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Abstract: Inflammation is an essential mechanism of immune response that involves a large number of different 
immune cells. Atherosclerosis is essentially an inflammatory disease caused by inappropriate activities of immune 
cells. During this process, various cytokines activate immune cells, regulate and transmit immune cell signals, 
and stimulate a local inflammatory environment. In this study, we reviewed the cytokines associated with immune 
activity in atherosclerosis, including their roles in immune cell activation and mediating immune cell chemotaxis. 
The findings give important insights into inflammatory immune microenvironment, including basic mechanisms and 
interactions, providing new ideas and options for clinical detection and treatment of this disease.
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Introduction

Atherosclerosis, a vascular disease strongly 
associated with high lipid levels, was first iden-
tified by Rudolf Virchow in the 1850s. As our 
understanding of its pathogenesis improved, it 
was established that atherosclerosis is not  
only due to lipid accumulation within the arteri-
al wall, but also inappropriate body response  
to vascular damage. The disease involves a 
sequence of pathological events. First, sub-
stantial fibrous and lipid masses accumulate  
in the subendothelial layer of the artery, wrap-
ping around the circulating cells to form pla- 
ques. This narrows or even occludes the blood 
vessels, obstructing blood flow and hypoxia, 
which may progress and develop myocardial 
infarction and stroke.

Several studies have shown that specific cyto-
kines participate in different stages of immune 
cell activation, such as chemotaxis, differen- 
tiation, recruitment, and infiltration. Cytokines 
also regulate internal and external lipid flow 
and are essential chemical mediators in vari-
ous pathophysiological processes, such as 
intercellular signal transduction. Experimental 

studies based on animal and patient samples 
have implicated cytokines in the development 
of atherosclerosis. In the past two decades, 
monoclonal antibodies against cytokines have 
become a standard treatment for chronic in- 
flammatory diseases such as rheumatoid ar- 
thritis. Therefore, since atherosclerosis, is also 
inflammatory disease, similar treatment app- 
roaches are currently being explored as novel 
therapeutics for this disease. More than 20 
clinical trials on the treatment of atherosclero-
sis by targeting immune-associated cytokines 
were included in ClinicalTrial.gov (Tables 1 and 
2).

This review will summarize the different cyto-
kines involved in the immune response during 
atherosclerosis, focusing on their mechanisms 
and interactions, and updating recent advanc-
es in targeted drug research.

Cytokines is involved in immune cell activation

Atherosclerosis is mainly caused by endothelial 
damage and high lipid levels in the arteries, 
which activate multiple immune cells that  
promote lesion formation. Increased infiltration 
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Table 1. Summary of clinical trials of drugs targeted cytokines involved in immune cell activation
Target Drug Disease Phase Outcome NCT number Status
TNF-α Infliximab Psoriasis 

Atherosclerosis
Unknown No results posted NCT01356758 Completed [65]

Adalimumab Psoriasis
Vascular Inflammation
Coronary Atherosclerosis

IV Modest increase in vascular inflammation in 
carotids

NCT01722214 Completed [66] 

Adalimumab Psoriasis
Vascular Inflammation
Coronary Atherosclerosis

IV Reduce vascular inflammation in patients 
with moderate to severe psoriasis

NCT00940862 Completed [67]

Etanercept Atherosclerosis in Psoriasis Patients 
Study

Unknown No results posted NCT01522742 Terminated

IL-1β Canakinumab Atherosclerosis III Decreased hsCRP level and incidence of the 
primary endpoint

NCT01327846 Completed [68]

IL-12/IL-23 Ustekinumab Psoriasis
Atopic Dermatitis
Atherosclerosis

Unknown No effect on MACE NCT01356758 Completed

Multiple Methotrexate Coronary Artery Disease II CRP, IL-6 levels ↓ NCT02366091 Completed
Colchicine Coronary Artery Disease

Myocardial Infarction
III MACE ↓ NCT02551094 Completed

Coronary Artery Disease IV Attenuated the increase in interleukin-6 and 
hsCRP concentrations but did not lower the 
risk of PCI-related myocardial injury

NCT01709981 Active, not 
recruiting

Atherosclerotic Vascular Disease II No results posted NCT02162303 Completed
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Table 2. Summary of clinical trials of drugs targeted cytokines mediating immune cell chemotaxis
Target Drug Type Disease Phase Outcome Status NCT number
CCR2 MLN1202 humanized monoclonal 

antibody
atherosclerosis II CRP level ↓ Completed [129] NCT00715169

CCR5 Maraviroc Small-molecule receptor 
antagonist

STROKE II No results posted Not yet recruiting NCT04789616

Maraviroc Small-molecule receptor 
antagonist

atherosclerosis IV significant improvements in several 
markers for cardiovascular risk, endo-
thelial dysfunction, arterial stiffness, 
and early carotid atherosclerosis

Completed [130] NCT03402815

CCL2 Bindarit Selective inhibitor Coronary restenosis II in-stent late loss↓ Completed [131] NCT01269242
CXCL12 JVS-100 nonviral DNA plasmid  

(transient CXCL12 expression)
Ischemic heart failure II Failed to demonstrate its primary 

endpoint of improved composite score 
at 4 months after treatment

Completed [132] NCT01643590

JVS-100 nonviral DNA plasmid  
(transient CXCL12 expression)

Ischemic heart failure I/II No results posted Unknown NCT01961726

JVS-100 nonviral DNA plasmid  
(transient CXCL12 expression)

Critical limb ischemia II No results posted Completed NCT01410331

JVS-100 nonviral DNA plasmid  
(transient CXCL12 expression)

Peripheral arterial 
disease

II Failed to improve outcomes in CLTI at 
6 months

Completed [133] NCT02544204

ACRX-100 nonviral DNA plasmid  
(transient CXCL12 expression)

heart failure I No results posted Completed NCT01082094

CXCR2 AZD5069 Small-molecule receptor 
antagonist

Coronary heart disease II No results posted Ongoing EudraCT 2016-
000775-24

CXCR4 POL6326 Peptidic receptor antagonist Large reperfused 
ST-elevation myocardial 
infarction

II No results posted Completed NCT01905475

 PF-06747143 CXCR4 IgG1 antibody Acute Myeloid Leukemia I No results posted Terminated NCT02954653
BMS-936564 CXCR4 antagonist chronic lymphocytic leukemia 

(CLL)
I No results posted Completed NCT01359657

MIF BAX69 MIF Antibody Metastatic Adenocarcinoma of 
the Colon or Rectum 
Malignant Solid Tumors

I Safety evaluation Completed [99] NCT01765790 
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of immune cells such as monocytes, macro-
phages, T lymphocytes (T cells), B lymphocytes 
(B cells), and dendritic cells (DCs), in lesion 
sites, especially the plaque. These cells are 
part of the body’s self-defense system, but play 
a role in atherosclerosis development. Some 
pro-inflammatory cytokines regulate genes th- 
at promote inflammation and activate immune 
cells and disrupt this self-defense system. 
Partial activities and interactions of these cyto-
kines are represented in Figure 1.

