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Abstract: Purpose: We aimed to explore the prognostic value of integrin-B superfamily members (ITGBs) and their
role in immune cell infiltration in non-small cell lung cancer (NSCLC). Materials and Methods: Study cases were
acquired from The Cancer Genome Atlas database and The Human Protein Atlas. We then used R package and sev-
eral online tools to analyze and visualize the roles of ITGBs in lung adenocarcinoma (LUAD) and lung squamous cell
carcinoma (LUSC). Results: We found that ITGBs were differentially expressed in NSCLC. In LUAD, high expression
of ITGB1 and ITGB4 was an independent risk factor for poor prognosis, and ITGB7 was an independent protective
factor for overall survival; in LUSC, high expression of ITGB1, 3, 5, and 6 was associated with poor prognosis, and
ITGB8 was an independent protective factor for disease-specific survival. Protein-protein interaction networks for
the most associated co-expressed genes revealed the following target genes of ITGBs: PTPRC, ITGAM, and ITGB2
in LUAD and FN1, PTPRC, and ITGB2 in LUSC. Gene ontology analysis revealed that functions related to adhesion,
junction, and binding were highly enriched in LUAD and LUSC. ITGBs were significantly associated with immune
cell infiltration and the expression of immunomodulation-related genes in LUAD and LUSC. Conclusion: ITGBs were
differentially expressed in NSCLC. ITGB1, 4, and 7 and ITGB1, 3, 5, 6, and 8 were found as prognostic markers in
LUAD and LUSC, respectively. ITGBs were significantly associated with immune cell infiltration and the expression of

immunomodulation-related genes.
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Introduction

Although great efforts have been made to study
and control lung cancer, it remains the most
common cause of cancer-related deaths [1].
Non-small cell lung cancer (NSCLC) accounts
for 85% of lung cancer cases, with lung adeno-
carcinoma (LUAD) and lung squamous cell car-
cinoma (LUSC) as the most common subsets
[2]; therefore, it is crucial to identify the genes
involved in promoting the progression of LUAD
and LUSC.

Integrins are composed of a and [ subunits,
and constitute a large family of cell surface
receptors [3]. Through binding to the extracel-
lular matrix (ECM), integrins participate in cell
survival, proliferation, and migration [3, 4]. The
deregulation of integrin signaling enables tumor
cells to proliferate, invade, and survive [5].
Moreover, integrins can promote the expansion

and self-renewal of cancer stem cells [6, 7], dis-
rupt epithelial adhesion [8, 9], foster develop-
ment of the tumor microenvironment (TME)
[10], and encourage resistance to immune-tar-
geted therapies [11-13]. Therefore, integrins
play a vital role in tumor neogenesis, progres-
sion, colonization, recurrence, and resistance
to therapy. The integrin-B (ITGB) superfamily
comprises eight members, ITGB1-8 [4]. High
expression of ITGB1, 4, and 8 is related to the
progression and poor prognosis of lung cancer
[14-16]. However, the roles of other ITGB super-
family members (ITGBs) in the prognosis and
immune infiltration of NSCLC remain poorly
understood. Furthermore, whether the role of
ITGBs in prognosis and immune infiltration dif-
fer between LUAD and LUSC remains unclear.

Here, we conducted a systematic bioinformat-
ics analysis to identify the gene expression lev-
els, prognostic value, interactions, and related
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infiltrated immune cells of ITGBs in LUAD and
LUSC. We further clarify the pathogenesis and
possible therapeutic targets of NSCLC.

Materials and methods
Data source

The case information of MRNA expression pro-
files and clinical features was acquired from
The Cancer Genome Atlas (TCGA) and down-
loaded from the University of California Santa
Cruz Xena (UCSC Xena; https://xena.ucsc.edu/)
platform. Immunohistochemistry (IHC)-based
protein expression patterns were acquired from
The Human Protein Atlas (HPA; https://www.
proteinatlas.org/). Genetic variation data were
obtained from cBioPortal (http://www.cbiopor-
tal.org). Promoter methylation data were
obtained from the University of Alabama at
Birmingham Cancer data analysis Portal
(UALCAN, http://ualcan.path.uab.edu/analysis-
prot.html, TCGA dataset). Data regarding the
relationship between ITGBs and immune cell
infiltration as well as immunomodulation-relat-
ed gene expression were obtained from the
Tumor Immune Estimation Resource (TIMER,
version 2, timer.cistrome.org).

