal hydrolase 
L1, the astrocytic marker S100B, and glial fibril-
lary acidic protein. However, most of these 
markers have relatively high sensitivity and low 
specificity for the severity of sepsis [100]. One 
of the directions of future research is to search 
for indexes with higher brain sensitivity and 
specificity.

Kidney: Acute kidney injury (AKI) is a complex 
syndrome with a broad range of clinical mani-
festations. There are various biomarkers that 
indicate the syndrome. However, the definition 
of AKI has relied largely on assessment of 
serum creatinine (SCr) and urine output, which 
has various limitations, especially in patients 
with critical illness. Neither SCr nor urine out-
put has the properties necessary for real-time 
assessment of kidney function. They also lack 
sensitivity in tubular injury. Evidence shows 
that marked tubular damage, histological 
changes, and kidney function loss both appear 
before a rise in SCr in AKI [101]. Kidney bio-
markers may be released prior to SCr increase 
and/or urine output decrease [102]. Broadly, 
there are three types of kidney function bio-
markers: stress biomarkers, injury biomarkers, 
and functional biomarkers. Stress biomarkers 
include insulin-like growth factor-binding pro-
tein-7 and tissue inhibitor of metalloprotease-2. 
Kidney injury biomarkers include kidney injury 
molecule-1, neutrophil gelatinase-associated 
lipocalin, L-type fatty acid-binding protein, and 

Table 2. Organ injury monitoring table
Name
Time
Heart
    CK-MB (Creatine Kinase MB)
    cTnI (Troponin I)
Lung
    sRAGE (Receptor for Advanced Glycation Endproducts)
    sICAM-1 (soluble InterCellular Adhesion Molecule-1)
    KL-6 (Krebs von den Lungen-6) 
    Ang-2 (Angiopoietin-2)
Brain
    S100B
    NSE (Neuron-Specific Enolase)
    UCHL1 (Ubiquitin C-terminal Hydrolase-L1)
    GFAP (Glial Fibrillary Acidic Protein)
    NFL (NeuroFilament Light Chain Protein)
Kidney
    IGFBP-7 (Insulin Growth Factor Binding Protein-7)
    TIMP-2 (Tissue Inhibitor of Metalloproteinase-2)
    Kim-1 (Kidney Injury Molecule-1)
    NGAL (Neutrophil Gelatinase-Associated Lipocalin)
    L-FABP (Liver-type Fatty Acid-Binding Protein)
    Scr (Serum Creatinine)
    Cys C (Cystatin C)
    pro-enkephalin A
Gastrointestinal Tract
    citrulline
    I-FABP (Intestinal Fatty Acid-binding Protein)
    IMA (Ischemia Modified Albumin)
    SM22 (Citrullin and smooth Muscle protein of 22 Ka)
Skeletal muscle
    Myoglobin
    CK (Creatine Kinase)
Liver and Pancreas
    ALT (ALanine aminoTransferase)
    AST (ASpartate aminoTransferase)
    ALP (Alkaline Phosphatase)
    GGT (Gamma Glutamyl Transpeptidase)
    Amylase/Lipase



Layered early warning system in the ICU

5236 Am J Transl Res 2022;14(8):5229-5242

C-C motif chemokine ligand 14. Functional bio-
markers are SCr (used most frequently), cys-
tatin C, and pro-enkephalin A [103]. The devel-
opment of new biomarkers will provide more 
information, which will facilitate earlier detec-
tion of AKI and help redefinition the term. 

Gastrointestinal tract: Gastrointestinal function 
assessment should receive more attention, 
particularly in sepsis patients. The gut is a bar-
rier that prevents toxins and pathogenic micro-
organisms entering tissues from the gut. Gut 
barrier failure in sepsis is associated with sys-
temic inflammation and development of multi-
ple organ dysfunction syndrome [104]. The gut 
barrier is composed of a monolayer of ente- 
rocytes. A minimum requirement for barrier 
function is the integrity of the enterocytes and 
controlled paracellular permeability between 
adjacent enterocytes. Other important changes 
in sepsis patients are lower diversity and abun-
dance of key commensal genera and over-
growth by a single bacterial species, which may 
affect the gut barrier. There are two main bio-
markers that can help to identify enterocyte 
injury and dysfunction. One is plasma citrulline, 
a marker of functional enterocyte mass, and 
the other is plasma or urinary intestinal fatty 
acid-binding protein, a marker of enterocyte 
damage that can be considered to be the “tro-
ponin of the gut”. Both provide information 
about enterocyte injury [104]. Other biomark-
ers include ischemia-modified albumin, which 
is a human serum albumin that shows less 
binding for cobalt in the presence of reduced 
perfusion [105]. The α-subunit of glutathione 
S-transferase is present in the liver and small 
intestine and is regarded as a sensitive marker 
of small bowel ischemia [106]. 

