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Abstract: Objectives: To classify breast cancer (BRCA) according to the expression of pyroptosis-related genes and 
explore their molecular characteristics. Methods: Nonnegative matrix factorization (NMF) was used for subtype clas-
sification based on 21 pyroptosis-related genes in the TCGA database. Survival analysis and t-distributed stochastic 
neighbor embedding (t-SNE) analysis were conducted to assess the NMF results’ performance. XGBoost, CatBoost, 
logistic regression, neural network, random forest, and support vector machine were utilized to perform supervised 
machine learning and construct prediction models. Genetic mutations, tumor mutational burden, immune infiltra-
tion, methylation, and drug sensitivity were analyzed to explore the molecular signatures of different subtypes. 
Lasso, RF, and Cox regression were operated to construct a prognostic model based on differentially expressed 
genes. Results: BRCA patients were divided into two subtypes (named Cluster1 and Cluster2). Survival analysis 
(P = 0.02) and t-SNE analysis demonstrated that Cluster1 and Cluster2 were well classified. The XGBoost model 
achieved reliable predictions on both training and validation sets. Regarding molecular characteristics, Cluster1 had 
higher TMB, immune cell infiltration, and m6A methylation-related gene expression than Cluster2. There was also a 
statistically significant difference between the two subtypes concerning drug susceptibility. Finally, a 5-gene prog-
nostic model was constructed using Lasso, RF, and Cox regression and validated in the GEO database. Conclusion: 
Our study may provide new insights from bioinformatics and machine learning for exploring pyroptosis-related sub-
types and their respective molecular signatures in BRCA. In addition, our models may be helpful for the treatment 
and prognosis of BRCA.
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Introduction

Breast cancer (BRCA) is now the most common 
cancer worldwide [1], which accounts for app- 
roximately 31% of new cancer cases in women 
[2]. Clinical outcomes of BRCA patients have 
been greatly improved due to the development 
of molecular characterization and its related 
targeted treatments, including ER, PR, HER2 
(ERBB2), and Ki-67 (MKI67). Based on the 
molecular subtyping, the administration of che-
motherapy, endocrine therapy, ERBB2-targeted 
interventions, or their combination could be 
given reasonably [3]. In addition, the efficacy  
of novel drugs such as CDK4 and CDK6 inhibi-
tors, PI3K inhibitors, PARP inhibitors, and im- 
mune checkpoint inhibitors also depends on 
the molecular characteristics of BRCA [4]. So, it 
is of great significance to find new subtypes to 

explore their respective molecular features for 
the treatment of BRCA.

Pyroptosis, a type of programmed cell death 
characterized by the pore formation of gasder-
mins in the plasma membrane, can activate 
potent proinflammatory responses [5]. Many 
studies have shown that pyroptosis plays an 
essential role in many tumors and is closely 
related to tumor therapy [6-8]. Further, some 
studies have shown that pyroptosis is associat-
ed with chemotherapy-induced cell damage 
and may increase the efficacy of chemotherapy 
drugs [6, 9, 10]. Pyroptosis has also been 
involved in immunotherapy. A previous study 
showed that PD-L1 mediates an inflammatory 
form of cell death in tumor cells by activating 
the expression of GSDMC, which ultimately 
leads to tumor necrosis [11].
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As gene sequencing technology advances, 
researchers are starting to classify cancers 
based on the expression of specific genes, 
which can help identify new subtypes and tailor 
treatments to their characteristics. 

In this study, gene expression matrices and the 
clinical information of samples were obtained 
from the public databases TCGA and GEO. 
Based on the expression of 21 pyroptosis-relat-
ed genes (PRGs) obtained in previous studies 
and the differentially expressed genes (DEGs), 
BRCA in patients in the TCGA database was 
divided into two subtypes using nonnegative 
matrix factorization (NMF). Next, a prediction 
model was constructed using machine learning 
algorithms, which showed promising results in 
the internal validation set. We used this model 
to predict grouping in the GEO database. We 
then explored somatic variants, immune infil-
tration, drug sensitivity, and methylation be- 
tween these two subtypes. Subsequently, we 
performed DEGs analysis between the two  
subtypes and constructed a prognostic model 

based on DEGs. The flow chart of this study is 
shown in Figure 1.

