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Abstract: Objective: We conducted an in-depth study of the immune system and ferroptosis to identify prognostic 
biomarkers and therapeutic targets for renal clear cell carcinoma. Methods: Immune ferroptosis-related differen-
tially expressed genes (IFR-DEGs) were selected from The Cancer Genome Atlas (TCGA). A lasso-Cox risk scoring 
model was established; its prognostic value was determined using prognostic analysis and single multivariate Cox 
analysis. Model genes were subjected to subcellular fluorescence localization, mRNA and protein expression analy-
ses, and single-cell RNA sequencing localization analysis. Risk score was analyzed using the immune score, im-
mune infiltrating cell correlation, immune checkpoint, TIDE, and drug sensitivity. Results: A total of 103 IFR-DEGs 
were identified; a risk model comprising ACADSB, CHAC1, LURAP1L, and PLA2G6 was established. The survival 
curve, single multivariate Cox regression, and receiver operating characteristic (ROC) curve analysis showed that 
the model had good predictive ability (p < 0.05). It was also validated using the validation set and total cohort. 
Subcellular fluorescence localization revealed that ACADSB, CHAC1, and PLA2G6 were distributed in the cytoplasm 
and LURAP1L in the nucleus. The mRNA and protein expression trends were consistent. Single-cell RNA sequencing 
mapping revealed that ACADSB was enriched in distal tubule cell clusters. In the Kidney renal clear cell carcinoma 
(KIRC) mutation correlation analysis, 1.56% of the patients were found to have genetic alterations; The Spearman 
correlation analysis of model gene mutations showed that ACADSB was positively correlated with LURAP1L, which 
may have a synergistic effect; it was negatively correlated with CHAC1 and PLA2G6, and CHAC1 was negatively cor-
related with LURAP1L, which may have an antagonistic effect. Model and immune correlation analyses found that 
high-risk patients had significantly higher levels of CD8+ T cells, regulatory T cells (Tregs), immune checkpoints, im-
mune scores, and immune escape than those in low-risk patients. High-risk patients had a higher susceptibility to 
small-molecule drugs. Conclusion: A novel prognostic model of immune ferroptosis-related genes (ACADSB, CHAC1, 
LURAP1L, and PLA2G6), which plays an important role in immune infiltration, microenvironment, and immune es-
cape, was constructed. It effectively predicts the survival of patients with KIRC.
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Introduction

Renal cell carcinoma (RCC), the most common 
type of kidney cancer, is believed to originate 
from renal epithelial cells, affecting over 
400,000 people worldwide annually [1]. RCC is 
divided into three main histological subtypes: 

clear cell RCC (KIRC), papillary cell RCC (pRCC 
or KIRP), and chromophobe cell RCC (chRCC). 
KIRC is the most common pathological type of 
adult renal cell carcinoma and accounts for 
over 80% of all clinical cases [2]. Most local 
KIRC can be ablated by partial or radical 
nephrectomy [3] or active monitoring [4]. For 
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advanced or metastatic kidney cancer, many 
new therapies have emerged over the past 20 
years, including vascular endothelial growth 
factor inhibitors and tyrosine kinase inhibitors, 
many of which have achieved good results. The 
etiology of KIRC is complex; the tumor tissue is 
highly heterogeneous, and because the kid-
neys are located inside the body, many patients 
have no symptoms of kidney cancer even when 
it reaches an advanced stage [5]. At the time of 
diagnosis, 30% of patients are diagnosed with 
distant metastases [6]. Although local RCC can 
be cured by surgical resection, approximately 
40% of surgical patients eventually relapse, 
which has led to only small improvements in 
KIRC outcomes over the past two decades [7]. 
The diagnosis and treatment of patients re- 
mains poor. Thus, the study of the mechanism 
of KIRC is of great significance to improve the 
prognosis of patients.

There is growing evidence that the immune  
system plays a role in cancer [8]. The tumor 
immune microenvironment (TIME) is a cellu- 
lar immune ecosystem composed of immune 
cells, the extracellular matrix, fibroblasts, endo-
thelial cells, and various cytokines, which are 
closely related to the occurrence and develop-
ment of tumors [9, 10]. For example, various 
immune cells, including CD8+ T cells, CD4+ T 
cells, and NK cells, have been associated with 
KIRC tumors [11]. In recent years, it has been 
found that the prognosis of renal clear cell car-
cinoma is not only related to the pathological 
stage, but also that the tumor immune status 
may have an important influence on the prog-
nosis of patients [12]. In recent decades, with 
the development of immunotherapy, tumor 
therapy has undergone revolutionary changes, 
with immunotherapy considered a promising 
therapeutic field [13]. Researchers have found 
that the immune microenvironment can serve 
as an important prognostic indicator, which 
could also improve the potential for precision 
therapy [14]. The analysis of the immune micro-
environment will help improve the response to 
immunotherapy, wherein an in-depth under-
standing of TIME is essential to identify poten-
tial immunotherapeutic targets for RCC. In a 
sense, all tumors are immunogenic. The host 
immune system generates a T-cell response 
that recognizes and kills cancer cells [15]. A 
large number of studies have shown that KIRC 
is highly immunogenic [16] and that the exis-
tence of immune detection points allows tumor 

immune escape [17]. Therefore, immune che- 
ckpoint blockade (ICB) is a novel therapeutic 
strategy that has been used in many cancer 
types [18-21]. The treatment of renal cell carci-
noma has also made rapid progress. Summa- 
rily, with the successful application of immune 
checkpoint inhibitors (ICIs), tyrosine kinase 
inhibitors, and vascular endothelial growth fac-
tor targeting drugs, ICB plays an important role 
in the individualized and comprehensive treat-
ment of patients with renal cell carcinoma, 
especially metastatic renal cell carcinoma [22].

