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Abstract: Background: Although it is well-known that adult and pediatric acute myeloid leukemias (AMLs) are ge-
netically distinct diseases, they still share certain gene expression profiles. The age-related genetic heterogeneities 
of AMLs have been well-studied, but the common prognostic signatures and molecular mechanisms of adult and 
pediatric AMLs are less investigated. Aim: To identify genes and pathways that are associated with both pediatric 
and adult AMLs and discover a gene signature for overall survival (OS) prediction. Methods: Through mining the 
transcriptome profiles of The Cancer Genome Atlas (TCGA) data sets of adult cancers and The Therapeutically 
Applicable Research to Generate Effective Treatments (TARGET) data of pediatric cancers, we identified genes that 
are commonly dysregulated in both pediatric and adult AMLs, further discovered a common gene signature, and 
built two risk score models for TCGA and TARGET cohorts, respectively with L0 regularized global AUC (area under 
the receiver operating characteristic curve) summary maximization. Results: We identified 57 genes that are dif-
ferentially expressed and prognostically significant in both adult and childhood AMLs. The top 4 Kyoto Encyclopedia 
of Genes and Genomes (KEGG) pathways enriched with those 57 genes include transcriptional misregulation, focal 
adhesion, PI3K-Akt signaling pathway, and signaling pathways regulating pluripotency of stem cells. We further iden-
tified a 6-gene signature including genes of ADAMTS3, DNMT3B, NYNRIN, SORT1, ZFHX3, and ZG16B for risk predic-
tion. We constructed a risk score model with one dataset (either TCGA or TARGET) and evaluated its performance 
with the other. The test AUCs for the risk prediction of TCGA data with a 2-year and 5-year OS cutoffs are 0.762 (P =  
2.33e-13, 95% CI: 0.69-0.83) and 0.759 (P = 7.26e-08, 95% CI: 0.66-0.85), respectively, while the test AUCs of 
TARGET data with the same cutoffs are 0.71 (P = 3.3e-07, 95% CI: 0.62-0.79) and 0.72 (P= 5.25e-09, 95% CI: 
0.65-0.80), respectively. We further stratified patients into 3 equal sized prognostic subtypes with the 6-gene risk 
scores. The P-values of the tertile partitions are 1.74e-07 and 3.28e-08 for the TARGET and TCGA cohorts, respec-
tively, which are significantly better than the standard cytogenetic risk stratification of both cohorts (TARGET: P = 
1.64e-06; TCGA: P = 1.79e-05). When validated with two other independent cohorts, the 6-gene risk score models 
remain a significant predictor for OS. Investigating the common gene expression program is significant in that we 
may extrapolate the findings from adults to children and avoid unnecessary pediatric clinical trials.
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Introduction

Acute myeloid leukemia (AML) is a complex dis-
ease for both adults and children of all ages 
resulting from genetic aberrations in hemato-
poietic progenitor cells [1]. AML is a highly het-
erogeneous disease both biologically and clini-
cally, which was originally stratified into differ-
ent risk groups based on cytogenetic and 
molecular genetic levels [2]. However, around 
50% of the patients are stratified into an inter-

mediate-risk group and remain difficult to 
assign to an appropriate therapy regimen [3, 4], 
exemplifying the need for improved stratifica-
tion of AML patients. Moreover, the widely 
accepted 2017 European LeukemiaNet (ELN) 
risk classification is only based on gene muta-
tions and cytogenetic abnormalities without 
using expression data [5].

Despite the progress in drug development and 
treatment methods, AML remains a catastroph-
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ic disease. The 5-year overall survival (OS) rate 
is 60-75% in pediatric AML, 35-40% in young 
adults under 60 years old, and only 5-15% in 
patients older than 60 years [6]. There is an 
urgent need for efficient prognosis of AML. 
Recently, different prognostic signatures with 
transcriptome profiles have been proposed for 
survival prediction including a 17-gene leuke-
mia stem cell (LSC) score [7], a 10-gene signa-
ture [8], a 3-gene signature [9], and a 85-gene 
signature [10]. However, those gene signatures 
are developed for either adults or children,  
but not for both, although the LSC17 score  
can be used for pediatric risk stratification with 
less accuracy [11]. The common gene signa-
tures in both pediatric and adult AMLs are far 
less investigated. However, it is reasonable to 
assume that childhood and adult AMLs share 
certain gene expression programs even though 
they are known to be genetically distinct [11, 
12]. Investigating the common biological mech-
anisms of pediatric and adult AMLs is critical 
for drug development. It provides an opportu-
nity of extrapolating the findings from adult to 
children, which avoids unnecessary clinical tri-
als and reduces the burdens on children. 