Materials and methods

Datasets

First, we obtained 1137 BRCA samples with 
gene expression and clinical information from 
the TCGA database, including 97 normal tissue 
samples and 1040 tumor tissue samples. 
Then, as the clinical data of tumor samples 
were processed, 978 tumor tissue samples 
were obtained by selecting samples with a  
survival time of more than 30 days. Then, we 
downloaded GSE20685 [12], GSE20711 [13], 
and GSE58812 [14] from the GEO database as 
external validation datasets and obtained 522 
tumor tissue samples after the same data 
processing.

Identification of the subtypes

Previous studies [5, 15-17] identified 33 PRGs, 
as shown in Supplementary Table 1. We per-

Figure 1. The flow chart of this study. DEGs, differentially expressed genes; PRGs, pyroptosis-related genes; PPI, 
protein-protein interaction; TMB, tumor mutation burden: t-SNE, t-distributed stochastic neighbor embedding; LR, 
logistic regression; RF, random forest.
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formed the analysis of DEGs (adjusted P value 
< 0.05) using the DESeq2 R package [18]  
on normal tissues and tumor tissues in the 
TCGA database and selected 21 PRGs accord-
ing to the intersection between DEGs and 33 
PRGs. NMF, an unsupervised learning algo-
rithm based on decomposition by parts, has 
successfully explained biologically meaningful 
categories. This method has recently been 
widely used to identify tumor subtypes [19].  
We used this method to divide 978 BRCA  
samples from the TCGA database into two sub-
types based on the expression of these 21 
PRGs. To determine the accuracy of the NMF 
results, we performed survival analysis and 
t-distributed stochastic neighbor embedding 
(t-SNE) analysis on the groupings obtained by 
NMF.

Building the predictive model

According to the results of NMF in the TCGA 
database, we used six machine learning meth-
ods for supervised machine learning, including 
XGBoost, CatBoost, logistic regression (LR), 
neural network (NNET), random forest (RF),  
and support vector machine (SVM). These 
methods were implemented with the xgboost  
R package, the catboost R package, and the 
mlr3 R package. Receiver operating character-
istic (ROC) curves were used to compare the 
performance of these six models. We next test-
ed the classification performance of the model 
on the GEO database.

Analysis of the somatic variants of the two 
subtypes

We downloaded the masked mutation files of 
BRCA samples from the TCGA database and 
used the MAftools R package [20] to analyze 
the somatic mutations of the two subtypes. 
Next, we examined whether there was a signifi-
cant difference between the two subtypes in 
tumor mutation burden (TMB), a valuable bio-
marker to assess immunotherapy efficiency 
[21].

Analysis of immune infiltration in the two sub-
types

TIMER2.0 is a database that contains TIMER, 
CIBERSORT, quanTIseq, xCell, MCP-counter, 
and EPIC algorithms [22]. We used this data-
base to perform a statistical analysis of the 

immune infiltration of the two subtypes. The 
immune infiltration is often used to evaluate 
the efficacy of immunotherapy [23].

Prediction of drug sensitivity for the two sub-
types

We used the pRRophetic R package to predict 
the drug sensitivity of some commonly used 
drugs in BRCA [24]. This R package makes pre-
dictions based on the 50% inhibitory concen-
tration (IC50), and the smaller value has a higher 
sensitivity.

Expression analysis of N6-methyladenosine 
regulatory genes in the two subtypes

N6-methyladenosine (m6A) is adenosine that is 
methylated at the N6 position. This change is 
involved in the occurrence and development of 
tumors by regulating the expression of the 
tumor-related genes BRD4, MYC, SOCS2, and 
EGFR [25]. Fifteen m6A regulatory genes were 
selected from previous studies [25] and the 
GeneCards database (Supplementary Table 1), 
and their expression was compared between 
the two subtypes.

