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Abstract: Objectives: Ferroptosis plays vital roles in the pathogenesis of various malignant tumors. However, knowl-
edge on roles of ferroptosis in osteosarcoma remains scarce. In the present study, a comprehensive bioinformatics 
analysis was performed aiming to identify ferroptosis-related genes (FRGs), construct a FRGs-based model predict-
ing overall survival (OS), and assess the impact of these FRGs on the migration and invasion of osteosarcoma cells. 
Methods: Initially, data regarding differentially expressed FRGs were obtained from the GSE160881 dataset. Prog-
nostic significance and possible biological functions of these differentially expressed FRGs were comprehensively 
and systematically explored adopting a series of bioinformatics methods. The impact of cystathionine β-synthase 
(CBS) on migration and invasion of osteosarcoma cells were assessed using transwell assays. Results: A total of 50 
FRGs were differentially expressed. Four FRGs including G6PD, VEGFA, CBS, and HMOX1 were used to construct a 
model predicting OS in osteosarcoma patients. In the training cohort, patients with high risk had significantly poorer 
OS than those with low risk, which was also demonstrated in validation cohorts (GSE16091 and GSE39058). Fur-
thermore, we established a clinically useful nomogram predicting OS using the four FRGs mentioned above. Risk 
scores were significantly associated with the proportion of tumor-infiltrating immune cells. Additionally, we used the 
Cytoscape software to identify hub FRGs, and found that TP53, HMOX1, SLC7A11, HRAS, VEGFA, and TXNRD1 were 
hub FRGs. By performing in vitro cell culture experiments, we demonstrated that invasion and migration capability 
of Saos2 and HOS cells were significantly weakened after CBS knock down. Conclusions: In conclusion, gene signa-
tures based on four FRGs were reliable in predicting OS in patients with osteosarcoma. Findings from this study will 
enable a better understanding of the prognostic significance of FRGs and tumor immunity in osteosarcoma. 
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Introduction

Among children and adolescents, osteosarco-
ma is the most common malignant tumor of the 
bone [1, 2]. The rather poor prognoses in 
patients with osteosarcoma is mainly due to 
the predisposition of osteosarcoma to metas-
tasize, especially to the lung [3]. Despite the 
advances made in chemotherapy, neoadjuvant 
chemotherapy, and immunotherapy for patients 
with osteosarcoma, long-term prognoses in 
these patients remain rather poor [1, 2, 4]. 
Therefore, seeking novel biomarkers and eluci-
dating the possible mechanisms involved 
remains urgent since it would enable research-
ers to develop brand new therapeutic strate-
gies and improve prognosis. 

Ferroptosis is characterized by an iron-depen-
dent abnormal accumulation of lipid hydroper-
oxides at lethal levels [5]. According to some 
previously published studies, ferroptosis kills 
cancer cells and also plays vital roles in the 
pathogenesis of malignant tumors [6-8]. 
Furthermore, in these studies, inducing ferrop-
tosis has been suggested as a potential thera-
peutic strategy triggering death in cancer cells 
[6-8]. With the growing number of published 
studies investigating ferroptosis, the number of 
known genes modulating ferroptosis and bio-
markers for ferroptosis is increasing remark-
ably. For example, it was reported that through 
suppressing the expression of SLC7A11, p53 
could increase the sensitivity of cancer cells to 
ferroptosis [9]. In human hepatocellular carci-
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noma cells, activation of the p62-Keap1-NRF2 
pathway prevents ferroptosis [10]. In human 
pancreatic ductal adenocarcinoma cells, fer-
roptosis was prevented by HSPA5 expression 
through increased stability of GPX4 [11]. 
Inhibition of HSF1 and HSFB1 could suppress 
growth of tumor cells through increasing the 
accumulation of iron and reactive oxygen spe-
cies (ROS) within tumor cells [12]. Additionally, 
a series of FRGs significantly associated with 
prognoses in patients with various tumors such 
as lung cancer [13], melanoma [14], ovarian 
cancer [15], and glioma [16] have been identi-
fied. Therefore, ferroptosis may also play cru-
cial roles in pathogenesis and progression of 
osteosarcoma and a comprehensive study 
investigating roles played by ferroptosis will 
potentially help us develop novel therapeutic 
strategies and improve survival in patients with 
osteosarcoma. 