ITGBs expression level in pan-cancer, LUAD,
and LUSC

We downloaded RNA-seq data (normalized as
transcripts per million reads, TPM) of ITGBs
from pan-cancer, LUAD, and LUSC datasets on
the UCSC Xena platform, and then analyzed
and visualized the data using the “ggplot2”
package in R. Unpaired samples t-test was
used to compare the expression level of ITGBs
between the normal and tumor groups; statisti-
cal significance was set at P < 0.05.

Validate the protein expression of ITGBs in
LUAD and LUSC

To verify the expression of ITGBs at the histo-
logical level, IHC-based protein expression pat-
terns in normal human lung, LUAD, and LUSC
tissues were acquired from the HPA.

ITGBs and pathological stages

Gene expression profiling interactive analysis
(GEPIA) is a web server that integrates TCGA
and genotype-tissue expression (GTEx) (http://
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gepia.cancer-pku.cn/) data. We used GEPIA to
assess the correlation between ITGBs and
pathological stages; statistical significance
was set at P < 0.05.

Survival and prognostic analysis

Clinical datasets from TCGA were used to ana-
lyze the survival outcomes of patients with
LUAD and LUSC. With 50% as the cutoff value,
samples were divided into low and high groups.
Overall survival (OS) and disease-specific sur-
vival (DSS) were used to evaluate survival out-
comes. We performed Kaplan-Meier analysis
with Cox regression using the “survminer” and
“survival” packages in R. Univariate analyses
were conducted using the “survival” package in
R. Significant variables in univariate Cox regres-
sion analysis (P < 0.1) were subjected to a mul-
tivariate Cox regression model; statistical sig-
nificance was set at P < 0.05.

Genetic variation

We collected data of 586 LUAD and 511 LUSC
samples from TCGA and analyzed and visual-
ized their genetic variation as well as the impact
of genetic variation on OS using cBioPortal
(http://www.cbioportal.org).

Correlation analyses

For correlation analysis between every pair of
ITGBs, expression data were tested using
Pearson’s correlation coefficient. The R pack-
age “ggplot2” was used to analyze and visual-
ize the results; statistical significance was set
at P<0.05.

Co-expression heatmap and construction of
protein-protein interaction (PPIl) network

After being downloaded from TCGA, the co-
expressed genes were ranked according to
their co-expression correlation values with
ITGBs. The top 20 genes that were significantly
correlated with ITGBs were extracted to plot
heatmaps in R using the “ggplot2” package. To
explore the extent of interactions between the
proteins expressed by these genes, the PPl net-
work was constructed using STRING (https://
cn.string-db.org, main parameters: network
type: full STRING network, meaning of network
edges: evidence, active interaction source:
Textmining, Experiments, Databases, Co-ex-
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pression, Neighborhood, Gene Fusion and
Co-occurrence, minimum required interaction
score: Medium confidence [0.400], max num-
ber of interactors to show: 1st shell [none/
query proteins only]), and Cytoscape.

Functional annotation of ITGBs and the associ-
ated genes

Gene Ontology (GO) and Kyoto Encyclopedia of
Genes and Genomes (KEGG) enrichment analy-
ses were performed on ITGBs and the top five
most relevant genes in R using the “ggplot2”
and “clusterProfiler” packages, Fisher’'s exact
P-value was corrected using the Benjamini-
Hochberg (BH) method; statistical significance
was set at P adj < 0.05 and q value < 0.2.

Relationship of ITGBs with immune cell infiltra-
tion and expression of immunomodulation-
related genes

We evaluated the relationship of ITGBs with
immune cell infiltration and expression of im-
munomodulation-related genes using TIMER2.

Results
ITGB expression levels in pan-cancer data

We evaluated the pan-cancer mRNA expres-
sion of ITGBs from TCGA and GTEx (Figure 1).
The analysis indicated that ITGB1 expression
was upregulated in 16 tumors and downregu-
lated in six tumors. ITGB2 expression was
upregulated in 22 tumors and downregulated in
four tumors. ITGB3 expression was upregulat-
ed in eight tumors and downregulated in 18
tumors. ITGB4 expression was upregulated in
23 tumors and downregulated in six tumors.
ITGB5 expression was upregulated in 17 tu-
mors and downregulated in nine tumors. ITGB6
expression was upregulated in 20 tumors and
downregulated in seven tumors. ITGB7 expres-
sion was upregulated in 18 tumors and down-
regulated in four tumors. ITGB8 expression was
upregulated in 19 tumors and downregulated in
nine tumors (P < 0.05).