DEGs functional enrichment analysis and the 
establishment of the prognostic model

We analyzed the DEGs between the two sub-
types using the DESeq2 R package. We set the 
selection conditions for an adjusted P value < 
0.05, |log2FC| > 1. The clusterProfiler R pack-
age [26] was used for Gene Ontology (GO) 
enrichment analysis and Kyoto Encyclopedia of 
Genes and Genomes (KEGG) pathway analysis 
based on these DEGs. Next, we used Lasso 
regression [27], random forest, and Cox regres-
sion to identify related prognostic genes and 
build a prognostic model based on these genes. 
The risk score is equal to the result of matrix 
multiplication between the exponential opera-
tion of each mRNA’s Cox partial regression 
coefficient and the matrix of mRNA expression. 
GSE20685, GSE20711, and GSE58812 were 
utilized to verify this scoring model.

Statistical analysis

All statistical analyses were performed using R 
version 4.0.5. The sva R package was used to 
remove batch effects. Nonnormally distributed 
data were tested using the Wilcoxon test. The 
chi-square test was used to analyze the distri-
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bution proportions. Survival curves were com-
pared by the log-rank test. Unless otherwise 
specified, P values < 0.05 were statistically 
significant.

Results

Identification and validation of BRCA subtypes

To determine which of the 33 PRGs was differ-
entially expressed between normal and tumor 
samples of BRCA in the TCGA database, we 
performed differential gene expression analy-
sis using the DESeq2 R package (adjusted P 

value < 0.05). This analysis obtained 21 PRGs, 
including IL6, ELANE, NLRP1, IL1B, NOD1, 
NLRP3, CASP, CASP4, SCAF11, CASP3, CASP6, 
CASP5, GSDMD, NLRP2, IL18, NLRP6, NOD2, 
NLRP7, AIM2, PYCARD, and GSDMC. We then 
performed an analysis of protein-protein inter-
actions (PPIs) (Figure 2A) and the correlation of 
expression (Figure 2B) to explore the relation-
ship between these 21 genes, and the mini-
mum required interaction score for the PPI 
analysis was set at 0.9. We found that CASP1, 
NLRP3, PYCARD, GSDMD, and NLRP1 interact-
ed strongly among these 21 genes. Next, we 

Figure 2. Analysis of the 21 PRGs and results of NMF. A: The network plot of PPI based on the 21 PRGs. B: The 
heatmap of correlation of the 21 PRGs. The “×” indicates that P-value is less than 0.01. C: The cophenetic value of 
each rank in NMF. D: The classification of 978 BRCA samples using NMF, with rank = 2. E: The heatmap of the 21 
PRGs expressions.
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obtained rank (rank = 2-10) subtypes using 
NMF based on the expression of these 21 
PRGs in 978 BRCA samples. As shown in Figure 
2C, the polyline changed the most when rank = 
2 and rank = 3, so rank = 2 was the front point 
where the polyline changed the most. As shown 
in Figure 2D, it is appropriate that the samples 
were divided into two subtypes. Therefore, we 
divided these 978 BRCA samples into two  
subtypes and named them Cluster1 (n = 683) 
and Cluster2 (n = 295). We drew a heatmap to 

explore the expression of the 21 PRGs of 
Cluster1 and Cluster2 (Figure 2E). The heat-
map showed that the expression of PYCARD in 
Cluster2 was significantly higher than that in 
Cluster1. 