In the present study, mRNA expression profiles 
of FRGs and corresponding clinical information 
of osteosarcoma patients were obtained from 
public databases. Then a prognostic signature 
utilizing multiple FRGs in TCGA was established 
and this model was validated in the GEO cohort. 
Subsequently, the correlations between FRGs 
and tumor immunity were evaluated. Ultimately, 
findings of this study were further validated by 
in vitro experiments. 

Materials and methods

Data processing

The relevant data for 366 FRGs (Table S1) we- 
re extracted from the FerrDb database (http: 
//www.datjar.com:40013/bt2104/), including 
drivers, suppressors, and markers. Differentially 
expressed genes (DEGs) between normal and 
osteosarcoma tissues derived from RNA-seq 
data of GSE16088 [17] were identified using 
the “limma” package [18]. Genes whose p-val-
ues were <0.05 and log2|fold change| values 
>1 were defined as DEGs. The “ggplot2” pack-
ages [19] and the “pheatmap” packages [20] 
were used to create volcano plots and heat-
maps respectively. 

Data of the training cohorts were obtained from 
TARGET (https://ocg.cancer.gov/) and TCGA 
databases. Data of the validation cohorts 
(GSE16091 [17] and GSE39058 [21]) including 

RNA-seq and corresponding clinical datasets 
were obtained from GEO database.

Construction and validation of a FRGs signa-
ture

Initially, data regarding clinical information and 
mRNA expression were extracted from TCGA 
and TARGET. Univariate Cox regression analysis 
was performed to identify FRGs with prognostic 
significance. The risk of overfitting was mini-
mized through constructing a prognostic model 
by performing LASSO Cox regression analysis. 
Variable selection and shrinkage were accom-
plished adopting the LASSO algorithm using 
the “glmnet” R package. Risk score (RS) was 
computed and evaluated using the following 
equation: RS = coefgene1 × Expgene1 + coefgene2 × 
Expgene2 + coefgenei × Expgenei. Based on the medi-
an RS, patients were correspondingly assigned 
into the high-risk group or low-risk group. Log-
rank test was performed to compare OS 
between two groups. Predictive capability of 
the model mentioned above was evaluated by 
plotting the receiver operating characteristic 
(ROC) curve using survival ROC package. 
Additionally, RS of patients from the validation 
cohort were calculated adopting the prognostic 
model obtained from the training cohort. In a 
similar way, ROC curves and survival curves of 
the validation cohort were plotted and visual-
ized using the methods mentioned above. 
Ultimately, a nomogram was constructed to 
predict OS using the “rms” package more intu-
itionally and conventionally. 

Tumor-infiltrating immune cell analysis and 
immune scores

The CIBERSORT tool [22] was used to assess 
tumor-infiltrating immune cells (TIICs) in TA- 
RGET datasets. The abundance ratio matrix of 
the 22 immune cells was obtained at P<0.05. 
The immune and stromal scores of the samples 
from the TARGET datasets were calculated 
adopting the ESTIMATE algorithm.

GO enrichment, KEGG pathway, and gene set 
variation analyses

Then by adopting the R software “clusterProfil-
er” package [23], we conducted KEGG pathway 
analyses and GO enrichment analyses, results 
of which were plotted using the “ggplot2” pack-
ages. The GSVA package of R was adopted to 
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estimate variations of key gene sets [24]. A 
gene expression matrix was used as the input 
for the GSVA algorithm to non-parametrically 
calculate GSVA scores. 

Identification of Hub genes and biological net-
works

Data in terms of protein-protein interaction 
(PPI) networks of differentially expressed FRGs 
were obtained from the STRING database. The 
PPI network was plotted and visualized using 
Cytoscape 3.7.2 software. As two topological 
features of the PPI network, degree and 
betweenness were used to determine potential 
hub genes. Of the identified hub genes, the first 
10 were selected and corresponding PPI net-
works of these ten hub genes were construct-
ed. NetworkAnalyst 3.0 was utilized to estab-
lish a transcription factor-microRNA (miRNA) 
co-regulatory network of prognosis-related 
genes and hub genes. 