Tumor necrosis factor-α (TNF-α)

TNF-α, which mainly secreted by monocytes/
macrophages, is one of the most important 
cytokines in atherosclerosis. TNF-α promotes 

the expression of multiple pro-inflammatory 
genes. In atherosclerosis, TNF-α produced by 
immune cells or endothelial cells increase ex- 
pression levels of several key genes involved  
in inflammation and cell proliferation by activat-
ing nuclear factor-κb (NF-κB), p38 mitogen-ac- 
tivated protein kinase (MAPK), janus kinase 
(JAK), and other signaling pathways. The target 
proteins include different pro-inflammatory cy- 
tokines, cell adhesion molecules (CAMs) and 
chemokines such as interleukin-1β (IL-1β), in- 
terleukin-6 (IL-6), interleukin-8 (IL-8), C-C motif 
chemokine ligand 2 (CCL2). Increased TNF-α 
self-expression recruits more T cells and mac-
rophages to the lesion site, accelerates the 
inflammatory cascade response, contributing 
to disease progression [1]. In addition, TNF-α 

Figure 1. Schematic overview of cytokines involved in immune cell activation during atherosclerosis. Cytokines can 
be expressed in almost all types of cells in this environment, especially macrophages. Some of them, like TNF-α 
and IFN-γ, act as critical roles in this network, promoting the expression of other cytokines including IL-6, IL-8, 
CCL2, CXCL16, etc. IL-18 drives T cell polarization and induces MMP expression in vascular smooth muscle cells. 
IL-23 is mainly expressed by macrophages, causing subsequent inflammatory factors reaction. IL-1β has multiple 
pro-inflammatory functions, other than inducing MMPs and other cytokines, it can also affect the proliferation and 
migration of vascular smooth muscle cells. IL-6, also known as a key cytokine with diverse functions, can promote 
low-density lipoprotein uptake in macrophages and stimulate endothelial cells to secret adhesion molecules. More 
details are offered in the text. IL: interleukin; IFN-γ: interferon-γ; CCL2: C-C motif chemokine ligand 2; CXCL16: C-X-C 
motif chemokine ligand 16; MIP-1α: macrophage inflammatory protein-1α; CAMs: cell adhesion molecules; LPS: 
lipopolysaccharide; TMAO: trimetlylamine oxide; TNF-α: tumor necrosis factor-α; MMPs: matrix metalloproteinases. 
Figure was created using BioRender.com.
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causes increased leukocyte infiltration into 
blood vessels, which is an essential first step in 
plaque formation [2]. TNF-α chronically stimu-
lates macrophages through a MAPK-dependent 
pathway, downregulates scavenger receptor 
gene expression, and reduces the effect on  
the reverse cholesterol pathway, which exacer-
bates atherosclerosis [3]. In addition to regulat-
ing the activation and recruitment of various 
immune cells, TNF-α has a pro-inflammatory 
effect on vascular smooth muscle cells. It stim-
ulates the production of matrix metalloprotein-
ases (MMPs), thrombogenic proteins and tis-
sue factor, causing reduced plaque stability 
and even rupture [4]. TNF-α also regulates phe-
notypic transition where contractile vascular 
smooth muscle cells progress to a secretory 
function, facilitating monocyte migration [5] 
and contributing to atherosclerosis develop- 
ment.

More than 50% reduction in atherosclerotic 
lesion area and increased plaque necrosis and 
apoptosis have been found in TNF-α-/-Apoe-/- 
double knockout mice [6]. In a study of patients 
with psoriatic arthritis, the use of TNF-α inhibi-
tors slowed the progression of atherosclerosis 
and improved vascular inflammation [7]. There- 
fore, it might be concluded that TNF-α is es- 
sential for atherosclerosis. It activates multiple 
pathways and recruits various immune cells 
with polydirectional pro-inflammatory effects, 
hence an ideal potential target for the treat-
ment of atherosclerosis. Studies have also 
established that TNF-α level is significantly cor-
related with early carotid atherosclerosis [8]. 
This suggests that TNF-α can be used as an 
effective clinical marker for early athero- 
sclerosis.

However, TNF-α as a potential therapeutic tar-
get for atherosclerosis has been well studied 
clinically. This may be due to the negative 
effects it has shown in some clinical trials, such 
as exacerbated heart failure and changes in 
lipidogram, which requires further safety tests 
[9]. 

Interestingly, a study showed that loss of p55,  
a TNF-α receptor, also known as TNF-α R1, 
appeared to promote the atherosclerosis pro-
cess [10]. However, the opposite outcomes 
have been reported in recent studies: it has 
been found that TNF-α R1 promoted athe- 
rosclerosis in low-density lipoprotein receptor 

knock-out mice [11]. Brusatol was confirmed to 
inhibit the development of atherosclerosis by 
suppressing TNF-α R1 [12]. It seems the pro-
atherogenic role of TNF-α R1 has been gener-
ally revealed.

Interleukin-1β (IL-1β)

IL-1β is a pro-inflammatory cytokine that is 
expressed mostly in macrophages, endothelial 
cells and vascular smooth muscle cells. It is 
induced by TNF-α and subsequently acts as a 
local paracrine and autocrine stimulator. Ac- 
cordingly, IL-1β stimulates the secretion of mul-
tiple cytokines and CAMs, leading to immune 
cell extravasation and persistent local inflam-
mation [13]. IL-1β also promotes the prolifera-
tion and migration of vascular smooth muscle 
cells and induces MMPs to accelerate degrada-
tion of atherosclerotic plaque fibrous skeleton 
[14]. This remodels and transforms the extra-
cellular matrix, affecting plaque stability [15].