In this manuscript, we aim to mine AML RNA-
seq databases from The Cancer Genome Atlas 
(TCGA) and the Therapeutically Applicable Re- 
search to Generate Effective Treatments (TA- 
RGET), explore the common gene signatures 
differentially expressed in distinct risk groups 
and associated with overall survival of pediatric 
and adult AMLs, and build interpretable 6- 
gene risk score models with L0 penalized global 
AUC summary maximization (L0GAUCS) [13]. 
AUC (area under the receiver operating charac-
teristic (ROC) curve) is a commonly used per- 
formance measure in machine learning. The 
6-gene score system can accurately stratify 
both adult and childhood AMLs into distinct risk 
subtypes and may be used to make predictions 
for personalized treatment. 

Materials and methods 

Data sources

TCGA adult AML data: The RNA-seq gene 
expression data of TCGA are downloaded from 
the Cancer Genomics Portal (https://www.cbio-
portal.org/). Total of 173 samples with 20531 
raw gene counts are available in the dataset. 

The ages of the patients range from 18 to 88 
years. Both overall and progression free  
survival together with other clinical information 
are available. The raw counts are normalized 
with log2 transformation and quantile nor- 
malization. 

TARGET pediatric AML data: The TARGET RNA-
seq data for pediatric AML are downloaded 
from the Genomic Data Commons (GDC; portal.
gdc.cancer.gov/). This cohort consists of 187 
samples. The raw transcriptomic counts were 
originally produced using the Illumina HiSeq 
platform in the Genomic Data Commons repos-
itory (https://gdc.cancer.gov/). The raw reads 
were aligned to Genome Reference Consortium 
Human Build 38 (GRCh38) using the Spliced 
Transcripts Alignment to a reference (STAR) 
software in a 2-pass mode and gene counts 
were produced using the high-throughput se- 
quencing (HTSeq)-counts workflow with gene 
code (Gencode) v22 annotations. The data pro-
cessing pipeline can be found at the GDC web-
site. After dropping the genes with zero read, 
there were 21047 genes with nonzero reads. 
The raw data was normalized with a trimmed 
mean of m (TMM) values and converted to log2 
counts per million.

Other AML datasets: To further validate the 
adult and pediatric score models, we down-
loaded two independent AML gene expression 
datasets from Gene Expression Omnibus (GEO: 
https://www.ncbi.nlm.nih.gov/geo/). The first 
one is GEO Series 37642 (GSE37642) [14]. This 
data was collected from different Affymetrix 
platforms. We utilize the largest part of the 
data collected from the human genome U133A 
(HG-U133A) array. There are 422 patients and 
21225 probes available. This is an adult AML 
with the median age of 57 (range: 18-83). 
Prognostic information including overall surviv-
al and censored status is also available in 417 
subjects, providing a nice source for validating 
the gene signature. The other one is GSE12- 
417 [15]. There are 79 patients with cytogeneti-
cally normal AML available in this cohort. The 
data was originally generated from the Affy- 
metrix HG-U133-Plus-2 platform. Both survival 
and gene expression data are available. There 
are 45782 probes and, therefore, more anno-
tated genes with this platform. This is also an 
adult cohort with the median age of 62 (range: 
18-85). 