Cell culture and transfection

We purchased Saos2 and HOS cell lines from 
the Cell Bank of the Chinese Academy of 
Sciences (Shanghai, China). Both cell lines 
were cultured in DMEM (Biological Industries, 
Shanghai, China) containing 10% FBS (Bio- 
logical Industries, Shanghai, China). RiboBio 
(Guangzhou, China) was responsible for design-
ing and synthesizing the siRNA and negative 
control siRNA oligonucleotides adopted in this 
study. Detailed information regarding sequenc-
es of si-1 and si-2 is presented in Table S2. 
According to the instructions provided by the 
manufacturer, we then performed siRNA trans-
fections using the Ribo FECT™CP Transduction 
Kit (RiboBio).

Quantitative real-time PCR and western blot-
ting

Quantitative Real-Time PCR (RT-PCR) and 
Western Blotting (WB) was conducted as the 
manufacturer’s instructions and previously 
described [25]. RT-PCR reagents including AG 
RNAex Pro Reagent, SYBR Green Premix Pro 
Taq HS qPCR Kit and Evo M-MLV RT Premix  
Kit were purchased from Accurate Biology 
(Changsha, China). Detailed information of 
primer sequences is listed in Table S2. WB 
reagents including RIPA buffer and BeyoECL 
Plus Kit were purchased from Beyotime 

Biotechnology (Shanghai, China). Anti-GAPDH 
(10494-1-AP) and anti-CBS (14787-1-AP) anti-
bodies were purchased from Proteintech corpo-
ration (Wuhan, China).

Cell migration and invasion assays

We performed transwell assays with the aim of 
further assessing the impact of CBS expression 
on migration and invasion of Saos2 and HOS 
cells. For transwell assays assessing migration, 
5 × 104 cells were plated into the upper cham-
ber containing serum-free medium (8 μm pore 
size, Corning, NY, USA) while 10% FBS-
supplemented medium was added into the 
lower chamber. Transwell assays assessing 
invasion were the same as transwell assays 
assessing migration except that the upper 
chamber was pre-coated with 10% Matrigel 
(Corning). After 36 hours of incubation, cells 
remaining in the upper chamber were rubbed 
off using swabs. Cells that passed through the 
membrane were chemically fixed using 4% 
paraformaldehyde and then stained using 0.1% 
crystal violet. Cells having migrated into the 
lower chamber were counted in five different 
fields using a microscope. 

Statistical analysis

In this study, most bioinformatics and statisti-
cal analyses were accomplished by R software 
including normalization and transformation of 
RNA-seq data, DEG analysis, ROC analysis,  
survival analysis, CIBERSORT, ESTIMATE, and 
GSVA. All quantitative data from in vitro experi-
ments were demonstrated as mean ± standard 
deviation of three independent experiments. 
One-way ANOVA analysis was performed using 
GraphPad Prism 8.0 (GraphPad, La Jolla, CA, 
USA) to analyze differences among three 
groups. Analyses whose P values were <0.05 
were considered as statistically significant.  

Results

Differentially expressed FRGs in osteosarcoma

The “limma” package was adopted to identify 
differentially expressed FRGs in GSE16088 
that included normal bone and osteosarcoma 
tissues. A heatmap illustrating FRG expression 
in GSE16088 was then established, which is 
presented in Figure 1A. Ultimately, a total of 50 
FRGs were identified as DEGs from 366 FRGs, 
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of which 31 were down-regulated and 19 were 
up-regulated (Figure 1B; Table S3).

Construction of a novel prognostic FRG signa-
ture based on LASSO

With the purpose of assessing the effects of 
FRGs expression on long-term outcomes in 
patients with osteosarcoma, we initially con-
ducted univariate Cox analysis to identify vari-
ables significantly associated with OS, results 
of which revealed that five candidate FRGs 
were significantly associated with OS (Figure 
2A). To further verify key genes significantly 
associated with prognosis of osteosarcoma 
patients, we used the “glmnet” package to 
accomplish LASSO regression analysis. Then 
we established the model adopting the method 
of five-fold cross-validation. The corresponding 
confidence interval for each lambda is demon-
strated in Figure 2B and the trajectory of the 
coefficient for each gene with a value of in 
(lambda) is presented in Figure 2C. Four genes 
were chosen as signature genes for the model. 