In animal models, IL-1β suppression can effec-
tively slow down the development of athero-
sclerosis. Injection of IL-1β-induced receptors 
in Apoe-/- mice reduced the fatty streak area in 
arteries [16]. Under similar conditions, IL-1β-/-

Apoe-/- double knockout mice had 30% less 
lesion area than the control group [17].

In the CANTOS (Canakinuub Anti-inflammatory 
Thrombosis Outcomes Study) study, patients 
treated with Canakinnub (a monoclonal anti-
body to IL-1β) had a significantly lower inci-
dence of clinical outcomes such as atheroscle-
rosis-related myocardial infarction and stroke 
than the placebo group [18]. The CANTOS trial 
also confirms the inflammatory hypothesis of 
atherosclerosis and provides further evidence 
that targeting inflammation offers an inde- 
pendent pathway for the atherosclerosis treat-
ment. Additionally, the study lays the founda-
tion for the development of additional inflam- 
mation-targeted drugs.

Apart from IL-1β, NOD-like receptor thermal 
protein domain associated protein 3 (NLRP3) 
inflammatory vesicles upstream of IL-1β is an- 
other possible target. Drugs, such as colchi- 
cine in the LODOCO (low-dose colchicine) study, 
have been shown to reduce IL-1β production by 
inhibiting NLRP3 inflammatory vesicle activity, 
with a lower risk of adverse cardiovascular 
events [19]. This finding was confirmed by the 
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more comprehensive LODOCO2 study [20]. A 
new NLRP3 inhibitor, MCC950, which is cur-
rently under trial [21], might serve as a poten-
tially effective treatment for atherosclerosis.

On the other hand, IL-1β facilitated the forma-
tion of fibrous cap and increased plaque stabil-
ity in the late stages of lesion development. 
Conversely, plaque stability decreased in ath-
erosclerotic mice knocked out of IL-1 receptors 
or treated with IL-1β antibodies. This suggests 
that plaque stability and subsequent possible 
cardiovascular events should be considered 
when administering IL-1β-related drugs, espe-
cially to patients with advanced atherosclerosis 
[22].

Interleukin-6 (IL-6)

IL-6 is mostly secreted by macrophages as well 
as other cell types including fibroblasts and 
endothelial cells. It is a multifunctional cyto-
kine, which plays an important role in the in- 
flammatory response of atherosclerosis. IL-6 
promoted leukocyte recruitment by increasing 
the production of C-reactive protein (CRP) from 
liver, resulting in endothelial dysfunction [23].  
It can promote low density lipoprotein (LDL) 
uptake and cytokines expression in macropha- 
ges [24]. Activate endothelial cells can express 
adhesion molecules and chemokines, which 
stimulated migration and proliferation of smoo- 
th muscle cells [25]. A recent study showed 
that age-associated mitochondrial dysfunction 
induced by IL-6 contributed to atherosclerosis 
formation [26].

In mice atherosclerosis models, exogenous IL-6 
enhanced the development of early atheroscle-
rosis lesions [27] and destabilized atheroscle-
rosis plaques [28]. However, another study has 
shown that Apoe-/-IL-6-/- mice had the tendency 
to gain atherosclerosis more easily, which sug-
gested the dual-modulatory function of IL-6 
[29].

IL-6 is known to be involved in several signaling 
pathways. It can bind to the membrane-bound 
IL-6 receptor (IL-6R) on leucocytes and endo-
thelial cells, or bind to gp130 with a compound 
of IL-6 and soluble IL-6R, then activate intra- 
cellular signaling in cells that can’t express 
IL-6R. The third way was trans-presentation 
through interaction between dendritic cells and 
receiver T cells [30]. The therapeutic targets  

for IL-6 pathways usually included IL-6, IL-6R, 
gp130 and downstream molecules of the janus 
kinase-signal transducer and activators of tr- 
anscription pathway (JAK-STAT pathway). Now 
multiple antibody drugs for some inflamma- 
tory diseases targeting IL-6 related pathways 
have been studied in some clinical trials [31, 
32]. However, only Sarilumab was under re- 
cruitment for its phase IV clinical trial 
(NCT04350216). Notably, in the CANTOS study, 
the effect of canakinumab was significantly 
associated with the decreased level of IL-6 
[33], suggesting the synergism of IL-1β and 
IL-6. Additionally, its role in predicting athero-
sclerosis was also observed in another study 
[34]. Therefore, IL-6 may work as a marker of 
atherosclerosis in the clinical setting.

Interleukin-18 (IL-18)

IL-18 was originally known as an interferon-γ 
(IFN-γ)-inducible factor because it induces 
IFN-γ expression. However, IL-18 is now known 
to be a multifunctional cytokine in various cells, 
including macrophages and endothelial cells, 
where its inactive precursors promote signal- 
ing through NF-κB pathway [35]. Its receptors 
occur on macrophages, endothelial cells and 
vascular smooth muscle cells and mediate 
interaction between immune cells and blood 
vessels [36]. It polarizes T cells to Th1 cells 
[37], the “war hawk” of helper T cells that pro-
motes the development of inflammation. In 
addition, it amplifies MMPs in monocytes and 
vascular endothelial cells, which affects pla- 
que stability [36]. IL-18 is a member of the IL-1 
cytokine superfamily that also includes IL-1β, 
which is activated and released downstream of 
NLRP3 inflammatory vesicles to promote the 
development of atherosclerosis [38].

In one study, serum IL-18 was elevated in 
patients with coronary artery disease whereas 
IL-18 and its receptors were overexpressed in 
several immune cells, including macrophages, 
T cells, endothelial cells, and vascular smooth 
muscle cells in atherosclerotic plaques [39]. 
This suggested an association between IL-18 
and atherosclerotic lesions.

A lower incidence of atherosclerosis was found 
in IL-18-/-Apoe-/- double knockout mice than in 
the control group [40]. Treatment with IL-18 
inhibitors not only prevented plaque formation, 
but also transformed it into a more stable 
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plaque phenotype [41]. Apoe-/- mice injected 
with IL-18 exhibited increased plaque burden 
[42]. Notably, IFN-γ-/-Apoe-/- double knockout 
mice were less lesioned than Apoe-/- mice 
injected with recombinant IL-18, suggesting a 
synergistic relationship between IL-18 and 
IFN-γ [40].