A common prognostic signature for adult and pediatric AML

6212 Am J Transl Res 2022;14(9):6210-6221

An interpretable score system with L0GAUCS 
maximization 

An interpretable score system should be linear 
and sparse, and easy to understand for a lay-
man. Given a random sample with n observa-
tions y , c , x 1i i i i

n
=" , , where yi represents the over-

all survival or censored time, ci denotes a cen-
sored indicator (1/0 for dead/censored), and xi 
=  [xi1, xi2,…, xip]

T is the input vector (such as 
gene expression), we aim to develop a score 
system Mi = M (xi) = βTxi, where β = [β1, β2,…,  
βp]

T are the regression coefficients for observa-
tion i. Given a pair of variables xi and xj, and 
corresponding score functions of Mi = M (xi) = 
βTxi, and Mj = M (xj) = βTxj respectively, the glob-
al AUC Summary (GAUCS) is defined as the con-
ditional probability:

GAUCS = Pr (Mi>Mj|yi<yj),

indicating the probability that a subject who 
died earlier has a larger risk score [13, 16]. We 
first sort the survival time y 1i i

n
=" ,  from the  

least to the largest, the sample estimate for 
GAUCS (β) given parameters β is:
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Where 1a>b = 1 if a>b, and 0 otherwise.

The optimization problem for estimating the 
parameters β is defined as:

max maxGAUCS P M M y y , s.t. <)r i j i j 0= 2 1 ;; ;;b b cb b^ ^h ,

Where 0;; ;;b  is the L0 norm representing the 
number of nonzero parameters, and γ is a posi-is a posi-
tive free parameter. Mi>Mj is equivalent to  
βT (xi-xj)>0 for a pair of subjects with overall sur-
vival time yi<yj (or i<j without confusion) and  
ci = 1. If we introduce a margin 1 for the 
inequalities and a quadratic error function, we 
have the following quadratic support vector 
machine (SVM) optimization problem:
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/  and λ is a free parame-
ter controlling the sparsity of the score 
function. 

The above model system can be solved effi-
ciently [13].

Other software includes different R packages 
for visualization and plot generation, en- 
richment analysis with the Enrichr web tool 
(https://maayanlab.cloud/Enrichr/), and Bio- 
informatics, Statistics and Machine Learning 
toolboxes in MATLAB (https://www.mathworks.
com/) for score function construction. More 
specifically, the Venn diagrams in Figure 1 are 
generated with the VennDiagram package in  
R and the heatmap is produced with the 
clustergram.m function in the Bioinformatics 
toolbox of MATLAB. The ggplot2 function is 
used to generate the bar chart of KEGG path-
ways (Figure 2). The survminer and survival 
packages in R is used to produce the Kaplan-
Meier curves and rocmetrics.m function in sta-
tistics and machine learning toolbox of MATLAB 
is utilized to draw the receiver operating char-
acteristic (ROC) curves. We also perform the 
protein-protein interaction and enrichment 
analysis with STRING (https://string-db.org/), 
which is a database of known and predicted 
protein-protein interactions.

Results

Fifty-seven genes are commonly dysregulated 
and prognostically significant in both adult and 
pediatric AMLs

Based on the risk stratification with cytogenet-
ics in TCGA and TARGET cohorts, we identify 57 
genes that are dysregulated and prognostically 
significant in both adult and pediatric AMLs. 
The differentiated genes among different risk 
groups for each cohort are detected with 
Student’s t-test and the one-vs-rest compari-
sons. As demonstrated in Figure 1A, there are 
659, 1572, and 440 upregulated genes in  
the Low, Standard, and High risk groups of 
TARGET, respectively, while 567, 230, and 414 
genes are upregulated in the Good, In- 
termediate, and Poor risk groups of TCGA, 
respectively. However, only 31, 20, and 6 gen- 
es are commonly upregulated and prognosti-
cally significant in Good/Low, Intermediate/
Standard, and Poor/High risk groups, respec-
tively, in both pediatric and adult AMLs. The 
prognostic significance is measured by univari-
ate Cox regression with the P value <0.05. The 
heatmaps of the 57 identified genes for TARGET 
and TCGA are presented in Figure 1B and 1C, 
respectively. More specifically, we found that 
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Figure 1. Commonly differentiated and prognostically significant genes in both The Cancer Genome Atlas (TCGA) 
and Therapeutically Applicable Research to Generate Effective Treatments (TARGET) cohorts. A: Venn diagram for 
overlapped genes in two cohorts: A1: overlapped genes in low/good risk group; A2: overlapped genes in Standard/
Intermediate risk group; A3: overlapped gene in High/Poor risk group. B: Heatmap for the 57 identified genes in 
TARGET. C: Heatmap for the same 57 genes, where the bottom 6 genes are upregulated in High/Poor risk AMLs, 
middle 20 genes are upregulated in Standard/Intermediate risk group, and upper 31 genes are upregulated in Low/
Good risk group.