RS was calculated using the following formula: 
(-0.645 × Exp G6PD) + (0.232 × Exp VEGFA) + 
(0.597 × Exp CBS) + (-0.105 × Exp HMOX1). 
Then we assigned patients from the training 
cohort (TARGET) into the high-risk group or the 
low-risk groups according to the median RS. It 
was revealed by survival analysis that in com-
parison with patients with low risk, those with 
high risk had worse OS (Figure 2D). The expres-
sion heatmap of these FRGs and the survival 
status and RS of the patients in the OS model 

are presented in Figure 2E. To further assess 
the predictive capabilities of the FRGs men-
tioned above, we then accomplished time-
dependent receiver operating curve analyses, 
results of which revealed that the area under 
the ROC curve (AUC) for this OS predictive 
model was 0.782, 0.811, and 0.877 at 3, 5, 
and 7 years, respectively (Figure 2F).

Robustness of the Four-Gene Signature Model 
Verified by External Datasets

To further validate the predictive capability  
of the model mentioned above, we then per-
formed verification analysis using the GSE- 
16091 and GSE39058 datasets. As with the 
results of the training cohort, it was revealed 
that in comparison with patients with low risk, 
those with high risk had worse OS (Figure 3A). 
The expression heatmap of these FRGs and the 
survival status and RS of the patients in the OS 
model are presented in Figure 3B. The AUCs for 
this OS predictive model were 0.741, 0.737, 
and 0.703 at 3, 5, and 7 years, respectively 
(Figure 3C). In conclusion, four FRGs were 
determined, and a model based on these four 
genes that could reliably predict OS in patients 
with osteosarcoma was established. 

Building a predictive nomogram

The prognostic value of the RS model and other 
clinical parameters was subsequently evaluat-
ed by accomplishing both univariate and multi-
variate Cox analyses, results of which demon-
strated that for patients in the TARGET dataset 

Figure 1. Heatmap and volcano plot of 366 ferroptosis-related genes in normal bone tissues and osteosarcoma 
tissues from GSE16088. A. Heatmap. B. Volcano plot.
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Figure 2. Development of the overall survival (OS)-prediction model for osteosarcoma. A. Univariate COX regression 
analysis of OS in training cohort (TARGET). B. Partial likelihood deviance is plotted against log (lambda). C. Least 
absolute shrinkage and selection operator (LASSO) coefficient profiles of FRGs. D-F. Survival curve, survival status, 
risk score, heatmap, and receiver operating characteristic curve for low- and high-risk subgroups in the training 
cohort (TARGET).

(Figure 4A and 4B), RS was an independent 
prognostic factor for OS. Then a nomogram of 

clinical utility was generated to enable us to 
better predict survival in patients with osteo-
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Figure 3. Validation of the ov- 
erall survival-prediction model 
for osteosarcoma. A-C. Survival 
curve, survival status, risk score, 
heatmap, and receiver operat-
ing characteristic curve for low- 
and high-risk subgroups in the 
training cohort (GSE16091 and 
GSE39058).

sarcoma utilizing the four-
gene signature mentioned 
above. We then assigned a 
corresponding point to each 
gene based on the point scale. 
The specific location of each 
gene was determined by dr- 
awing a horizontal line. Then 
total scores of the patients 
were obtained by adding all 
the points based on the esti-
mated 3-, 5-, and 7-year sur-
vival rates of the patients. 

Differences in immune infil-
tration between risk groups

Given the fact that immune 
infiltration significantly affect-
ed survival in patients with 
malignant tumors, we furth- 
er used the CIBERSORT and 
ESTIMATE tools to assess the 
differences between risk gr- 
oups in terms of overall im- 
mune infiltration and immune 
cells. Results of the CIBER- 
SORT analysis demonstrated 
that in comparison with those 
in the high-risk group, the 
numbers of infiltrating CD8+ T 
cells and M1 and M2 macro-
phages in the low-risk group 
were significantly higher while 
the number of infiltrating M0 
macrophages was significant-
ly lower in the low-risk group 
(Figure 5A). The ESTIMATE 
results showed that the stro-
mal and immune scores in the 
low-risk group were higher 
than those in the high-risk 
group (Figure 5B). 