IL-18 is an important node in the inflammatory 
network. It synergizes with many cytokines 
involved in atherogenesis, such as IL-6, IL-12, 
and IFN-γ [43], amplifying inflammatory res- 
ponse in the lesion. A study found that IL-18 
was related to substantial residual inflamma-
tory risk among the patients who took cana- 
kinumab (IL-1β inhibitor) therapy [44]. There- 
fore, block IL-18 in drugs such as IL-18Bpa (an 
IL-18 neutralizing antibody), or upstream cas-
pase-1 inhibitors may inhibit multiple pro-in- 
flammatory cascades to attenuate lesion devel-
opment. However, further research in this area 
is needed. Inhibition of upstream NLRP3 inflam-
matory vesicles may also inhibit IL-18 release, 
as described in section IL-1β above.

Interleukin-23 (IL-23)

Macrophages express both IL-23 and IL-23 
receptors, which induces various cells to ex- 
press Interleukin-17 (IL-17), Interleukin-22 (IL-
22), and TNF-α pro-inflammatory factors [45]. 
The inactivation of IL-23-IL-22 axis signaling 
causes the intestinal barrier deterioration and 
ecological dysregulation, increasing systemic 
pro-atherogenic metabolites such as lipopoly-
saccharide (LPS) and oxidized trimethylamine 
and causing atherosclerosis progression [46].

IL-23 has been detected in both mice and 
human atherosclerotic plaques. Plasma levels 
of IL-23 were significantly higher in patients 
with atherosclerosis compared to healthy con-
trols. Follow-up data showed that high plasma 
levels of IL-23 were correlated with mortality 
risk [47]. Notably, IL-23 and IL-23 receptor 
genes were highly expressed in carotid plaques 
compared to healthy vessels. Levels of IL-17 
and TNF-α secreted were higher in monocyt- 
es from patients with carotid atherosclerosis 
treated with IL-23/LPS combination than in 
monocytes from healthy controls [47].

Briakinumab and ustekinumab, antibodies that 
target IL-23 subunit p40, have been shown to 
increase major adverse cardiovascular events 

(MACE) to different degrees in several clinical 
trials [48, 49]. Other studies did not show ex- 
acerbated MACE rates, but this risk cannot be 
ignored. In addition, monoclonal antibodies Gu- 
selkumab, Tildrakizumab, and Risankizumab, 
which selectively inhibit IL-23 subunit p19, have 
been studied in clinical trials for psoriasis treat-
ment, but the sample sizes were not sufficient 
to describe the effects of these drugs on ath-
erosclerosis and subsequent cardiovascular 
events [50].

Interferon-γ (IFN-γ)

IFN-γ belongs to type II interferon family and is 
expressed by multiple immune cells, including 
natural killer cells (NK cells), T cells, and macro-
phages. It is a widely studied cytokine that reg-
ulates multiple human genes mainly through 
the JAK-STAT pathway [51]. It has a potent pro-
lipidogenic effect on atherosclerosis: it induces 
macrophages to further secrete pro-inflamma-
tory factors [52]. IFN-γ also induces the release 
of chemokines that attract monocytes and T 
lymphocytes, such as monocyte chemotactic 
protein-1, CXC (C-X-C motif) ligand 16 (CXCL16), 
and macrophage inflammatory protein 1α (MIP-
1) and promotes monocyte differentiation into 
macrophages [53]. In addition, IFN-γ promotes 
uptake of oxidized low-density lipoprotein (ox- 
LDL) by macrophages and vascular smooth 
muscle cells, reduces cholesterol efflux, and 
contributes to the development of foam cells 
[54], which lay the foundation for plaque for- 
mation.

Injecting IFN-γ into Apoe-/- mice increased 
plaque deposition and reduced vascular smoo- 
th muscle proliferation and collagen deposits in 
the plaque cap, suggesting that IFN-γ may also 
impair plaque stability [55]. In contrast, in IFN-
γ-/-Apoe-/- double knockout mice, plaque shrink-
age was observed [56]. IFN-γ is essential in  
all stages of atherosclerosis progression, from 
immune cell recruitment, LDL accumulation, to 
plaque development and stabilization.

Some lipid-lowering drugs such as statins and 
PCSK-9 inhibitors decrease IFN-γ [57, 58] level 
in addition to their cholesterol lowering effect. 
Currently, new therapies targeting IFN-γ are 
being investigated. Neutralizing IFN-γ antibod-
ies were used to reduce atherosclerosis in the 
grafted vessels and aorta in Apoe-/- mice under-
going heart transplantation [59]. Bioinforma- 
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tics data analysis supported the ability of spe-
cific long-stranded non-coding RNAs (lncRNAs) 
to promote atherosclerosis by affecting the 
IFN-γ pathway [60]. Another study showed that 
microRNA miR-155, which is highly expressed 
in atherosclerotic plaques, also induces IFN-γ 
expression [61, 62]. In systemic lupus ery- 
thematosus patients, using type I anifrolumab 
could reduce neutrophil extracellular trap for-
mation and interleukin-10 (IL-10) levels [63]. 
However, it is important to note that restricted 
expression of IFN-γ may lead to immunosup-
pression and increase the incidence of infec-
tion [64]. Therefore, it is important to treat 
opportunistic infections when administering li- 
pid-lowering drugs in the long term.

Cytokines mediate immune cell chemotaxis

Chemokines were originally named after their 
function of directing white blood cells to inflam-
mation sites. However, recent advances in 
research have led to the discovery that they 
perform other functions besides immune cell 
recruitment, including keeping cellular homeo-
stasis and activating different cell functions. 
Chemokines are highly active in inflammation 
sites and regulate various inflammatory cellu- 
lar processes. As an inflammatory disease,  
atherosclerosis development and progression 
is driven by chemokines. Therefore, under-
standing the mechanism of atherosclerosis-
related chemokines will inform the develop-
ment of effective treatments to control ath- 
erosclerotic lessions.