between two data sets, 31 genes are upregu-
lated in the Good/Low risk group (A1), 20 genes 
are upregulated in the Intermediate/Standard 
risk group (A2), and only 6 genes are commonly 
upregulated in the Poor/High risk group (A3). 
Therefore, the expression of 57 genes was 
commonly up- or down-regulated in childhood 
and adult AMLs in both data sets (TCGA  
and TARGET). Interestingly, eight homeobox-A 
(HOXA) genes including HOXA2-A7, and HOXA9-
10 are upregulated and prognostically signifi-
cant in both data sets. 

Pathways and biological functions shared by 
adult and pediatric AMLs 

The enrichment analysis was performed with 
Enrichr. As demonstrated in Figure 2, 57 com-
mon genes are enriched in top KEGG pathways 
including transcriptional misregulation in can-
cer, focal adhesion, PI3K-Akt signaling path-
way, signaling pathways regulating pluripotency 
of stem cells, and others (P<0.05). The enriched 
GO terms with the 57 selected genes are fur-
ther presented in Supplementary Figure 1. 
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Molecular functions are mainly involved in  
different types of DNA bindings (P<0.01); the 
top enriched biological processes include  
anterior/posterior pattern specification, skele-
tal system morphogenesis, negative regulation  
of myeloid cell differentiation, and others 
(Supplementary Figure 1B); and the top 
enriched cellular components are involved in 
collagen-containing extracellular matrix, elastic 
fiber, phagocytic vesicle lumen, hemidesmo-
some, and others (Supplementary Figure 1C). 
Finally, protein-protein interaction (PPI) net- 
work analysis is performed with STRING. As 
shown in Supplementary Figure 2, 56 out of  
57 commonly differentiated genes are present-
ed on the network. Interestingly, the 8 HOXA 
genes function together and interact with 
MEIS1 and IRX1 to form a cluster on the net-
work. This cluster may play an important role in 
both pediatric and adult AMLs. 

Construction and validation of risk score mod-
els for pediatric and adult AMLs

Genes are normalized with z-score before con-
structing risk score models with L0GAUCS and 
57 commonly differentiated genes. The free 
parameter λ is set to 50 with 4-fold cross-vali-
dation and 6 genes are selected. To develop a 

risk score model that performs well with both 
pediatric and adult AMLs, we construct a model 
with one dataset and validate it with the other. 
The datasets for model construction and vali-
dation are named training and test data, 
respectively. Therefore, two risk score models 
are developed: First, we construct a pediatric 
score model with the TARGET data and predict 
the OS of the TCGA (adult) cohort. The 6-gene 
pediatric risk model is as follows:

TARGET risk score = -0.0604 × ADAMTS3 + 
0.1853 × DNMT3B + 0.0288 × NYNRIN + 
0.1719 × SORT1 - 0.0633 × ZFHX3 - 0.0373 × 
ZG16B. 

Similarly, we construct an adult 6-gene risk 
score model with the TCGA data and predict the 
OS of the TARGET (pediatric) cohort. The adult 
risk score model is as follows:

TCGA risk score = -0.0503 × ADANTS3 + 
0.1181 × DNMT3B + 0.0842 × NYNRIN + 
0.2405 × SORT1 - 0.0831 × ZFHX3 - 0.1223 × 
ZG16B. 

Note that a positive model coefficient is associ-
ated with poor OS, while a negative model coef-
ficient is associated with better OS. 