Subsequently, the differences 
between risk groups regarding 
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Figure 4. A nomogram for predicting 3-, 5-, and 7-year overall survival (OS) of the training cohort (TARGET). A. Uni-
variate and multivariate COX regression analysis of OS in the training cohort (TARGET). B. Nomogram for predicting 
3-, 5-, and 7-year OS. C. Calibration plots.

expression levels of some checkpoint genes 
were evaluated. For the high-risk group, almost 
all the known checkpoint genes were down-
regulated. The expression levels of CD274, 
HAVCR2, CTLA4, PDCD1, TIGIT, CD80, LAG3, 
CD96, CD86, and PDCD1LG2 were significantly 
different between risk groups (Figure 5D). 
Ultimately, the associations between TIICs, the 
four prognostic FRGs and the expression levels 
of immune checkpoint genes were explored. 
The expression level of G6PD was negatively 
associated with infiltration of resting mast cells 
while the expression level of CBS was positively 
associated with infiltration of CD8+ T cells and 
that of HMOX1 positively with activation of  
dendritic cells (Figure 5E). The associations 

between the expression levels of the four FRGs 
and the immune checkpoint genes are demon-
strated in Figure 5F. 

Biological functions and networks

We subsequently performed GO and KEGG 
analyses of these FRGs using the “clusterPro-
filer” package to further evaluate the functions 
of these aforementioned differentially ex- 
pressed FRGs and the possible mechanisms 
through which these differentially expressed 
FRGs regulated the biological behavior of 
osteosarcoma. 

As demonstrated in Figure 6A, these FRGs 
were mainly enriched and involved in the mito-
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Figure 5. Immune infiltration between risk groups. A. Violin plot comparing the proportions of tumor-infiltrating im-
mune cells (TIICs) in low- and high- risk groups in TARGET. B. Comparisons between the high- and low-risk groups 
in terms of stromal score and immune score. C. The Sankey diagram of risk score, immune score, and survival 
status. D. Differences in expression of immune checkpoint genes between low- and high-risk groups. E. Correlation 
heatmap of prognostic ferroptosis-related genes (FRGs) and TIICs. F. Correlation heatmap of prognostic FRGs and 
immune checkpoint genes. (*P<0.05, **P<0.01).

chondrial matrix, melanosome, pigment gran-
ule, oxidoreductase complex, tricarboxylic acid 
cycle enzyme complex, and flavin adenine dinu-
cleotide binding. Results of biological process 
analysis revealed that these FRGs were involved 
in response to oxidative stress and hypoxia, 
and homeostasis in number of cells. Addi- 
tionally, it was demonstrated through KEGG 
pathway enrichment analysis that the FRGs 
mentioned above participated in ferroptosis, 
hepatocellular carcinoma, carbon metabolism 
in cancer and bladder cancer (Figure 6B). 

Then GSVA was accomplished to compare 
between risk groups in terms of pathways, 
results of which revealed that significant differ-
ences between the two groups mainly lied in 
antigen processing and presentation, primary 
immunodeficiency, NK cell-mediated cytotoxic-
ity, lysosomes, and B cell receptor signaling 
pathway (Figure 6C).

To further investigate the potential functions of 
the aforementioned differentially expressed 
FRGs in osteosarcoma, we then used the 
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Figure 6. Biological functions and network. A, B. GO enrichment and KEGG pathway analysis of differentially ex-
pressed ferroptosis-related genes (FRGs). C. Gene set variation analysis of low- and high-risk groups in the TARGET 
cohort. D. Protein-protein interaction (PPI) network of differentially expressed FRGs. E. Identifying the first 10 FRGs 
and constructing the corresponding PPI network using the degree and betweenness topological methods. F. Tran-
scription factor-miRNA co-regulatory network of four prognosis-related FRGs.