Next, we plotted the survival curves of the two 
subtypes using the survival R package by the 
Kaplan-Meier method. In addition, we per-
formed t-SNE analysis of the two subtypes 
using the Rtsen R package. Figure 3A shows 

Figure 3. Analysis of the difference in characteristics of Cluster1 and Cluster2. A: Survival curves of the two subtypes 
in the TCGA database. B: The distribution analyzed by t-SNE of the two subtypes in the TCGA database. C: Differ-
ences in the age distribution of the two subtypes in the TCGA database. D: Four gene expression differences be-
tween the two subtypes in the TCGA database. E: Receiver operating characteristic (ROC) curves of the six machine 
learning algorithms based on the validation set. F: The importance of the 21 PRGs affecting the XGBoost model. 
G: Survival curves of the two subtypes predicted by the XGBoost model in the GEO database. H: The distribution 
analyzed by t-SNE of the two subtypes in the GEO database. 
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that Cluster2 had better survival outcomes 
than Cluster1 (P = 0.02), and t-SNE analysis 
showed that the two subtypes were well differ-
entiated (Figure 3B). Figure 3A and 3B demon-
strate that the results obtained by NMF were 
meaningful in the TCGA database. To obtain 
more information on the differences between 
the two subtypes, we analyzed the expression 
of some critical genes in BRCA and the clinical 
characteristics of the two subtypes (Table 1). 
The results of the analysis of the clinical char-
acteristics showed that the age of Cluster1  
was lower than that of Cluster2 (Figure 3C). The 
rest of the clinical characteristics, including 
stage (I-II or III-IV), T stage (1-2 or 3-4), and N 
stage (0 or 1-3), were not statistically signifi-
cant. We also found that the expression of 
ERBB2 in the two subtypes was not statistically 
significant, the expression of MKI67 in Cluster1 

was significantly higher than that in Cluster2, 
and the expression of PGR and ESR1 in Cluster1 
was considerably lower than that in Cluster2 
(Figure 3D).

According to the results of NMF, we used six 
machine learning methods, including XGBoost, 
CatBoost, LR, NNET, RF, and SVM, for super-
vised machine learning. We split the data  
into 70% and 30%, with the 70% part as the 
training set and the remaining 30% as the vali-
dation set. The area under curve (AUC) of XG- 
Boost, CatBoost, LR, NNET, RF, and SVM was 
0.982, 0.946, 0.869, 0.923, 0.904, and 0.941, 
respectively (Figure 3E). The 95% confidence 
intervals for these six algorithms are also 
shown in Figure 3E. The model obtained by 
XGBoost was the most suitable. We then 
assessed the importance of the genes affect-
ing the model and found that PYCARD signifi-
cantly impacted the model (Figure 3F). To fur-
ther verify the results of NMF, we used the 
XGBoost model to make a prediction on 522 
GEO database samples of BRCA. Based on  
the predicted results, we drew survival curves 
(Figure 3G) and performed t-SNE analysis 
(Figure 3H). Results of these two analyses  
were similar to those from the TCGA database, 
justifying the classification from the external 
validation.

Analysis of the somatic variants of Cluster1 
and Cluster2

In this part, we used the maftools R package to 
analyze the differences in somatic mutations  
of the two subtypes in the TCGA database. 
Figure 4A and 4B show the summary of the 
mutations of Cluster1 and Cluster2, respec- 
tively. Except for the apparent difference in the 
mutated genes, there was little difference in 
other somatic mutations, such as variant clas-
sification, variant types, and the classification 
of single nucleotide variants. Therefore, we 
drew detailed pictures of genetic mutations of 
the two subtypes (only the top 10 are shown). 
Figure 4C demonstrates that the primary 
genetic mutations in Cluster1 and Cluster2 
were TP53 (41%) and PIK3A (45%). Figure 4D, 
the forest plot, shows a statistical comparison 
of the gene mutations in Cluster1 and Clu- 
ster2 (only genes with P < 0.01 are shown). 
Figure 4E and 4F show the TMB distribution of 
Cluster1 and Cluster2, respectively. We used a 
boxplot (Figure 4G) to determine that the differ-