Gene expression and validation of ITGBs in
LUAD and LUSC

Owing to the scarcity of RNA-seq data from

matched paracancerous tissues in TCGA-LUAD
and TCGA-LUSC data, we acquired RNA-seq
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data from 288 normal lungs from the GTEX pro-
ject. Finally, 515 LUAD cases matched with 347
controls (59 paracancerous tissues, 288 nor-
mal lungtissues), and 498 LUSC cases matched
with 338 controls (50 paracancerous tissues
and 288 normal lung tissues) were included in
the analysis (Figure 2). In LUAD, high expres-
sion of ITGB4, 6, 7, and 8 and low expression of
ITGB2, 3, and 5 were observed (P < 0.05). In
LUSC, high expression of ITGB4, 5, and 8 and
low expression of ITGB1, 2, 3, 6, and 7 were
observed (P < 0.05).

To verify the expression of ITGBs at the histo-
logical level, IHC-based protein expression pat-
terns in normal human lung (N), LUAD, and
LUSC tissues were obtained from the HPA
(Figure 3). These results validated the expres-
sion of ITGBs in LUAD and LUSC (except for
ITGB7). IHC-based protein expression revealed
that, ITGB4, 6, and 8 were upregulated, where-
as ITGB2, 3, and 5 were downregulated in
LUAD; ITGB4, 5, and 8 were up-regulated,
whereas ITGB1, 2, 3, and 6 were downregulat-
ed in LUSC.

ITGB expression in different pathological
stages

To identify whether ITGBs are differentially ex-
pressed among pathological stages, we ana-
lyzed the correlations between the expression
of ITGBs and the pathological stages in LUAD
and LUSC using GEPIA (Figure 4). The results
revealed that ITGB4, 6, and 8 showed signifi-
cantly differential expression among various
pathological stages of LUSC (P < 0.05, Figure
4B). No significant differences were observed
in the expression of other ITGBs in LUSC and in
all the ITGBs in LUAD (P > 0.05, Figure 4A, 4B).

The prognostic value of ITGBs in LUAD and
LUSC

To thoroughly investigate the impact of ITGBs
on the survival and prognosis of LUAD and
LUSC, we chose OS and DSS as the prognostic
indicators. In LUAD (Figure 5A), high expression
of ITGB1 and 4 was related to decreased OS,
whereas ITGB7 was related to increased OS (P
< 0.05), and ITGB4 was related to decreased
DSS (P < 0.05). In LUSC (Figure 5B), high
expression of ITGB1, 3, 5, and 6 was associat-
ed with decreased OS (P < 0.05). ITGB1 was
related to decreased DSS, whereas ITGB8 was
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Figure 1. Expression level of ITGBs in pan-cancer data. ns, no statistical significance; *, P < 0.05; **, P < 0.01; ™", P < 0.001.
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Figure 2. Expression level of ITGBs in LUAD and LUSC. ns, no statistical significance; *, P < 0.05; ™, P < 0.01; ™™, P
< 0.001.
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Figure 3. Validation of ITGB protein expression in LUAD and LUSC. N, normal human lung tissue; LUAD, lung adeno-
carcinoma; LUSC, lung squamous cell carcinoma.

related toincreased DSS (P < 0.05). The expres- results showed that 23.11% (116/502) of the
sion of other ITGBs had no significant effect on LUAD cases and 16.67% (86/516) of the LUSC
OS and DSS in either LUAD or LUSC (P > 0.05). cases harbored genetic variations. Amplification
is the most frequent alteration in both LUAD
Univariate and multivariate COX regression and LUSC (Figure 6A). We then investigated the
analyses were conducted to explore whether variation in ITGBs in LUAD and LUSC and found
ITGBs are independent risk factors for the prog- that ITGBS8 (8%) and ITGB5 (11%) were the most
nosis of LUAD and LUSC. We found that, for frequently altered in LUAD and LUSC, respec-
LUAD (Table 1), ITGB1 and 4 were independent tively (Figure 6B, 6C). However, no significant
risk factors for decreased OS, whereas ITGB7 effect of genetic variation was observed on 0S
was an independent protective factor for OS in LUAD and LUSC (Figure 6D, 6E) (P > 0.05).
(P < 0.05) and ITGB4 was an independent risk
factor for decreased DSS (P < 0.05). For LUSC Promoter methylation level of ITGBs in LUAD
(Table 2), ITGBS8 was an independent protective and LUSC

factor for DSS (P < 0.05), and none of the ITGBs

were an independent risk factor for 0S (P > Gene expression can be regulated at different