Cytoscape3.7.2 software (Figure 6D) to plot PPI 
networks of these FRGs. The first 10 genes 
were chosen to construct their corresponding 
PPI networks adopting the betweenness and 
degree topological methods (Figure 6E). By 
combining results of these two methods, we 

identified six hub genes that included TP53, 
HMOX1, SLC7A11, HRAS, VEGFA, and TXNRD1. 
In addition, the transcription factor-miRNA co-
regulatory network of the four prognosis-relat-
ed FRGs (Figure 6F) was constructed using 
NetworkAnalyst.
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Invasion and migration capability of osteosar-
coma cells was significantly inhibited after cbs 
was being knocked down

Despite the fact that CBS had been identified 
as a prognosis-related FRG, its roles in osteo-
sarcoma remain ambiguous. Therefore, we con-
ducted in vitro cellular experiments to evaluate 
the effects of CBS on osteosarcoma cells. 
RT-PCR (Figure 7A) was conducted to assess 
the mRNA expression of CBS in different osteo-
sarcoma cell lines. Saos2 and HOS cells were 
transfected with siRNAs (si-nc, si-1, and si-2). 
Verified using RT-PCR and WB, it was revealed 
that in comparison with Saos2 and HOS cells 
transfected with si-nc, those transfected with 
si-1 or si-2 had significantly reduced levels of 
CBS expression (Figure 7B). Transwell assays 
revealed that both migration and invasion of 
Saos2 (P<0.05, Figure 7C) and HOS (P<0.05, 
Figure 7D) cells were significantly inhibited 
after CBS knock-down. Considering all these 
results mentioned above, we could conclude 
that CBS played significant roles in promoting 
osteosarcoma progression and might serve as 
a biomarker that could potentially predict prog-
nosis in patients with osteosarcoma. 

Discussion

As an iron-dependent and ROS-reliant cell 
death process, ferroptosis is characterized by 
the following cytological changes: a condensed 
mitochondrial membrane, decreased mito-
chondrial cristae, and rupture of the mitochon-
drial membrane [26]. The number of studies 
investigating the roles of ferroptosis in malig-
nant tumors is continuously increasing and 
these studies have enabled to better under-
stand the potential of ferroptosis in treating 
cancers. However, the roles played by ferropto-
sis and FRGs in osteosarcoma have not been 
fully explored. Therefore, a systematic study 
investigating the potential functions FRGs in 
osteosarcoma is necessary since this it will 
enable us to better understand novel mecha-
nisms contributing to progression of osteosar-
coma and potentially improve prognosis in 
patients with osteosarcoma. 

Initially, we identified 50 differentially expressed 
FRGs from 366 FRGs. Second, prognostic sig-
nificance of these differentially expressed FRGs 
was investigated. Third, Cox regression analy-
sis was performed and a model that could reli-

ably predict OS in patients with osteosarcoma 
was constructed. CBS, G6PD, HMOX1, and 
VEGFA genes were selected to establish this 
predictive model. By performing ROC analysis, 
we revealed that this predictive model for OS 
was accurate and reliable in stratifying osteo-
sarcoma patients, which was further validated 
by analyzing the data from GEO datasets 
(GSE16091 and GSE39058). All these results 
suggested that this model is clinically useful. 
Ultimately, an OS prediction nomogram that 
could help us to predict survival in patients 
more accurately was constructed. 