Chemokines are a family of structurally similar 
cytokines. Most chemokines are secreted pro-
teins with a molecular weight of about 10 kda. 
Each chemokine consists of a carboxy-terminal 
alpha helix structure that preferentially binds 
proteoglycans and extracellular matrix proteins 
on vascular endothelial cells. It also includes 
four cysteines at highly conserved positions. 
Based on the distribution of cysteine N-terminal 
residues, chemokines are classified into four 
subclasses: CC, CXC, CX3C, and XC. Chemokin- 
es bind to G protein-coupled receptors, initiate 
the dissociation of G protein subunits α, β,  
and γ, subsequently activate MAPK, phosphati-
dylinositol 3-kinase (PI3K) and phospholipase 
C (PLC) pathways. In addition, such binding 
increases intracellular calcium levels, causing 
cell polarization, adhesion and migration. G 
protein-coupled receptors are also known as 

conventional chemokine receptors (CKRs). An- 
other type of receptors, the atypical chemo- 
kine receptors (ACKRs), are mainly considered 
as scavenger receptors. They act independent-
ly from the G protein signaling pathway, indi-
rectly control the interaction between chemo-
kines and CKRs by regulating the localization 
and function of chemokines. Usually, many che-
mokines from the same family bind to several 
different receptors and a specific receptor may 
have multiple chemokine ligands. Therefore, 
chemokines and their receptors together form 
a large network with complex interactions that 
need further mechanistic exploration. Partial 
activities and interactions of these chemokines 
are represented in Figure 2.

C-C motif chemokine ligand 2 (CCL2)

CCL2 is the best known CC chemokine that was 
first recognized as a monocyte chemotactic 
factor. Studies have shown that the CCL2-CCR2 
axis is required for monocytes to migrate from 
bone marrow to peripheral circulation [69]. 
However, CCL2 has recently been found to to 
promote tumor progression and immune sur-
veillance. CCR2 is a CCL2 receptor that is 
expressed on the surface of monocytes after 
exposure to inflammatory stimuli. CCL2 is ty- 
pically expressed in endothelial cells, mono-
cytes/macrophages, smooth muscle cells, and 
T cells. It causes monocytes to aggregate due 
to inflammation or injury through downstream 
signaling pathways such as JAK-STAT pathway, 
MAPK pathway, and PI3K pathway [70]. Its ex- 
pression is induced mainly by cytokines such 
as IL-1, interleukin-4 (IL-4), TNF-α, and IFN-γ, 
various growth factors, lipopolysaccharides, 
reactive oxygen species (ROS), oxLDLs and im- 
mune complexes [71]. CCL2 is a monocyte 
efflux signal that activates G protein-coupled 
receptors to mediate cellular trafficking, which 
subsequently directs monocytes along a che-
mokine gradient to the site of injury. It is asso- 
ciated with various diseases, including rheu- 
matoid arthritis, atherosclerosis, diabetes, cer-
tain cancers (breast cancer, prostate cancer, 
pancreatic cancer, etc.). This article focuses on 
monocyte migration in atherosclerosis.

In addition to chemotaxis, CCL2 is important in 
cell polarization and survival. Its ability to direct 
macrophage polarization toward M1 via granu-
locyte-macrophage colony stimulating factor 
(GM-CSF) and macrophage colony-stimulating 
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factor (M-CSF) has been demonstrated in CCL2 
knockout mice and CCR2-deficient mice [72]. In 
addition, CCL2 activates CCR2 and mediates 
inflammatory response to atherosclerosis via 
ERK-dependent downstream signaling of leu-
kotriene liposomes in foam cells [73]. All these 
processes largely contribute to the develop-
ment of atherosclerosis.

Studies in mice have yielded indisputable re- 
sults. CCR2-/- knockout mice had significantly 
lowatherosclerosis but normal blood lipid and 
lipoprotein levels, demonstrating an associa-

tion between CCL2 and atherosclerosis [74]. 
Further, treatment targeting CCL2-CCR2 axis 
effectively reduced lesion development and 
progression [75]. Clinical studies have also 
shown a significant correlation between CCL2 
levels and atherosclerotic stroke in human pa- 
tients [76].

Some anti-inflammatory and lipid-lowering dr- 
ugs such as glucocorticoids [77] and statins 
[78] have been shown to have a non-selective 
inhibitory effect on CCL2. A recent study found 
the new effects of Colchicine to lower CCL2 lev-

Figure 2. Schematic overview of cytokines mediating immune cell chemotaxis during atherosclerosis. CCL2 can 
attract monocytes to the lesion and drive them to differentiate into macrophages. CCL2 further promotes macro-
phages polarization to M1. CX3CL1 was released by apoptotic cells and then recruits macrophages to form foam 
cells. MIF is a multipotent atypical chemokine, it selectively recruits T cells, monocytes and leucocytes through dif-
ferent receptors. It also promotes the expression of other cytokines, VCAM-1 and ICAM-1. Platelets are the factory of 
several chemokines including CCL5, CXCL4 and CXCL16. CCL5 can stop leucocytes from moving through the CCR1 
and CCR5 receptors and migrate leucocytes to the endothelium. CXCL4 can also bind to CCR1 and form a complex 
with CCL5, performing chemotaxis. CXCL16 promotes oxLDL uptake of macrophages other than its chemotactic 
function. CXCL12 exerts diverse effects including recruitment and promoting adhesion by binding to different recep-
tors. More details are offered in the text. CCL2: C-C motif chemokine ligand 2; CCL5: C-C motif chemokine ligand 
5; CCR1: C-C motif chemokine receptor 1; CCR2: C-C motif chemokine receptor 2; CCR5: C-C Motif Chemokine 
Receptor 5; CXCL4: C-X-C motif chemokine ligand 4; CXCL12: C-X-C motif chemokine ligand 12; CXCL16: C-X-C motif 
chemokine ligand 16; CXCR2: C-X-C motif chemokine receptor 2; CXCR6: C-X-C motif chemokine receptor 6; CXCR7: 
C-X-C motif chemokine receptor 7; CX3CL1: C-X3-C motif chemokine ligand 1; CX3CR1: C-X3-C motif chemokine 
receptor 1; TNF-α: tumor necrosis factor-α; IL: interleukin; MIF: macrophage migration inhibitory factor; iNOS: in-
ducible nitric oxide synthase; NO: nitric oxide; LDL: low-density lipoprotein; oxLDL: oxidized low-density lipoprotein. 
Figure was created using BioRender.com.
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els in patients with acute coronary syndrome 
(ACS) [79]. Various cancer drugs targeting 
CCL2-CCR2 axis have been clinically tested- 
with only a few of them showing positive results 
[80, 81]. This outcome is probably due to the 
complex non-unilinear function of chemokines. 
When one of the pathways is blocked, its func-
tion is maintained by the compensatory effect 
of other pathways. In addition, inhibiting the 
chemotactic effect of CCL2 may affect the 
organism itself, including causing abnormali-
ties in damage response to inflammation, which 
are important side effects of CCL2.