Table 1. Clinical information for Cluster1 and 
Cluster2

Characteristic Cluster1,  
N = 6831

Cluster2,  
n = 2951 p-value2

Age 0.007
Mean (SD) 57.0 (12.9) 59.4 (12.8)
T 0.215
    T1 187 (27%) 73 (25%)
    T2 386 (57%) 177 (60%)
    T3 80 (12%) 40 (14%)
    T4 27 (4.0%) 5 (1.7%)
    TX 3 (0.4%) 0 (0%)
N 0.084
    N0 314 (46%) 132 (45%)
    N1 224 (33%) 112 (38%)
    N2 86 (13%) 23 (7.8%)
    N3 45 (6.6%) 25 (8.5%)
    NX 14 (2.0%) 3 (1.0%)
M 0.062
    cM0 (i+) 4 (0.6%) 2 (0.7%)
    M0 574 (84%) 232 (79%)
    M1 16 (2.3%) 4 (1.4%)
    MX 89 (13%) 57 (19%)
Stage 0.221
    stage I 121 (18%) 45 (15%)
    stage II 374 (55%) 180 (61%)
    stage III 155 (23%) 63 (21%)
    stage IV 14 (2.0%) 4 (1.4%)
    stage X 19 (2.8%) 3 (1.0%)
1n (%); 2Wilcoxon rank sum test; Fisher’s exact test; Pear-
son’s Chi-squared test.
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ence in TMB between the two was statistically 
significant (P = 0.0081), i.e., Cluster1 had high-
er TMB than Cluster2.

Analysis of immune infiltration in Cluster1 and 
Cluster2

The immune infiltration is commonly used to 
evaluate the efficacy of immunotherapy [23], so 

we used TIMER, CIBERSORT, quanTIseq, xCell, 
MCP-counter, and EPIC to score the immune 
infiltration of the two subtypes. We screened 
out the items with statistical significance (P < 
0.05) for plotting (xCell had too many signifi-
cant items, and we only drew pictures related  
to the immune score). The results of the TIMER 
algorithm showed that the two subtypes had no 

Figure 4. Somatic mutations and TMB analysis of Cluster1 and Cluster2. A, B: The Summary of mutations for Clus-
ter1 and Cluster2, respectively. C: Comparison of gene mutations between Cluster1 and Cluster2 (only genes with 
P < 0.001 were shown). D: The forest plot comparing the gene mutations of Cluster1 and Cluster2 (only genes with 
P < 0.01 were shown). E: The TMB of each sample in Cluster1. F: TMB of each sample in Cluster2. G: The boxplot of 
TMB for Cluster1 and Cluster2. **P < 0.01; ***P < 0.001.
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items with statistical significance. The results 
of CIBERSORT (Figure 5B) indicated that the 
degree of immune cell infiltration of the two 
subtypes could not be recapitulated in general. 
The results of quanTIseq (Figure 5C) showed 
that the degree of immune infiltration of 
Cluster2 was higher than that of Cluster1. The 

scores of MCP-counter (Figure 5A), EPIC (Fi- 
gure 5D), and xCell (Figure 5E) all showed that 
the degree of immune infiltration of Cluster1 
was higher than that of Cluster2. Combining 
the results of the six algorithms, the degree of 
immune infiltration of Cluster1 was higher than 
that of Cluster2.

Figure 5. Statistical analysis of Cluster1 and Cluster2 in immune infiltration derived from several algorithms. A: Sta-
tistically significant items in MCP-counter. B: Statistically significant items in CIBERSORT. C: Statistically significant 
items in quanTIseq. D: Statistically significant items in EPIC. E: Statistically significant items in xCell (only showed 
items related to the immune score). *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001.
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Prediction of drug sensitivity for Cluster1 and 
Cluster2

To explore the difference in drug sensitivity of 
the two subtypes, we used the pRRophetic R 
package to perform a sensitivity analysis of 

some commonly used BRCA drugs for the two 
subtypes. These drugs are cisplatin, docetaxel, 
doxorubicin, gemcitabine, vinorelbine, temsiro-
limus, and lapatinib. The results showed no sig-
nificant difference in the sensitivity to gem-
citabine (Figure 6A). Cluster1 was more sensi-