0.05). levels [17], such as post-translational modifica-
tions [18] and chemical modifications of nucleo-
Genetic variation of ITGBs in LUAD and LUSC bases [19]. Methylation is one of the ways in
which nucleobases are chemically modified;
The genetic variation of ITGBs was explored genes can be silenced and reactivated by the
using the cBioPortal database (Figure 6). The methylation and demethylation of cytosines in
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6450

12

10

10

ITGB1

ITGBs in non-small cell lung cancer

ITGB2

ITGB3

ITGB4

AdA

F value = 2.04
Pr(>F) = 0.108

10

F value = 1.17
Pr(>F) = 0.321

A

F value = 0.703
Pr(>F) = 0.551

vy

10

F value = 1.31
Pr(>F) = 0.269

Al

o
T ~ T T T T
Stage | Stage Il Stage Ill Stage IV Stage | Stage Il Stage Ill Stage IV Stage | Stage Il Stage Ill Stage IV Stage | Stagell Stage Il Stage IV
ITGBS - ITGB6 ITGB7 ITGB8
F value = 1.13 - F value = 0.644 F value = 2.19 ~ F value = 0.163
Pr(>F) = 0.336 Pr(>F) = 0.587 Pr(>F) = 0.0881 Pr(>F) = 0.921
@

$9¢

A

Ak

T

T T T T

T T T

T

11

Stage | Stage Il Stage Il Stage IV Stage | Stage Il Stage Il Stage IV Stage | Stage Il Stage Il Stage IV Stage | Stagell Stage Il Stage IV
ITGB1 ITGB2 ITGB3 ITGB4
F value = 0.171 F value = 0.501 & F value = 3.79
F value = 2.59 Pr(>F) = 0.916 Pr(>F) = 0.682 Pr(>F)=0.0104
Pr(>F) = 0.0524
© =
©
Gj ©
-
<«
o ~
T T T T T T T T T T T T T T T T
stage | stage Il Stage lll Stage IV Stage | Stage Il sStage lll Stage IV Stage | Stage Il Stage lll Stage IV Stage | Stagell Stage lll Stage IV
ITGB5 ITGB6 ITGB7 ITGB8
F value = 1.47 F value = 3.22 F value = 1.29 ~ F value = 2.82
Pr(>F) = 0.223 Pr(>F) = 0.0226 Pr(>F) = 0.278 Pr(>F) = 0.0388
© ©
©
@ |
-
- ©
~
~
o —_— o
T T T T T T T T T T T T T T T T
Stage | stage Il Stage Il Stage IV Stage | Stage Il Stage lll Stage IV Stage | Stage Il Stage lll Stage IV Stage | Stagell Stage lll Stage IV

Am J Transl Res 2022;14(9):6445-6466



ITGBs in non-small cell lung cancer

Figure 4. The expression level of ITGBs in different pathological stages. A. The expression level of ITGBs in different
pathological stages of LUAD. B. The expression level of ITGBs in different pathological stages of LUSC.
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Figure 5. The prognostic value of ITGBs. A. The prognostic value of ITGBs in LUAD. B. The prognostic value of ITGBs

in LUSC.

the promoter region [19]. To explore changes in
the methylation level of promoters of ITGBs in
NSCLC, we obtained the methylation data of
ITGBs in LUAD and LUSC from TCGA database
using UALCAN (Figure 7). In LUAD (Figure 7A),
the promoters of ITGB2, 4, 5, 6, and 8 showed
decreased methylation levels, whereas ITGB3
and 7 showed increased methylation levels; in
LUSC (Figure 7B), the methylation levels of the
promoters of ITGB2, 4, 6, and 7 were decreased,
while those of ITGB1 and 8 were increased (P <
0.05).

These above results suggest that different
gene variants and promoter methylation levels
of ITGBs may contribute to their differential
expression in LUAD and LUSC.