C-X3-C motif chemokine ligand 1 (CX3CL1)

CX3CL1 is involved in the initiation step of ath-
erosclerotic plaque formation. Its toxicity dam-
ages vascular endothelial cells, causing vascu-
lar injury, which later set offcascade reactions. 
Compared to other chemokines, CX3CL1 is uni- 
que because it is both soluble and membrane-
adhesive [82]. It is also specific to CX3CR1 
receptors. CX3CR1 is typically expressed on 
leukocytes and binds to membrane-bound CX- 
3CL1 of endothelial cells, activating lympho-
cytes and the release of lysis granules that 
destroy vascular endothelium [83]. Apoptotic 
cells also release CX3CL1 to recruit macro-
phages that remove apoptotic debris [84]. This 
clearance may be useful in early stages of 
lesion development. However, in advanced 
stage, CX3CL1-CX3CR1 axis signaling exacer-
bates the formation of foam cells [85], contrib-
uting to lesion progression. In addition, smooth 
muscle cells in atherosclerotic plaques also 
express CX3CR1 [86], which moves and con-
verges CX3CL1 in near the lesion.

Platelets are actively involved in plaque forma-
tion, CX3CL1 promotes lesion development by 
activating platelets and through its adhesion to 
the endothelium [87]. Both the expression of 
CX3CR1 on platelets and its binding to CX3CL1 
increase after hyperlipidemia, promoting plate-
let aggregation and monocyte recruitment [88]. 
The hemostatic and thrombogenic functions of 
platelets are highly correlated with atheroscle-
rosis and the probability of subsequent pla- 
que rupture. Platelet levels depend heavily on 
the regulation of chemokines, mainly CX3CL1, 
C-X3-C motif chemokine ligand 16 (CXCL16), 
C-X3-C motif chemokine ligand 12 (CXCL12), 
C-C motif chemokine ligand 12 (CCL12), and 
C-C motif chemokine ligand 22 (CCL22) [89].

In animal experiments, Apoe-/- and Ldlr-/- ath- 
erosclerotic mice were treated with F1, an  
amino-terminal modified CX3CR1 ligand with 
CX3CR1 antagonist activity. The results re- 
vealed that macrophages accumulated in the 
arteries, fewer monocytes were recruited, and 
atherosclerotic lesions were ameliorated [90]. 
This indicates that antagonizing CX3CR1 is a 
promising strategy for slowing the progression 
of atherosclerosis, but it needs to be tested 
clinically. Now clinical trials of specific CX3CL1 
inhibitor is still blank, but colchicine showed  
a positive effect in inhibiting CX3CL1 in ACS 
patients [79].

Macrophage migration inhibitory factor (MIF) 

MIF is a multipotent immunomodulatory cyto-
kine with a unique structure. It was one of the 
first cytokines identified by Bloom and Bennett 
in 1966 when studying delayed hypersensiti- 
vity reaction.Its primary function is to inhibit 
random migration of macrophages from capil-
laries. Because it lacks the characteristic 
N-terminal cysteine of classical chemokines 
but exhibits chemokine-like functions and 
binds to classical chemokine receptors, MIF is 
classified as a novel atypical chemokine (ACKs). 
The expression level of MIF is low in normal 
vessels, but significantly high in inflammatory 
states. Two receptors bind to MIF: CXCR2 and 
CXCR4, which are predominantly expressed on 
the surface of monocytes and T cells, respec-
tively. Both CXCR2 and CXCR4 are expressed 
on the surface of leukocytes, and by binding to 
both receptors, MIF promotes the recruitment 
of monocytes and T cells [91]. It also increas- 
es vascular cell adhesion molecule-1 (VCAM-
1)/intercelluar adhesion molecule-1 (ICAM-1) 
expression and promotes leukocyte adhesion 
to vascular endothelium, CCL2 expression and 
macrophage activation [92]. MIF in plaques 
also promotes the release of other cytokines 
such as TNF-α and IL-1β, which exacerbate the 
local inflammatory environment. It promotes 
foam cell formation by stimulating enhanced 
oxLDL uptake and increases plaque instability 
by inducing matrix degradation through MMPs 
[93]. In additional experiments, MIF was found 
to affect plaque stability by inhibiting VSMC 
proliferation and regulating proteolytic activity 
and elastin and collagen breakdown [94]. It 
also inhibited p53 function, causing inhibition 
of apoptosis and promotion of inflammatory 
response, which contributed to lesion develop-
ment [95].
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In the MIF-deficient murine model, chronic 
inflammation developed later and more slowly 
in mice compared to controls, and plaque 
lesions were reduced [96]. Apoe-/- mice treat- 
ed with MIF-neutralizing antibodies had signifi-
cantly reduced inflammatory indices and aor- 
tic plaque area compared to the control group 
[97].

Drugs targeting MIF have been recently 
approved for use, such as Ibudilast for treat- 
ing multiple sclerosis [98]. Other drugs like 
Imalumab [99] and IPG-1094 are under clinical 
trial, but the target diseases are still mainly lim-
ited to various types of tumors. 

C-C motif chemokine ligand 5 (CCL5) 

CCL5, also known as RANTES, is one of the che-
mokines that is highly expressed and released 
when platelets are activated at the lesion site. 
It is carried by platelets to activated endothelial 
cells and binds to CCR1 and CCR5, causing leu-
kocytes to migrate to arterial intima [100]. It 
also promotes the recruitment of other plate-
lets and immune cells [101]. The interaction 
between CCR5 and CCL5 mediates CD4+ T cell 
homing. Scientists have identified a specific 
subtype of CCR5+CD4+ T cells [102] capable  
of secreting IFN-γ, various interleukins and TNF-
α. Some of these cytokines are pro-inflammato-
ry cytokines that promote the development of 
atherosclerosis. CCL5 is known to form com-
plexes with other chemokines such as C-X-C 
motif chemokine ligand 4 (CXCL4) and C-C 
motif chemokine Ligand17 (CCL17), which act 
in combination and carry each other to recruit 
immune cells that promote atherosclerosis 
[103].