Figure 2. Enriched KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways with 57 commonly differentially 
expressed and prognostically significant genes. 
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The six-gene risk score models predict the OS 
of both adult and pediatric AMLs

To evaluate the performance of risk score mod-
els in predicting overall survival, we split the 
patients into high- and low-risk groups with two 
different cutoffs including a 2-year and 5-year 
cutoffs and evaluate the specificity and sensi-
tivity of the risk score models with training and 
test AUCs (area under the receiver operating 
characteristic curves). The training AUC is the 
AUC calculated with the same data the model 
was developed, while the test AUC is the AUC 

CI: 0.67-0.82) for a 2-year and a 5-year cutoff, 
respectively, while Figure 3B2 demonstrates 
that the training AUCs of TCGA data are 0.771 
(P = 1.42e-14, 95% CI: 0.701-0.841) and 0.767 
(P = 1.36e-08, 95% CI: 0.673-0.862) for the 
same cutoffs. Therefore, statistically significant 
training AUCs are achieved by both pediatric 
and adult risk score models, indicating that the 
6-gene signature is strongly associated with 
the OS of adult and pediatric AMLs.

The test AUC for the performance of different 
risk models with the same cutoffs are demon-

Figure 3. Training and test area under the receiver operating characteris-
tic curves (AUCs) with a two-year and five-year overall survival (OS) cutoffs. 
(A) Results from TARGET risk score model; (B) Results from TCGA risk score 
model. Top panel: Model coefficients with the 6-gene signature estimated 
with the TARGET (A1) and TCGA (B1) cohorts, respectively. Middle panel (A2, 
B2): Training AUCs with a 2-year and a 5-year OS cutoffs and different risk 
score models, where training AUC denotes the AUC evaluated with the same 
dataset that the model was constructed, and test AUC measures the AUC 
with an independent dataset. Bottom panel (A3, B3): The test AUCs with 
2-year and 5-year cutoffs and the TARGET and TCGA risk score models. 

measured with a different 
dataset. For instance, we con-
struct a pediatric risk score 
model with the TARGET data, 
in which AUC measured with 
TARGET is the training AUC, 
while AUC calculated from the 
independent TCGA data is a 
test AUC. The computational 
results are reported in Figure 
3.

As demonstrated in Figure 3, 
the left panels (Figure 3A1-
A3) show the results with the 
TARGET (pediatric) score mo- 
del, and the right panels (Fi- 
gure 3B1-B3) represent the 
results with the TCGA (adult) 
score model. The coefficients 
of two risk models are report-
ed on the top panels (Figure 
3A1, 3B1), where 3 genes 
(DNMT3B, NYNRIN, and SO- 
RT1) have positive coeffi-
cients, and therefore, nega-
tive associations with OS, and 
3 other genes (ADAMTS3, ZF- 
HX3, and ZG16B) have nega-
tive coefficients, and hence, 
positive correlations with the 
OS. The training AUCs with a 
2-year and a 5-year cutoff are 
presented in the middle pan-
els (Figure 3A2, 3B2) of Fi- 
gure 3. As shown in Figure 
3A2, the training AUCs of the 
TARGET data are 0.710 (P = 
1.92e-07, 95% CI: 0.63-0.79) 
and 0.746 (P = 2.21e-11, 95% 
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strated in the bottom panels (Figure 3A3, 3B3) 
of Figure 3. The test AUCs of the TCGA cohort 
with the TARGET risk model are reported in 
Figure 3A3. The corresponding test AUCs are 
0.771 (P = 1.42e-14, 95% CI: 0.701-0.841), and 
0.767 (P = 1.36e-08, 95% CI: 0.673-0.862) for 
a 2-year and a 5-year cutoff, respectively, indi-
cating the predictive power of the pediatric risk 
score model. On the other hand, the test AUCs 
of TARGET data with the TCGA risk score model 
are reported in Figure 3B3. The corresponding 
test AUCs of TARGET cohort for a 2-year and a 
5-year cutoff are 0.71 (P = 3.29e-07, 95% CI: 
0.625-0.787) and 0.72 (P = 5.25e-09, 95% CI: 
0.645-0.797), respectively, demonstrating the 
predictive power of the TCGA risk score model. 