Liver and pancreas: The most commonly used 
markers for liver injury are alanine aminotrans-
ferase, aspartate aminotransferase, alkaline 
phosphatase, and gamma glutamyl transpe- 
ptidase. The pancreas markers amylase and 
lipase are used to evaluate the level of organ 
injury.

S: changes in vital signs 

Vital sign changes can be artificially divided 
into two phases in critical illness. In the first 
phase, changes in vital signs are the sequence 
of reaction and injury, which is a positive reac-

tion. In contrast, in the second phase, the 
sequence of organ dysfunction is a negative 
sign and a warning of sepsis. As we focus here 
on EWS, we consider only the first phase.

After all the reactions described above, an 
abnormal vital sign appears. This indicates that 
the organism is adapting to a new internal envi-
ronment and helps restore homeostasis. As 
has been demonstrated, hyperdynamic left 
ventricular ejection fraction appears owing to 
low systemic vascular resistance and increased 
circulating catecholamines [107]. The adaptive 
role of enhanced respiratory drive has also 
been demonstrated [108]. Under this condi-
tion, heart rate increases gradually along with 
increased ejection fraction, and respiratory 
rate also increases. However, changes in vital 
signs indicate the likelihood of the occurrence 
of sepsis. Various EWS based on vital signs 
(temperature, heart rate, respiratory rate, blood 
pressure, consciousness) have been estab-
lished, with the aim of the early detection of 
sepsis. Vital signs themselves have been 
shown to provide predictive capabilities in ad- 
vance of sepsis onset and have shown a high 
level of performance in experiments even with 
randomly missing data. Different vital sign lev-
els have different predictive efficacy [109]. 
However, they provide poor specificity and sen-
sitivity [110]. Studies have demonstrated that 
changes in vital signs in both trauma and non-
trauma patients predict mortality [111].

K: “Killed” organs gradually appear

Hemodynamic instability may not be fatal, and 
may not result in shock [112, 113]. Similarly, 
acute respiratory failure does not necessarily 
develop into acute respiratory distress syn-
drome [114]. However, if the above-mention- 
ed stages are not detected, and not treated 
with appropriate therapy to control disease 
onset and progression, then “killed” organs will 
appear. In this last stage, critical illness will 
develop. Many biomarkers that are familiar  
indicators of end-stages of disease can help in 
the early detection of organ failure, and are 
strong indicators of ICU mortality. The assess-
ment of organ function is well established and 
expressed as the Sequential Organ Failure 
Assessment score. However, this assessment 
does not include gastrointestinal tract function, 
which is now receiving considerable attention 
from researchers and doctors. Currently, the 
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diagnosis of gastrointestinal failure still de- 
pends on clinical manifestations, such as feed-
ing intolerance with elevated residual gastric 
volume, and ileus, diarrhea, or gastrointestinal 
bleeding, although ultrasound may help the 
assessment. Although not available in real 
time, biomarkers such as plasma citrulline and 
intestinal fatty acid-binding protein may be 
potential indicators of gut failure [115, 116]. 
The Modified Organ Failure Monitoring Table is 
shown in Table 3.

Conclusion

According to the pathophysiological process, 
critical illness gradually develops from organ 
injury caused by a series of dysregulated reac-
tions after stress or infection. The RISK bundles 
describe the main process of the development 
of disease. The four letters represent different 
types of warning signs and describe early warn-
ing signs associated with the different levels of 
the occurrence and development of disease. In 
terms of EWS, in addition to the established 
MEWS, NEWS, and SOS, a more comprehen-
sive early assessment and warning system 
should be fully established to predict and evalu-
ate the stages of sepsis more accurately. This 

review proposes a LEWS framework; however, 
additional work is needed to fully develop this 
framework in the future. 
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