Correlation between ITGBs in LUAD and LUSC

Differential expression and prognostic effects
of ITGBs in LUAD and LUSC suggest that ITGBs
in these two NSCLC subtypes share different
correlations. As shown in Figure 8A, ITGBs were
positively correlated with each other in LUAD; in
LUSC (Figure 8B), most ITGBs were positively
correlated, and a few ITGBs were negatively
correlated with each other. We further analyzed
these results and found that in LUSC, the
expression of most positively correlated ITGBs
was upregulated or downregulated (except for
ITGB5 and ITGB1), while the negatively corre-
lated ITGBs showed the opposite expression
trend. For example, ITGB4 and 8 were positively
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correlated, the expression of both ITGB4 and 8
was upregulated, while ITGB2 and 8 were nega-
tively correlated, the expression of ITGB2 was
downregulated, and ITGB8 was upregulated.
However, this phenomenon was not observed
in LUAD; for example, ITGB2 and 7 showed a
significant positive correlation with a correla-
tion coefficient of 0.65, while upregulation of
ITGB2 and downregulation of ITGB7 were
observed. Based on the above information, we
speculate that in LUAD, the ITGBs mostly
showed an indirect relation, whereas in LUSC,
the ITGBs mostly showed a direct relation.

Co-expressed genes and PPl network construc-
tion

To investigate the function of ITGBs in LUAD
and LUSC, we first identified the co-expressed
genes of ITGBs and displayed the top 20 in a
heatmap plot (Figure 9A, 9B). Next, PPl net-
works of the top 20 correlated genes and ITGBs
were constructed using STRING and Cytoscape.
Our results showed the most closely interacting
genes to be PTPRC, ITGAM, and ITGB2 in LUAD
and FN1, PTPRC, and ITGB2 in LUSC, which
may also act as target molecules of ITGBs in
LUAD and LUSC, respectively (Figure 9C, 9D).

GO and KEGG enrichment analysis

We performed GO and KEGG functional enrich-
ment analyses on the top five correlated genes
and ITGBs (in total 88 genes were included)
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Table 1. Univariate and Multivariate analysis of OS and DSS in LUAD

Univariate analysis

Multivariate analysis

Characteristics 0S DSS 0S DSS
HR (95% Cl) P value HR (95% Cl) P value HR (95% CI) P value HR (95% CI) P value

Gender Female Reference Reference

Male 1.070 (0.803-1.426) 0.642 0.989 (0.687-1.424) 0.954
Age <65 Reference Reference

>65 1.223(0.916-1.635) 0.172 1.013 (0.701-1.464) 0.944
Smoker No Reference Reference

Yes 0.894 (0.592-1.348) 0.591 1.040 (0.602-1.796) 0.889
Pathological stage 1&II Reference Reference

&IV 2.664 (1.960-3.621) < 0.001 2.436 (1.645-3.605) < 0.001 2.466 (1.809-3.363) < 0.001 2.217 (1.490-3.298) < 0.001
ITGB1 Low Reference Reference

High 1.514 (1.132-2.025) 0.005 1.435 (0.996-2.069) 0.053 1.438 (1.058-1.956) 0.020 1.258 (0.865-1.827) 0.229
ITGB2 Low Reference Reference

High 0.886 (0.665-1.182) 0.412 0.792 (0.549-1.143) 0.213
ITGB3 Low Reference Reference

High 1.089 (0.818-1.451) 0.557 1.088 (0.757-1.563) 0.650
ITGB4 Low Reference Reference

High 1.686 (1.262-2.251) < 0.001 1.788 (1.238-2.584) 0.002 1.445 (1.047-1.995) 0.025 1.571 (1.075-2.296) 0.020
ITGB5 Low Reference Reference

High 1.311 (0.984-1.747) 0.064 1.190 (0.828-1.711) 0.346 1.024 (0.739-1.419) 0.886
ITGB6 Low Reference Reference

High 0.999 (0.750-1.332) 0.997 0.863 (0.599-1.242) 0.427
ITGB7 Low Reference Reference

High 0.734 (0.548-0.982) 0.037 0.737 (0.510-1.066) 0.105 0.699 (0.519-0.943) 0.019
ITGB8 Low Reference Reference

High 0.965 (0.724-1.285) 0.807 1.074 (0.747-1.545) 0.700

0OS: Overall survival, DSS: Disease Specific survival, HR: Hazard Ratio, Cl: Confidence interval.
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Table 2. Univariate and Multivariate analysis of OS and DSS in LUSC
Univariate analysis

Multivariate analysis

Characteristics 0S DSS 0S DSS
HR (95% CI) P value HR (95% CI) P value HR (95% Cl) P value HR (95% CI) P value

Gender Female Reference Reference

Male 1.211 (0.879-1.669) 0.241 1.386 (0.833-2.307) 0.209
Age <65 Reference Reference

> 65 1.279 (0.960-1.704) 0.093 1.028 (0.668-1.582) 0.899 1.237 (0.921-1.661) 0.158
Smoker No Reference Reference