TCGA cohorts, respectively. More specifically, 
the standard cytogenetic risk stratification for 
TARGET data is shown in Figure 4A1 with the 
P-value of 1.64e-06 with median OS of 12.25, 
35.94 months, and not reached, while risk 
stratification of the TARGET data with the TCGA 
risk score model has the P-value of 1.74e-07 
(Figure 4A2) with the median OS of 19.94, 
44.74 moths, and not reached for the high- (3), 
intermediate- (2), and low-risk (1) scores, 
respectively, indicating that it has a better risk 
stratification than cytogenetics with a smaller 
P-value. In addition, the TCGA score model with 
tertile partition assigns one-third (62) of the 
TARGET patients into the high-risk group, while 
cytogenetic stratification includes only 12 high-

Figure 4. Risk stratification with different approaches and score models. Left 
panel: Risk groups stratified with cytogenetics in TARGET (A1) and TCGA (B1) 
cohorts. Right panel: Risk stratification with the score models constructed 
from the other dataset, where 1: risk score low; 2: risk score intermediate; 
and 3: risk score high. (A2) demonstrates the Kaplan-Meier curves of TAR-
GET data stratified by TCGA score model, while (B2) shows the Kaplan-Meier 
curves of TCGA data stratified with TARGET score model.

Finally, global AUC Summary 
(GAUCS) in the L0GAUCS algo-
rithm measures the average 
AUC with all possible OS cut-
offs. Although the coefficients 
of the pediatric and adult risk 
score models are not the 
same, both models achieve 
the same training and test 
GAUCS (0.70 and 0.69), 
respectively, indicating the 
robustness of the 6-gene sig-
nature in the OS prediction of 
adult and pediatric AMLs.

The six-gene signature per-
forms better than cytogenet-
ics in risk stratification of 
TARGET and TCGA cohorts

To evaluate the performance 
of the 6-gene signature in ri- 
sk stratification, we split the 
patients in TCGA and TARGET 
cohorts into 3 equal-sized, 
adjacent subgroups (3-quan-
tiles or tertials) with the value 
of TARGET and TCGA risk 
scores respectively and com-
pare their performance to the 
known cytogenetic risk groups 
with Kaplan-Meier curves and 
log-rank test. The results are 
reported in Figure 4.

As demonstrated in Figure 4, 
the top panels (Figure 4A1, 
4A2) and bottom panels (Fi- 
gure 4B1, 4B2) are the risk 
stratification for TARGET and 
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risk patients. Patients assigned to high-risk 
subgroups should be treated differently from 
other groups. Similarly, the cytogenetic risk 
stratification of TCGA data shown in Figure 4B1 
achieves the P-value of 1.79e-05 with the 
median OS of 7.2, 17 months, and not reached, 
while risk stratification of the TCGA data with 
TARGET risk score model has the P-value of 
3.28e-08 (Figure 4B2) with the median OS of 
7.5, 17.1 months, and not reached. Again, risk 
stratifications of TCGA cohort with TARGET risk 
score model achieves significantly better strati-
fication with much smaller P-values. Although 
the median OS times are significantly different 
in TARGET and TCGA cohorts, the 6-gene signa-
ture is robust in OS prediction of both cohorts. 
Risk score models developed by either dataset 
can predict the OS of the other.

The six-gene signature predicts the overall sur-
vival of two independent cohorts

Two independent cohorts (GSE37642 and 
GSE12417) are used to further validate the 

0.722), respectively, although there is one gene 
missing in this cohort. The TARGET score model 
also discriminates the risk of GSE12417 well 
(Figure 5B1). The test AUCs of GSE12417 are 
0.641 (P = 0.013, 95% CI: 0.516-0.767) and 
0.628 (P = 0.037, 95% CI: 0.49-0.768) for a 
2-year and a 3-year cutoff, respectively.

Risk stratification with TARGET risk score and 
tertile partitions are reported on the bottom 
panels of Figure 5. TARGET score model suc-
cessfully stratifies the patients of GSE37642 
into 3 prognostically distinct groups with the P 
value of 5.44e-07 and median OS of 7.8, 14.6, 
and 20.4 months, respectively (Figure 5A2). 
Although GSE12417 is a smaller cohort with 
only 79 patients, TARGET score model divides it 
into 3 clinically relevant groups (Figure 5B2) 
with the P-value of 0.00344 and median OS  
of 8.3, 20.5 months, and not reached. Par- 
ticularly, we identify a high-risk subtype with 
one third (26) of the patients and the median 
survival time of 8.3 months. 