CCL5 is highly expressed in atherosclerotic 
plaques. Mice treated with the CCL5 anta- 
gonist Met-RANTES had significantly low leu- 
kocyte infiltration levels and atherosclerotic 
lesions [104]. Atherosclerosis was also reduc- 
ed in CCR5 knockout Apoe-/- mice compared to 
controls [105]. These experimental results vali-
date that the crucial role of CCL5-CCR1-CCR5 
axis in plaque formation. In samples of athero-
sclerotic patients, elevated circulating levels of 
RANTES were statistically associated with pro-
gression of acute coronary syndromes [106]. 

In addition, the role of CCL5-CCR5 axis has 
been studied in various diseases, including 
cancer, some inflammatory diseases, and AIDS. 

The drug Maraviroc (MVC), which targets CCR5 
and is currently used as an antiviral drug for HIV 
treatment. MVC has been found to reduce the 
risk of atherosclerosis and alleviate advanced 
plaque progression in a mouse model [107]. 
MVC also affects carotid intima-media thick-
ness and atherosclerotic plaques in HCV/HIV 
co-infected patients. Inhibition of CCR5 pre-
vents the development of atherosclerosis in 
HCV/HIV co-infected patients, especially in the 
non-calcified phase [108]. A novel dual anta- 
gonist of CCR5 and CCR2, Cenicriviroc (CVC), 
which inhibits monocyte chemotaxis by reduc-
ing E-selectin expression, is a promising treat-
ment for atherosclerosis [109]. However, fur-
ther animal experiments and clinical trials are 
needed to identify suitable drug targets for 
atherosclerosis. 

C-X-C motif chemokine ligand 4 (CXCL4) 

CXCL4, also known as platelet factor 4 (PF4), 
exerts an anti-apoptotic effect on monocytes 
and stimulates their differentiation into macro-
phages [110]. Activated platelets synergistical-
ly act with chemokines to exacerbate the patho-
genesis of atherosclerosis. Platelets secrete 
CXCL4, and the structural properties of its 
receptor CCR1 allow CXCL4 and CCL5 to inter-
act, forming a complex that causes monocyte 
arrest on the endothelium at the site of inflam-
matory injury and consequently atherosclerotic 
lesions [103]. Also, immunohistochemical anal-
ysis of human carotid atherosclerotic lesion 
samples reveals co-localization of CXCL4 with 
ox-LDL. This confirms the hypothesis that CX- 
CL4 binding to oxLDL subsequently mediates 
macrophage uptake and esterification, thereby 
promoting the formation of foam cells [111]. 
Additionally, a non-allelic variant isoform of 
CXCL4, CXCL4L1, exists, which has a distinct 
effect on monocyte, inhibiting chemotactic 
recruitment and angiogenesis as well as caus-
ing endothelial cell migration [112].

In vitro cell experiments indicate that CXCL4 
promotes atherosclerosis by limiting apoptosis 
of neutrophils and monocytes under pro-inflam-
matory conditions and mediating T cell-platelet 
interactions with platelets [113]. Cell experi-
ments on macrophages revealed that PF4 ca- 
uses macrophage differentiation, resulting in 
the downregulation of the CD163 atheroscle-
rotic protective receptor. Besides, analysis of 
human atherosclerotic plaque samples upregu-
lated PF4 and downregulated CD163 expres-
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sion [114]. In animal experiments, atheroscle-
rotic plaque burden was reduced in both 
C57BL/6PF4-/- and Apoe-/- PF4-/- mice [115], 
which is similar to the effect of CX3CL1. 
Immunohistochemical analysis of atheroscle-
rotic plaque samples from human carotid ar- 
teries identified the presence of PF4 in the 
endothelium and macrophages of the lesioned 
fraction, and the levels positively correlated 
with the severity of atherosclerosis [116].

Although the CXCL4-CCL5 complex affects ath-
erosclerosis, targeting CCL5 alone caused a 
systemic immune response. Therefore, stable 
peptide inhibitors targeting the CCL5-CXCL4 
complex structure have been designed to sup-
press atherosclerosis by reducing monocyte 
recruitment in mice models. For example, 
MKEY (a specifically designed compound to 
block CCL5-CXCR4 interaction) has demon-
strated therapeutic benefit by inhibiting speci- 
fic chemokines crucial for the development of 
atherosclerosis in mice [117].

C-X-C motif chemokine ligand 16 (CXCL16)

CXCL16 is a functionally diverse chemokine 
found in both membrane-binding type and 
secretory forms; On one hand, it protects 
against atherosclerosis and promotes it on the 
other hand. CXCL16 is expressed by dendritic 
cells, macrophages, B cells, T cells, smooth 
muscle cells, and endothelial cells. Membrane-
binding CXCL16 act as an adhesion molecule 
for cells expressing the receptor CXCR6, pro-
moting leukocyte aggregation and adhesion  
to the damaged vascular endothelium [118]. 
Nonetheless, macrophages in CXCL16-/- mice 
exhibit a reduced capacity to internalize LDL. 
CXCL16 also acts as a scavenger receptor for 
oxLDL, helping macrophages and smooth mus-
cle cells absorb oxLDL, which protects against 
atherosclerosis in the early stage and promotes 
foam cell formation [119].

Furthermore, CXCL16 is secreted by platelets 
and also activates platelets by binding to 
CXCR6 on platelets, promoting platelet aggre-
gation on the endothelium [120]. Its expression 
on platelets is associated with disease severi-
ty; platelets from patients with ACS exhibit 
enhanced CXCL16 expression than platelets 
from those with coronary artery disease [121].

HUNT study found that baseline levels of circu-
lating CXCL16 were linked to a higher risk of 

death in patients with acute coronary syndr- 
omes [122]. A follow-up study also confirmed 
that CXCL16 is still useful for predicting ath- 
erosclerosis and subsequent cardiovascular 
events, either in plaque stability or in acute 
coronary syndromes, after excluding other con-
tributing factors [123]. 