Yes 0.585 (0.259-1.325) 0.199 0.393 (0.123-1.251) 0.114
Pathological stage 1&I1 Reference Reference

&IV 1.570 (1.139-2.163) 0.006 2.600 (1.648-4.102) <0.001 1.601 (1.159-2.212) 0.004 2.626 (1.662-4.150) < 0.001
ITGB1 Low Reference Reference

High 1.413 (1.076-1.854) 0.013 1.638 (1.068-2.510) 0.024 1.123 (0.814-1.549) 0.481 1.545 (0.931-2.564) 0.092
ITGB2 Low Reference Reference

High 1.051 (0.802-1.378) 0.719 0.998 (0.655-1.521) 0.992
ITGB3 Low Reference Reference

High 1.319 (1.005-1.731) 0.046 1.487 (0.972-2.273) 0.067 1.140 (0.840-1.546) 0.401 1.227 (0.754-1.996) 0.409
ITGB4 Low Reference Reference

High 1.105 (0.843-1.450) 0.470 1.282 (0.840-1.958) 0.250
ITGB5 Low Reference Reference

High 1.358 (1.034-1.785) 0.028 1.294 (0.847-1.975) 0.234 1.242 (0.921-1.674) 0.155
ITGB6 Low Reference Reference

High 1.437 (1.095-1.886) 0.009 1.501 (0.981-2.294) 0.061 1.221 (0.902-1.653) 0.196 1.205 (0.741-1.960) 0.451
ITGB7 Low Reference Reference

High 0.968 (0.737-1.270) 0.814 0.851 (0.557-1.300) 0.454
ITGB8 Low Reference Reference

High 0.993 (0.757-1.301) 0.957 0.641 (0.417-0.984) 0.042 0.594 (0.384-0.918) 0.019

0OS: Overall survival, DSS: Disease Specific survival, HR: Hazard Ratio, Cl: Confidence interval.
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Figure 8. Correlation between ITGBs. A. Correlation between ITGBs in LUAD. B. Correlation between ITGBs in LUSC.

and presented the top five results. As shown
in Figure 10A, GO analysis revealed that the
above genes were highly enriched for functions
related to adhesion, junction, and binding in
both LUAD and LUSC. KEGG pathway enrich-
ment analysis revealed that regulation of the
actin cytoskeleton, ECM-receptor interaction,
hypertrophic cardiomyopathy, and arrhythmo-
genic right ventricular cardiomyopathy-related
pathways were enriched in both LUAD and
LUSC. The network plot shows that almost all
ITGBs directly affected the clustering functions
acquired by GO analysis in LUAD and LUSC.
Target molecules other than ITGB2 obtained by
PPI, namely PTPRC and ITGAM in LUAD, and
FN1 and PTPRC in LUSC, indirectly affected the
functions obtained in GO analysis (Figure 10B,
10C).

Relationship between ITGBs and immune cell
infiltration in LUAD and LUSC

To further clarify the role of ITGBs in LUAD and
LUSC, we assessed the relationship between
ITGBs and tumor-infiltrating immune cells using
TIMER2 (Figure 11, purity adjustment).

In LUAD (Figure 11A, representative images
are shown in Figure 11B), nearly all ITGBs were
positively associated with the infiltration of
CD8+ T cells, CD4+ T cells, dendritic cells (DCs),
macrophages, and neutrophils (P < 0.05). Ex-
cept ITGB7, which was positively correlated
with B cell infiltration, ITGB1, 3, 4, and 5 were
all negatively correlated with B cell infiltration
(P < 0.05).

In LUSC (Figure 11A, representative images
are shown in Figure 11B), ITGB1, 2, 3, 5, 6, and
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7 were almost all positively correlated with
CD8+ T cells, CD4+ T cells, DCs, macrophages,
and neutrophils (except ITGB5, which was neg-
atively correlated with neutrophils infiltration)
(P < 0.05). ITGB4 and 8 were not associated
with almost all infiltrating immune cells (except
ITGB4, which was negatively correlated with B
cell infiltration) (P > 0.05).

Relationship of ITGBs with the expression of
immunomodulation-related genes in LUAD and
LUSC

To explore the mechanism by which ITGBs
affect immune cell infiltration, we downloaded
data from TIMER2 on the relationship between
ITGBs and the expression of immune activa-
tion-related (Figure 12A), immunosuppression-
related (Figure 12B), chemokine (Figure 12C),
and chemokine receptor genes (Figure 12D)
in LUAD and LUSC (purity adjustment). The
results showed that in LUAD, ITGBs showed a
generally positive correlation with the exp-
ression of these immunomodulation-related
genes; in LUSC, ITGB1, 2, 3, 5, 6, 7 showed a
generally positive correlation with the expres-
sion of these immunomodulation-related ge-
nes, whereas ITGB4 and 8 showed a generally
negative correlation with these genes.