Figure 5. Overall survival (OS) prediction for two independent cohorts: 
GSE37642 (A) and GSE12417 (B), with the 6-gene pediatric risk score model 
from TARGET data. Top panel: Test AUCs with TARGET risk scores and two 
different OS cutoffs. Bottom panel: Patient stratification with TARGET risk 
scores with the tertile partitions.

6-gene signature in OS pre- 
diction. Both GSE37642 and 
GSE12417 are adult cohorts 
with different Affymetrix plat-
forms. Particularly, 5 out of 6 
genes of the signature are 
available in the GSE37642 
cohort. The expression of 
ZG16B was not measured. In 
such a case, the remaining 
genes and corresponding co- 
efficients are utilized for the 
prediction. The result with the 
TARGET risk score model is 
reported in Figure 5. 

The results for GSE37642 and 
GSE12417 are reported on 
the left and right panels of 
Figure 5. The top panels 
(Figure 5A1 and 5B1) are the 
test AUCs and ROC curves 
with different cutoffs. Note 
that a 3-year cutoff is used for 
GSE12417, as its maximal OS 
time is less than 5 years. As 
demonstrated in Figure 5A1, 
the test AUCs of GSE37642 
with 2-year and 5-year cutoffs 
are 0.655 (P = 1.06e-08, 95% 
CI: 0.601-0.709) and 0.663 (P 
= 4.07e-08, 95% CI: 0.603-
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Similar results with the TCGA risk score model 
are reported in Supplementary Figure 3, indi-
cating that the 6-gene signature remains a sig-
nificant OS predictor for two independent 
cohorts with different sample sizes and plat-
forms. Therefore, the 6-gene signature is highly 
reproducible and robust across cohorts. 

Discussions

Although pediatric and adult AMLs are known 
to be genetically distinct diseases, they share 
certain expression profiles. We identified 57 
genes shared by pediatric and adult AMLs, dif-
ferentially expressed among different risk 
groups, and prognostically significant with OS. 
The 57 genes are enriched in several KEGG 
pathways and biological functions. We discov-
ered that the HOXA cluster including HOXA2- 
A7 and HOXA9-10 is highly preserved in pediat-
ric and adult AMLs. HOXA family genes are cru-
cial transcription factors involving angiogene-
sis, autophagy, differentiation, apoptosis, pro-
liferation, invasion, and metastasis [17, 18]. 
They are also associated with the emergence 
and maintenance of long-term repopulating 
hematopoietic stem cells [19]. The deregula-
tion of HOXA gene expressions has been found 
in different cancers including AML [20]. HOXA 
genes are usually complex with co-factors to 
activate genes involved in various molecular 
functions [21]. We discovered that the known 
HOXA mutually exclusive gene IRX1 [22] and 
one HOXA cofactor MEIS1 [23] were also differ-
entially expressed and prognostically signifi-
cant in both pediatric and Adult AMLs (Figure 
1B, 1C). 

Different gene signatures with transcriptome 
profiles have been developed for either adult  
or pediatric AMLs, but not for both. We identi-
fied a 6-gene signature with genes of ADA- 
MTS3, DNMT3B, NYNRIN, SORT1, ZFHX3, and 
ZG16B. The predictive power of this gene sig- 
nature was evaluated with test AUCs of TCGA 
(adult) and TARGET (pediatric) data. We build a 
risk score model with one dataset and evaluate 
the performance with the other, and the test 
AUCs with a 2-year and 5-year cutoffs are at 
least 0.71, which is significantly better than 
random guess. Kaplan-Meier survival analysis 
and log-rank test also demonstrate that the 
risk score model built with one data can stratify 
the patients of the other into 3 clinically distinct 

risk groups with the P-values that are signifi-
cantly better than the popular 17-gene (LSC17) 
score model. The LSC17 score was originally 
developed for adult AMLs but applied to pediat-
ric AML recently. It has the P value of 0.025, 
and fails to distinguish low and intermediate 
risk groups, when applied to the same TARGET 
data [7, 11]. To further validate the predictive 
power of the 6-gene signature, we apply the 
two risk score models to two independent 
cohorts (GSE37642 and GSE12417), and the 
6-gene signature remains a statistically signifi-
cant predictor of OS in both cohorts.