According to some previously published stud-
ies, ferroptosis and FRGs are the crucial regula-
tors of tumor immunity [27]. Thus, the effects 
of FRG-based risk score on tumor immunity 
were investigated. It was demonstrated by 
ESTIMATE that in comparison with the low-risk 
group, the high-risk group had significantly 
lower stromal and immune scores, indicating 
that the high-risk group had remarkably sup-
pressed immune responses. Additionally, it 
was revealed that compared with the high-risk 
group, the low-risk group had significantly 
greater infiltration of CD8+ T cells. Apart from 
their direct tumor cell-killing activity, CD8+ T 
cells could also induce ferroptosis within tumor 
cells [28, 29], which might explain why the 
prognosis in the low-risk group was significantly 
better than that in the high-risk group. 
Compared to the high-risk group, the low-risk 
group exhibited increased infiltration of M1 and 
M2 and decreased infiltration of M0 macro-
phages. We inferred that in comparison with 
the high-risk group, the low-risk group had a 
significantly higher proportion of M2 macro-
phage infiltration that was caused by a larger 
proportion of M0 cells polarized into M2 cells. It 
was also demonstrated that almost all the 
genes encoding immune checkpoint molecules 
were up-regulated in the low-risk group in com-
parison with the high-risk group. These immune 
checkpoint molecules are mainly distributed in 
activated T cells and antigen-presenting cells. 
Results of this study demonstrated that macro-
phages were the main antigen-presenting cells 
and CD8+ T cells were the chief activated T 
cells in osteosarcoma. Therefore, it was under-
standable that the elevated expression of 
immune checkpoint molecules in the low-risk 
group was the result of increased infiltration of 
M2 cells and CD8+ T cells in osteosarcoma. 
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Figure 7. Downregulation of cystathionine β-synthase (CBS) weakened the migration and invasion capability of os-
teosarcoma cells. A. CBS mRNA expression level in osteosarcoma cells. B. CBS knockdown in Saos2 and HOS cells 
was confirmed using RT-PCR and western blotting analyses. C, D. Migration and invasion capability of Saos2 and 
HOS cells was significantly weakened by downregulation of CBS expression (*P<0.05, **P<0.01).

Considering all the aforementioned results of 
this study, we conclude that the interactions 
between ferroptosis and immune responses 
are vital in promoting development and pro-
gression of osteosarcoma. 

Subsequently, potential functions and the likely 
related mechanisms of FRGs in osteosarcoma 
were investigated. It was revealed through 
GSVA that significant differences between risk 

groups mainly lied in antigen processing and 
presentation, primary immunodeficiency, NK 
cell-mediated cytotoxicity, lysosomes, and B 
cell receptor signaling pathway. By constructing 
a PPI network, we identified hub genes that 
included TP53, HMOX1, SLC7A11, HRAS, 
VEGFA, and TXNRD1, all of which had been 
reported to play crucial roles in osteosarcoma 
[30-33]. Additionally, G6PD was also indispens-
able for the growth of osteosarcoma cells [34]. 
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Unlike the clear roles of these molecules in 
osteosarcoma, roles played by CBS in osteosar-
coma remain unclear. According to a recent 
study, CBS expression leads to the metastasis 
of osteosarcoma cells to the lung [35]. By per-
forming in vitro experiments, we demonstrated 
that the invasion and migration capabilities of 
osteosarcoma cells were significantly inhibited 
after CBS was knocked down. Thus, CBS plays 
important roles in osteosarcoma progression, 
and it has the potential of serving as a prognos-
tic biomarker for this cancer. Nevertheless, fur-
ther studies are still warranted to facilitate in-
depth understanding the underlying mecha-
nisms related to FRGs. 

In conclusion, a comprehensive study investi-
gating the prognostic significance of potential 
functions of differentially expressed FRGs in 
osteosarcoma was accomplished. A model 
based on four FRGs that could reliably predict 
outcomes in patients with osteosarcoma was 
established and validated. Additionally, it was 
also revealed that the interactions between fer-
roptosis and immune responses played vital 
roles in progression of osteosarcoma and 
these interactions could be potential targets 
for developing novel therapeutic strategies  
and improving prognoses in patients with 
osteosarcoma. 
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Table S2. The sequences of primer and siRNA oligonucleotides
CBS F 5’-GGCCAAGTGTGAGTTCTTCAA-3’

R 5’-GGCTCGATAATCGTGTCCCC-3’
GAPDH F 5’-ACAACTTTGGTATCGTGGAAG-3’

R 5’-GCCATCACGCCACAGTTTC-3’
si-1 5’-GGAAGAAGUUCGGCCUGAATT-3’
si-2 5’-CCAUUGACUUGCUGAACUUTT-3’