Based on the above information, we speculat-
ed that ITGBs may affect immune cell infiltra-
tion in LUAD and LUSC through the expression
of immunomodulation-related genes.

Discussion

In the present study, for the first time, we used
multiple public database platforms to conduct
an in-depth exploration of the role of ITGBs in

Am J Transl Res 2022;14(9):6445-6466
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Figure 9. Top 20 co-expressed genes of ITGBs. A. Top 20 co-expressed genes of ITGBs in LUAD. B. Top 20 co-
expressed genes of ITGBs in LUSC. C. PPI network of ITGBs and related top 20 co-expressed genes in LUAD. D. PPI
network of ITGBs and related top 20 co-expressed genes in LUSC.

NSCLC with respect to mRNA and protein
expression, clinical outcome, and tumor-infil-
trating immune cells. Our results indicate that
ITGBs are differentially expressed in LUAD and
LUSC, possibly because of different mutation
degrees/types and promoter methylation lev-
els of ITGBs in LUAD and LUSC. Prognostic
analysis revealed that in LUAD, ITGB1, 4, and
7 could be prognostic markers, while in LUSC,
ITGB1, 3, 5, 6, and 8 could be prognostic
markers. Analysis of the most associated co-
expressed genes and their PPl network
revealed that the most closely interacting
genes in LUAD were PTPRC, ITGAM, and ITGB2

6459

whereas those in LUSC were FN1, PTPRC, and
ITGB2, which may be the target molecules of
ITGBs in these cancers. GO analysis showed
that the most related genes were highly
enriched for functions related to adhesion,
junction, and binding in both LUAD and LUSC,
whereas the target molecules of PTPRC and
ITGAM in LUAD, and those of FN1 and PTPRC in
LUSC, indirectly affected the functions obtained
by GO analysis. Immune cell infiltration analysis
indicated that ITGBs were significantly related
to immune cell infiltration in NSCLC, which may
be affected by the expression of immunomodu-
lation-related genes.
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Figure 10. GO and KEGG enrichment analysis. A. GO [in biological process (BP), cellular component (CC), molecular
function (MF)] and KEGG enrichment analysis in LUAD and LUSC. B. Crosstalk between enriched functions (BP+CC)
and genes in LUAD and LUSC. C. Crosstalk between enriched functions (MF+KEGG) and gene s in LUAD and LUSC.
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Figure 11. Relationship between ITGBs and immune cell infiltration. A. Relationship between ITGBs and immune
cell infiltration in LUAD and LUSC. B. Representative images of the relationship between ITGBs and immune cell

infiltration in LUAD and LUSC.

ITGB1 associates with at least ten a-subunits,
forming the largest integrin subfamily [20].
Overexpression of ITGB1 has been observed in
several solid tumors [21, 22]. Consistent with
our results, Deng et al. found that upregulation
of ITGB1 indicated poor prognosis in patients
with LUAD [23]. In addition, ITGB1 is also
involved in the initiation, metastasis, stem-
ness, and radioresistance of lung cancer [24-
27]. Thus, ITGB1 may be a potential therapeu-
tic target for lung cancer.

Similar to ITGB1, ITGB3 downregulation could
restrain the migration and invasion of NSCLC
[28, 29], and inhibition of ITGB3 could promote
the antitumor activity of ALK inhibitors in NSCLC
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[30]. Another study revealed that ITGB3 is over-
expressed in both drug resistance and mesen-
chymal status, indicating its potential as a tar-
get to overcome chemoresistance in lung can-
cer [31].

Through the intracytoplasmic region, ITGB4 can
activate intracellular signaling and maintain
epithelial cell integrity [32]. Huang et al. per-
formed bioinformatics analysis and found that
ITGB4 is a pan-cancer oncogene across 33 dif-
ferent human tumors [33]. ITGB4 overexpres-
sion is associated with venous invasion and
decreased OS in NSCLC [34]. Furthermore,
ITGB4 is also closely related to other diseases
of the respiratory system, such as airway
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Figure 12. Relationship of ITGBs with the expression of immunomodulation-related genes. A. The relationship of
ITGBs and the expression of immune activation-related genes in LUAD and LUSC. B. The relationship of ITGBs and
the expression of immunosuppression-related genes in LUAD and LUSC. C. The relationship of ITGBs and the expres-
sion of chemokine genes in LUAD and LUSC. D. The relationship of ITGBs and the expression of chemokine receptor

genes in LUAD and LUSC.

inflammation and hyperresponsiveness, acute
lung injury, and spontaneous pulmonary inflam-
mation [35-37].