Figure 6. Drug sensitivity analysis and m6A methylation-related gene expression analysis of Cluste1 and Cluster2. A: 
The boxplot of sensitivity of Cisplatin, Doxorubicin, Gemcitabine, Temsirolimus, and Lapatinib in the two subtypes. 
B: The boxplot of sensitivity of Docetaxel in the two subtypes. C: The boxplot of sensitivity of Vinorelbine in the two 
subtypes. D: Expression analysis of 15 m6A methylation-related genes between the two subtypes. *P < 0.05; **P < 
0.01; ***P < 0.001; ****P < 0.001; ns, not significant.
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tive to docetaxel than Cluster2 (Figure 6C),  
and Cluster2 was more sensitive to the other 
five drugs (cisplatin, doxorubicin, vinorelbine, 
temsirolimus, and lapatinib) than Cluster1 
(Figure 6A, 6B).

Expression analysis of N6-methyladenosine 
regulatory genes in Cluster1 and Cluster2

In this section, we analyzed 15 genes related  
to N6 methylation regulation. We found that 
these genes were expressed at higher levels in 
Cluster1 than in Cluster2 (Figure 6D). Further- 
more, except for ALKBH5, HNRNPC (0.01 < P < 
0.05), METTL16, METTL3 (0.001 < P < 0.01) 
and HNRNPA2B1 (0.0001 < P < 0.001), the dif-
ferential expression of the remaining 10 genes 
was significant (P < 0.0001).

Functional enrichment analysis and the estab-
lishment of the prognostic model based DEGs 
of Cluster1 and Cluster2

First, we used the DESeq2 R package to iden-
tify the DEGs of the two subtypes and obtained 
1024 DEGs (|log2FoldChange| > 1 and adjust-
ed P value < 0.05). Based on these 1024 DEGs, 
we performed KEGG pathway analysis and GO 
enrichment analysis. The results of the KEGG 
pathway analysis showed that the neuroactive 
ligand-receptor interaction signaling pathway 
occupied a dominant position in both the num-
ber of genes and the statistical significance 
(Figure 7A). The results of the GO enrichment 
analysis of these DEGs showed that DEGs were 
mainly concentrated in various channels and 
transporters in molecular function (MF) (Figure 
7B). There were many kinds of biological pro-
cess (BP) results, and the humoral immune 
response and various keratinization were the 
main terms (Figure 7C). The cellular compo-
nents (CC) were mainly synaptic membrane and 
transporter (Figure 7D), which were closely 
related to the results of MF.

Next, we used RF to obtain 27 prognosis-relat-
ed genes and Lasso regression to obtain 20 
prognosis-related genes. We took the intersec-
tion of the results obtained by these two meth-
ods and obtained five prognosis-related genes 
(Figure 7E). Cox regression was performed 
based on these five prognosis-related genes. 
According to the results of multivariate Cox 
regression, APOH, IYD, LRRTM3, PAX7, and 
SMR3A were identified as key prognostic 

genes. The risk score was equal to the result  
of matrix multiplication between the exponen-
tial operation of the Cox partial regression  
coefficient of each mRNA and the matrix of 
mRNA expression (risk score = 1.140281 × 
APOH + 1.096954 × IYD + 1.233628 × 
LRRTM3 + 1.081889 × PAX7 + 1.221493 × 
SMR3A). According to the median risk score, 
the BRCA samples of TCGA were divided into 
high-score and low-score groups, and survival 
analysis was performed. Figure 7F shows that 
the low group lived longer than the high group 
(P < 0.0001). We next made a dynamic nomo-
gram using the DynNom R package (Figure 7G), 
which is convenient for clinical use, and a 
nomogram using the rms R package to predict 
the 3-, 5- and 10-year survival rates (Figure 
8A). The next step was to evaluate the models. 
We evaluated the survival model of the high-
score and low-score groups using the time-
dependent ROC curve. The AUC values for three 
years, five years, and ten years were 0.66,  
0.65, and 0.64, respectively (Figure 8B). In 
addition, we used calibration curves to evalu-
ate the nomogram for predicting 3-, 5-, and 
10-year survival (Figure 8C-E). The calibration 
curve showed that the nomogram predicted  
the nomogram well. We tried to predict GSE- 
20685, GSE20711, and GSE58812 using the 
model obtained from these five genes, but we 
found that the GPL570 platform could not rec-
ognize LRRTM3, so we had to use APOH, IYD, 
PAX7, and SMR3A for a tentative prediction. 
Figure 8F displays that the difference in the 
survival curves between the high-score and 
low-score groups was statistically significant in 
the GEO database (P = 0.028).