C-X-C motif chemokine ligand 12 (CXCL12)

The production of CXCL12, also known as stro-
mal cell-derived factor 1 (SDF-1), is triggered  
by the endothelial cell-derived apoptotic vesi-
cles via micro-126 during lesions [124]. Its 
ligands, including CXCR4 and CXCR7, and CX- 
CL12, play different roles when bound to other 
ligands. CXCR7 acts as a negative regulator of 
CXCL12, internalizing CXCL12 and transmitting 
it to lysosomes for degradation, thereby regu-
lating CXCL12/CXCR4 signaling. Besides, CX- 
CR7 (also known as ACKR3) is involved in 
monocyte adhesion and survival [125]. Regar- 
dless of the receptor it binds, CXCL12 pro-
motes macrophage differentiation, facilitating 
platelet phagocytosis, thereby causing foam 
cell formation [126].

In Apoe-/- mice, CXCL12 promotes lesion sta- 
bilization without affecting vessel diameter via 
smooth muscle cell mobilization, increased col-
lagen content, and fibrous cap thickening [127], 
beneficial in advanced atherosclerosis.

CXCL12 antagonist LIT-927 in immunodeficient 
mice prone to lupus regulates the correction of 
immune changes, attenuates lymphocyte activ-
ity, and hence regulates inflammation. Its effect 
is better than that of CXCR4/CXCR7 antagonist 
AMD3100 [128]. This also suggests that con-
trolling disease progression by antagonizing 
chemokines in the early stages of atherosclero-
sis yields a proactive preventive effect.

Anti-inflammatory cytokines in atherosclerosis

In addition to the pro-inflammatory cytokines 
mentioned above, anti-inflammatory cytokines 
should not be disregarded. IL-10 and transform-
ing growth factor β (TGF-β) are the most repre-
sentative anti-inflammatory cytokines. IL-10 
was mainly produced by macrophages in pla- 
que. The atheroprotective role of IL-10 was 
exemplified by lowering the expression of MMP 
and some pro-inflammatory cytokines (e.g. 
IL-1β, TNF-α, IL-8), promoting macrophages 
polarization towards the M2 phenotype and fur-
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ther inhibited the progress of atherosclerosis 
[134]. Recent studies showed that using exo-
some-mediated IL-10 mRNA can effectively 
control atherosclerosis in Apoe-/- mice [135]. 
For rheumatoid arthritis treatments, antibody 
fragment F8-mediated IL-10 has been studi- 
ed in clinical trials (NCT02076659, NCT022- 
70632), which taking hope to IL-10 therapy in 
atherosclerosis. TGF-β was expressed in vari-
ous cells such as leukocytes, macrophages, 
and VSMCs. It showed anti-inflammatory prop-
erties by inhibiting inflammatory cytokines in- 
cluding TNF-α, IL-1β, etc, subsequently sup-
pressed the adhesion and activation of inflam-
matory cells [136]. Several experiments con-
ducted in mice confirmed the effects on re- 
gulating TGF-β [137-139]. Notably, regulatory T 
cells (Tregs) were the common source of both 
IL-10 and TGF-β. Clinical data also indicated the 
relevance between Treg level and coronary 
artery disease (CAD) [140]. Thus, targeting 
Tregs may also be potential access, such as 
activating protective immunity of Tregs by 
administering antigens [141]. Patients who had 
influenza vaccination injection after myocardial 
infarction with a lower risk of all cause death 
and cardiovascular death [142], which added 
evidence to this possible treatment.

It has been noted that IL-2 was not normally 
regarded as an anti-inflammatory cytokine. 
However, it had a positive function in athero-
protection. Mice experiments showed that IL-2 
could alleviate atherosclerosis by promoting 
Treg expansion [143, 144].

Aside from targeting pro-inflammatory cyto-
kines, we needed to pay attention to anti-in- 
flammatory cytokines and their potential ave-
nues including increasing the level of anti-in- 
flammatory cytokines or strengthening the cells 
which produce them. These studies and clini- 
cal trials of anti-inflammatory cytokines were 
relatively rare, probably due to the limited 
effects of enhancing anti-inflammatory func-
tion. Future treatment of atherosclerosis using 
potent anti-inflammatory agents or in combina-
tion with anti-inflammatory agents with pro-
inflammatory cytokines inhibitors might be 
feasible.

Conclusion

Chemotaxis and activation of immune cells by 
cytokines are crucial mechanisms for the pa- 

thogenesis of atherosclerosis. Thus, investigat-
ing the role of cytokines is critical to unraveling 
the pathogenic mechanism of atherosclerosis 
and possible therapeutic interventions. The 
progression of atherosclerotic lesions can be 
effectively combatted by pinpointing key tar-
gets and making a global observation, as well 
as regulating the dynamic changes at the le- 
sion site or even the inflammatory state of the 
whole organism. At present, research on the 
treatment of atherosclerosis by targeting cyto-
kines is still ongoing, and some clinical effects 
are still uncertain. Combination of drug regi-
mens have been proposed to address this, i.e., 
different cytokine inhibitors are combined to 
inhibit multiple inflammatory pathways; besi- 
des, cytokine inhibitors combined with lipid-
lowering drugs are utilized to act on both cho-
lesterol and inflammatory pathways. For instan- 
ce, PCSK9 inhibitors (targeted cholesterol-low-
ering) alone can be used to treat atherosclero-
sis [145]. However, this also increases the risk 
of inflammation [146]. PCSK9 and cytokine 
antibodies might yield a 1+1>2 effect. Impor- 
tantly, understanding the underlying mecha-
nisms of the above cytokines can disclose the 
nature of the cytokine action network. To fur-
ther combat atherosclerosis progression, criti-
cal nodes in the cytokine network can be tar-
geted to limit immune cell chemotaxis, regulate 
immune cell activation, block signaling path-
ways including NF-κB and reduce the secretion 
of pro-inflammatory cytokines. This will facili-
tate efficient management of pathogenesis and 
mitigates or even prevents its development. 
Specifically, research should concentrate on 
multidirectional interactions and crosstalk of 
different cytokines and their receptors, their 
effects on normal tissues, and distinct or even 
opposite effects of a specific cytokine at each 
lesion stage so as to identify novel targets for 
therapeutic interventions.
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