Table S3. Differentially expressed ferroptosis-related gene
Gene logFC AveExpr t P.Value B
SAT1 3.589841 9.230784 14.22946 5.78E-11 15.44455
NQO1 -2.78865 7.012353 -10.8712 3.85E-09 11.28123
AHCY -2.02833 8.532941 -9.20331 4.55E-08 8.792027
ENPP2 5.208452 9.062647 8.974364 6.55E-08 8.424519
SUV39H1 -1.60952 7.631176 -8.79489 8.74E-08 8.131778
SLC7A11 -1.82524 5.203529 -8.3523 1.81E-07 7.392106
BRD7 -1.42905 7.456471 -8.00444 3.27E-07 6.792577
NF2 -1.47915 5.216639 -7.68698 5.69E-07 6.231198
HRAS -2.20786 7.501765 -7.58305 6.84E-07 6.044411
ZFP36 1.428333 8.042941 7.511918 7.77E-07 5.915723
SLC7A5 -2.19429 8.522941 -7.28063 1.18E-06 5.492469
AURKA -1.51786 7.1 -6.83269 2.69E-06 4.651724
TFAM -1.56587 6.148235 -6.63381 3.93E-06 4.26958
TXNRD1 -1.52524 9.210588 -6.43923 5.70E-06 3.890495
CS -1.11762 9.522941 -5.85695 1.80E-05 2.726183
TMBIM4 1.027619 7.942941 5.679109 2.57E-05 2.362058
CAV1 -2.07357 8.492353 -5.61781 2.91E-05 2.235672
CISD1 -1.7119 7.403529 -5.54242 3.40E-05 2.079637
P4HB 1.260357 11.03294 5.503797 3.68E-05 1.999457
TXNIP 2.523333 9.118039 5.434603 4.24E-05 1.855388
TSC22D3 1.63881 7.737941 5.313768 5.45E-05 1.602559
FH -1.22714 7.459412 -5.29704 5.64E-05 1.567445
SLC1A5 -1.00976 7.651765 -5.23603 6.40E-05 1.439104
CEBPG -2.05952 6.300588 -4.97479 0.000111 0.88556
WIPI1 1.913095 7.698824 4.838936 0.000148 0.595386
G6PD -1.9681 7.005882 -4.49803 0.000307 -0.13836
CDKN2A 1.818889 6.81902 4.417111 0.000365 -0.31344
AGPS -1.75524 6.661176 -4.17144 0.000622 -0.84618
MMP13 4.010476 8.739412 4.074713 0.000768 -1.05617
VEGFA 1.839048 8.293676 3.871691 0.001196 -1.49665
TP53 -1.42024 5.427059 -3.80248 0.001392 -1.64656
GOT1 -1.24786 7.642353 -3.71574 0.001682 -1.83413
PSAT1 -2.0831 7.981176 -3.69855 0.001747 -1.87125
CBS -1.79786 6.659412 -3.67181 0.001852 -1.92896
DDIT4 2.171667 8.811765 3.64257 0.001974 -1.99202
FXN -1.05238 6.62 -3.55945 0.002367 -2.17091
DLD -1.08333 8.741176 -3.4132 0.003256 -2.48411
GSK3B -1.12 7.577647 -3.31209 0.004057 -2.69924
CDCA3 -1.08 6.780588 -3.30327 0.004135 -2.71795
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CYBB 1.262619 5.806471 3.221716 0.004935 -2.89034
CD44 -1.14479 7.391397 -3.18821 0.005307 -2.96088
CTSB 1.284107 9.7325 3.140018 0.005889 -3.06199
LAMP2 1.060238 7.996471 3.088359 0.006582 -3.16993
YWHAE -1.26607 8.117353 -3.03797 0.007336 -3.27472
MTDH 1.127381 9.095098 2.992869 0.008081 -3.36808
SCP2 1.117381 8.623529 2.962658 0.00862 -3.43037
PEX2 1.008571 8.300588 2.663553 0.016231 -4.03499
RRM2 -1.12583 9.436176 -2.54696 0.020681 -4.26368
SLC38A1 -1.40024 7.233529 -2.33505 0.031866 -4.66703
HMOX1 1.119048 7.958235 2.179032 0.043472 -4.95237