Discussion

With the continuous development of gene 
sequencing and biomedical technology, the 
types of BRCA are also increasing, and the 
treatment methods are constantly being en- 
riched. In this study, we analyzed the expres-
sion matrix of the 21 PRGs derived from the 
analysis of DEGs in the TCGA database by NMF 
and finally obtained two subtypes (Cluster1 and 
Cluster2). We performed supervised machine 
learning by six algorithms based on the results 
of NMF to build the XGBoost predictive model 
with an AUC value of 0.982. We used this mo- 
del to predict the two subtypes in the GEO data-
base to demonstrate that the classification  
was meaningful in external databases. Next, 
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we explored and demonstrated the differences 
between the two subtypes in somatic variants, 
immune infiltration, and N6-methyladenosine. 
We then examined the sensitivity of the two 
subtypes to some drugs. We further performed 
GO enrichment analysis and KEGG pathway 
analysis based on the DEGs of the two sub-
types, and the results showed that DEGs were 

mainly concentrated in synaptic membranes, 
channels, and transporters. Finally, we devel-
oped a five-gene prognostic model that predict-
ed survival at 3, 5, and 10 years in the high- 
and low-risk groups and tested the model in the 
GEO database. Together, these results demon-
strated that this classification was meaningful 
and provided new insights into the molecular 

Figure 7. Functional analysis and prognostic correlation analysis of Cluste1 and Cluster2. A: The result of Kyoto En-
cyclopedia of Genes and Genomes (KEGG) pathway analysis. B: The molecular function (MF) of Gene Ontology (GO) 
enrichment analysis. C: The biological process (BP) of GO enrichment analysis. D: The cellular components (CC) sec-
tion of GO enrichment analysis. E: The Venn diagram of LASSO and random forest results. F: Survival curves for high-
score and low-score groups using the Kaplan-Meier method. G: Part of function display of the dynamic nomogram.
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characterization and clinical treatment of 
BRCA.

With the gene importance ranking that affects 
the classification provided by XGBoost, we dis-
covered that PYCARD, NLRP2, CASP4, SCAF11, 
CASP3, and CASP6 have essential effects  
on the model, especially PYCARD. PYCARD, a 
protein-coding gene, encodes an adaptor pro-
tein composed of two protein-protein interac-
tion domains: PYD and CARD. This protein is 
involved in macrophage pyroptosis and is the 
major constituent of the ASC pyroptosome, 
which forms upon potassium depletion and 
rapidly recruits and activates caspase-1 [28]. 
The expression of PYCARD was increased in 
Cluster2 compared to Cluster1. The GO annota-
tions associated with this gene included trans-
membrane transporter binding, consistent with 
the subsequent GO enrichment analysis of 
DEGs between Cluster1 and Cluster2. PYCARD 
has not been definitively studied in BRCA, but 
the protein encoded by PYCARD is a crucial 
component of the inflammasome, which plays 
a vital role in BRCA progression and metastasis 
[29]. A previous study demonstrated that the 

NLRP3 inflammasome in fibroblasts links tis-
sue damage to inflammation in BRCA progres-
sion and metastasis [30].