The oncogenic effects of ITGB5 have previous-
ly been observed in prostate, colorectal, and
hepatocellular carcinoma [38-40]. Currently,
research on the role of ITGB5 in lung cancer is
limited. Our study indicates that ITGB5 is a risk
factor for OS in patients with LUSC. Hu et al.
reported that ITGB5 is involved in regulating
lung cancer cell motility [41]. Moreover, several
studies have reported the impact of ITGB5 on
the lungs [42, 43].

SMYD3, together with ITGB6 and TGFB1-
Smad3, can facilitate the adhesion and inva-
sion of ovarian cancer cells [44]. ITGB6 is a
pro-tumorigenic gene that has also been identi-
fied in gastric and pancreatic cancers [45, 46].
Few studies have evaluated the effects of
ITGB6 on lung cancer. Most studies on the rela-
tionship between ITGB6 and lung disease have
focused on pulmonary fibrosis and emphyse-
ma. Both ELK1 and TGF- can aggravate pul-
monary fibrosis by increasing the expression of
ITGB6 [47, 48]. Congenital deletion of ITGB6
can cause severe emphysema [49]. Overall,
these studies demonstrate that ITGB6 plays a
complex role in lung diseases.

However, no study has investigated the influ-
ence of ITGB7 on lung cancer. Our results indi-
cate that ITGB7 is a protective factor against
0OS in LUAD, and the same protective effect has
been observed in colorectal cancer [50]. Zhang
et al. demonstrated that ITGB7 limits colorectal
cancer progression by maintaining antitumor
immunity [50].

In our study, ITGB8 was found to act as a pro-
tective factor for DSS in LUSC; however, upreg-
ulation of ITGB8 has been previously reported
to indicate poor prognosis in lung cancer [51-
53]. The different prognostic indicators might
be responsible for the discrepancy between our
results and those of previous studies, as our
prognostic indicator was DSS, whereas that
used in the previous studies was OS.
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The TME is an integral part of cancer that sig-
nificantly affects treatment response and clini-
cal outcomes. As part of the TME, immune cells
have an important impact on tumor progres-
sion and prognosis [54]. Our results demon-
strated the most closely interacting genes to
be PTPRC, ITGAM, and ITGB2 in LUAD and FNZ1,
PTPRC, and ITGB2 in LUSC. PTPRC, also known
as CD45, is important for regulating B- and
T-cell antigen receptor-mediated activation
[55]. Wei et al. showed that PTPRC may be
involved in regulating the TME immune status,
affecting the function of immune cells in LUAD
[56]. The ITGB2 subfamily is often referred
to as leukocyte integrins [57]. Altered ITGB2
expression causes adhesion defects in circula-
tion and weakens the ability of the immune sys-
tem to combat foreign antigens [58]. ITGAM
combines with ITGB2 to form a leucocyte-spe-
cific integrin, which exerts an important influ-
ence on the adhesion and migration of leuko-
cytes [57]. A predictive marker has been previ-
ously reported for ITGB2 immunotherapy in gli-
omas [59]. FN1 is widely expressed in multiple
cells and is involved in cell adhesion and migra-
tion [60]. FN1 is associated with the function of
infiltrating macrophages and T cells in the TME
of lung cancer [61, 62]. Based on the above
information and our findings, we speculate that
ITGBs may influence tumor cells and infiltrating
immune cells by affecting their adhesion, junc-
tion, and binding, thereby affecting the progno-
sis of NSCLC.

However, our study has some limitations. First,
our research was based on data obtained from
TCGA, without further validation of the results
using cellular, animal, and human specimens.
Further, we failed to systematically explore the
pathophysiological mechanisms underlying our
findings. Thus, further studies are required to
understand the mechanisms underlying our
findings.

Conclusion

ITGBs were differentially expressed in NSCLC.
ITGB1, 4, and 7 and ITGB1, 3, 5, 6, and 8 were
found as prognostic markers in LUAD and LUSC,
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respectively. ITGBs were significantly associat-
ed with immune cell infiltration and the expres-
sion of immunomodulation-related genes.
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