Among the 6-genes in the proposed score 
model, two genes, DNMT3B and NYNRIN, are 
also included in the LSC17 score. Both DNM- 
T3B and NYNRIN are RNA binding proteins 
(RBPs) studied previously and are thoroughly 
described in the literature [11, 12]. DNMT3B 
encodes a DNA methyltransferase implicated 
in aberrant epigenetic changes contributing to 
leukemogenesis [24]. Other genes are also 
involved in different biological processes. 
SORT1 (sortilin 1) is a gene known to promote 
cell survival and characterized as an onco- 
genic factor for cells [24, 25]. We confirm that 
SORT1 is the top gene associated with bad OS 
with the largest model coefficient in TCGA risk 
score model. In addition, ADAMTS3 is a mem-
ber of the ADAMTS family and plays an impor-
tant role in the development of a variety of dis-
eases [26]. Our study confirmed that ADA- 
MTS3 is upregulated in the low-risk group, and 
its overexpression is correlated with good OS. 
Moreover, ZFHX3 (zinc-finger homeobox 3) also 
known as ATBF1 is a large transcription factor 
that functions in tumorigenesis, development, 
and other biological processes [27]. The 
reduced ZFHX3 gene expression has been 
shown in different cancers, indicating its puta-
tive role as a tumor-suppressor. For example, 
ZFHX3 inhibits cell proliferation and plays a 
suppressor role in prostate cancer [28]. Our 
study indicates that ZFHX3 is downregulat- 
ed in high- and intermediate-risk AMLs, and 
ZFHX3 overexpression is associated with a 
good OS of AMLs. Finally, ZG16B was known to 
be a growth factor in pancreatic cancer [29]. 
However, in the survival analysis of breast can-
cer patients, high expression of ZG16B repre-
sents a favorable prognosis [30]. In our analy-
sis, high expression of ZG16B is associated 
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with good OS in both adult and pediatric AMLs, 
while ZG16B downregulation is observed in the 
poor and intermediate risk groups of AMLs.

Conclusions

Pediatric and adult AMLs share certain gene 
expression profiles, although they are known to 
be genetically distinct diseases. Based on the 
TCGA (adult) and TARGET (pediatric) transcrip-
tomic data, we discovered 57 commonly differ-
entially expressed and prognostically signifi-
cant genes in both cohorts, and the 57-genes 
are enriched in several KEGG pathways and 
biological processes. We further identified a 
6-gene signature and construct two risk score 
models with L0GAUCS maximization. We train 
the risk score model with one data and vali- 
date it with the other. Statistically significant 
training and test AUCs are achieved in risk pre-
diction with different cutoffs. Furthermore, we 
stratify the AML patients of TCGA and TARGET 
cohorts into 3 risk groups with a tertile score 
partition and achieve P-values that are signifi-
cantly better than the standard cytogenetic  
risk stratification of both cohorts. The 6-gene 
signature remains a statistically significant pre-
dictor of OS, when validated with two addi- 
tional datasets from different platforms. One 
drawback of the cytogenetic stratification is 
that it only assigns a small percentage of the 
AML patients into the high-risk group. Our 
6-gene risk score models assign one third of 
the patients into each risk group and allow us 
to develop novel therapeutic strategies for indi-
vidual patients. Investigating the common gene 
expression program is critical in that we may 
extrapolate the findings from adults to children, 
avoiding unnecessary clinical trials, and reduc-
ing the burdens to children.
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Supplementary Figure 1. Enrichment analysis (GO terms) of the 57 selected genes.



A common prognostic signature for adult and pediatric AML

2 

Supplementary Figure 2. Protein-protein Interaction (PPI) networks of the 57 commonly differentiated genes from 
STRING (https://string-db.org/).



A common prognostic signature for adult and pediatric AML

3 

Supplementary Figure 3. Overall survival (OS) prediction for two independent cohorts, GSE37642 (left panels) and 
GSE12417 (right panels), with TCGA 6-gene adult risk score model. Top panel: Test AUCs with TCGA risk scores and 
two different OS cutoffs. Bottom panel: Patient stratification with TCGA risk scores with the tertile partitions.