From the perspective of somatic variants, we 
found that TP53 mutations dominate Cluster1, 
and PIK3CA mutations dominate Cluster2. 
Regarding TP53, a recent study found that 
TP53-mutated patients had significantly higher 
antitumor immune signatures and TMB than 
TP53 wild-type patients in BRCA [31]. The 
results of this study were consistent with the 
results obtained in our study. In addition, a 
study demonstrated shorter median overall 
survival in patients with TP53 mutations than 
in patients with wild-type TP53 (all patients, 
regardless of treatment) [32]. This conclusion 
may be one of the reasons why Cluster1 had a 
worse prognosis than Cluster2. Regarding PIK- 
3CA, one study showed a significant improve-
ment in progression-free survival in patients 
with PIK3CA mutant-specific ctDNA treated 
with alpelisib, a kind of PI3K inhibitor, suggest-
ing that the efficacy of PI3Kα inhibitors is 
dependent on PIK3CA mutant tumors [33]. 
Another study showed that patients with TP53 

Figure 8. Analysis and validation of the prognostic model. A: The traditional nomogram. B: Time-dependent ROC 
curves for 3, 5, and 10 years. C-E: Calibration curves of the nomogram for predicting 3-year, 5-year, and 10-year 
survival rates. F: Validation of the prognostic model based on four genes in the GEO database.
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mutations do not benefit from alpelisib [34]. 
Based on these two studies, we can speculate 
that PI3K inhibitors are more effective in 
Cluster2. Furthermore, PIK3CA mutations are 
known to activate the PI3K/AKT/mTOR path-
way. Cluster2 was more sensitive to temsiroli-
mus, an mTOR inhibitor, indicating that the 
PI3K/AKT/mTOR pathway is more activated  
in Cluster2 than in Cluster1. A recent study 
showed that mTORC1 could activate pyropto-
sis, so we speculate that PIK3CA activates  
the PI3K/AKT/mTOR pathway more in Cluster2 
and synthesizes more mTORC1, and mTORC1 
activates pyroptosis to cause PYCARD to be 
highly expressed in Cluster2 [35].

In the following analysis, we found that the TMB 
of Cluster1 was higher than that of Cluster2, 
and the results of the six immune algorithms 
showed that the degree of immune infiltration 
of Cluster1 was higher than that of Cluster2. 
These two markers are considered to assess 
the outcome of immunotherapy, so it is reason-
able to assume that immune checkpoint inhibi-
tors would be more effective in Cluster1 than in 
Cluster2.

In the methylation analysis, the expression of 
the 15 N6-methylation-regulated genes we 
selected was higher in Cluster1 than in 
Cluster2. This result may be one of the reasons 
why Cluster1 had a worse prognosis than Clu- 
ster2 because several studies have demon-
strated that YTHDF1, YTHDF3, METTL14, and 
FTO promote progression and are poor prog-
nostic factors in BRCA [36-39]. At present, the 
relationship between m6A and pyroptosis is  
still inconclusive. Some studies have conclud-
ed that METTL14 and METTL3 inhibit pyropto-
sis [40-43]. In our results, Cluster1 had a high-
er expression of 15 m6A methylation-regulated 
genes, including METTL14 and METTL3. This 
consequence may cause the expression of 
PYCARD in Cluster1 to be lower than that in 
Cluster2.

In summary, the Cluster1 and Cluster2 sub-
types of BRCA were identified in the TCGA  
database based on 21 PRGs, and a predictive 
model was built using a supervised machine 
learning approach. We then confirmed the dif-
ferences in gene mutation, immune infiltration, 
methylation, and drug sensitivity between the 
two subtypes. These analyses shed new light 
on understanding the underlying molecular fea-

tures of BRCA and may offer different perspec-
tives on personalizing treatment for patients. In 
addition, our prediction of drug efficacy for 
these two pyroptosis-based subtypes may pro-
vide new ideas for clinical research on some 
drugs. Of course, this study also has certain 
limitations. Our predictions were based only on 
the TCGA and GEO databases, and more data 
are needed to support our conclusions. The 
XGBoost model needs further optimization to 
facilitate clinical use. In addition, the specula-
tion that PIK3CA mutations lead to high expres-
sion of PYCARD requires experimental valida-
tion, while the prediction of partial drug efficacy 
requires real-world studies.
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