Ferroptosis is a type of cell death characterized 
by iron-dependence and superoxide lipid accu-
mulation, with genetic, biochemical, and mor-
phological characteristics [23]. The dysfunction 
of the cellular antioxidant glutathione peroxi-
dase 4 (GPX4) is known to contribute to the  
ferroptosis process. GPX4 synthesis depends 
on intracellular cystine transported by the xCT 
system [24]. The solute carrier family of seven 
members 11 (SLC7A11) constitutes a major 
component of the xCT system and can inhibit 
ferroptosis by promoting cysteine uptake. In- 
creasing evidence shows that ferroptosis is 
closely related to various physiological and 
pathological states of the human body [24, 25]. 
Ferroptosis is also closely related to the occur-
rence and development of tumors. Studies 
have shown that ferroptosis-related factors or 
pathways can regulate the sensitivity of tumor 
cells to ferroptosis by affecting iron metabo-
lism, reactive oxygen species (ROS) synthesis, 
antioxidant systems, and other related mecha-
nisms. This suggests that SLC7A11, which is 
overexpressed in a variety of cancers, can pro-
mote tumor progression by delaying ferropto-
sis, leading to metabolic reprogramming [26]. It 
has been reported that ferritin phagocytosis is 
mediated by interaction with surface arginine 
residues in ferritin heavy chain 1 (FTH1) [27, 
28]. Nuclear receptor coactivator 4 (NCOA4) 
overexpression induces ferroptosis by increas-
ing the intracellular free iron content, glutathi-
one production, and ROS levels [29]. As ferrop-
tosis plays a key role in a variety of diseases, 
including kidney cancer, targeting ferroptosis 
may be a potential treatment strategy for 
patients with KIRC.

A close relationship exists between tumor 
immunity and ferroptosis [30, 31]. Tumor-as- 
sociated macrophages are the main source of 
iron for tumor growth and release large amounts 
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of iron into the tumor microenvironment [32]. 
Many studies on the relationship between 
immunity and ferroptosis have provided a new 
understanding of the pathogenesis of renal 
clear cell carcinoma, and ferroptosis interven-
tion can effectively improve immunosuppres-
sion [33, 34]. Owing to the close relationship 
between immune and ferroptosis-related genes 
and tumors, the expression of immune ferrop-
tosis-related genes in tumor tissues can be 
used to predict the prognosis of patients.

In this study, by analyzing the expression of the 
KIRC gene in the TCGA database and compar-
ing it with the expression of genes related to 
immune ferroptosis at different levels, a prog-
nostic model containing multiple genes was 
established, which can effectively predict the 
survival of patients with KIRC. By studying the 
relationship between the immune microenvi-
ronment and risk score, a potential mechanism 
was discussed and drug sensitivity was predict-
ed, providing a basis for the clinical diagnosis 
and treatment of cancers, as well as a novel 
direction for the identification of therapeutic 
targets.

Materials and methods

Resources

The Cancer Genome Atlas (TCGA): The TCGA 
database (https://portal.gdc.cancer.gov/) was 
used to download KIRC patient’s clinical data 
and gene transcription information. The RNA-
seq and clinical data of 539 patients with KIRC 
in the HT-SEQ-FPKM dataset were included in 
this study after excluding nine patients without 

clinical follow-up information. The clinical data 
included the extraction of clinical data with Perl 
software, where the row name was the gene 
name and the column name contained the 
matrix of the age, sex, survival time, survival 
status, grade, stage, and TNM stage informa-
tion of the KIRC patients. RNA-seq raw data 
were normalized in UNITS transcripts per mil-
lion (TPM) for subsequent analysis. TPM was 
used as an expression measure because it is 
considered to be more comparable between 
samples than Fregments Per Kilobase per 
Million (FPKM) and transcripts per million 
mapped readings. After extracting the tran-
scribed data with Perl, the matrix under the 
ensemble ID and the row name as the sample 
name was obtained. ID transformation was per-
formed to obtain the matrix including sample 
name, gene name, and gene expression level 
information. The TCGA cohort information is 
summarized in Table 1.

Acquisition of genes related to immunity and 
ferroptosis: By integrating data from the litera-
ture [35], ferroptosis databases (the FerrDb 
database (http://www.datjar.com:40013/bt2- 
104/#), and immune-related databases (genes 
data from the ImmPort database (https://
immport.org/shared/home) and GeneCards 
database (www.genecards.org)), 398 genes 
related to ferroptosis and 17,500 immune-
related gene sets were obtained. 

Research design

The datasets used in this study are all accessi-
ble and downloadable from TCGA. Based on 
the genomic data from TCGA, a prognostic 
model of immune ferroptosis risk was estab-
lished for four genes. Based on the median risk 
score, the samples were divided into high- and 
low-risk groups, and the clinical characteristics, 
immune microenvironment, drug treatment 
response, and prognosis between the two 
groups were subsequently analyzed.

Determination of differentially expressed 
genes (DEGs) related to the prognosis of im-
mune ferroptosis

The “limma” package in R was used to deter-
mine the TCGA DEGs between tumor tissues 
and normal tissues (false discovery rate (FDR) 
< 0.05 and |log2 fold-change (FC)| > 1). Scre- 
ening genes IFR-DEG that overlapped with 

Table 1. Baseline information of TCGA
variable layered TCGA
Age (%) 65 or less 348 (65.7%)

> 65 182 (34.3%)
Gender (%) women 189 (35.6%)

men 341 (64.3%)
Stage (%) Stage I 266 (50.1%)

Stage II 56 (10.5%)
Stage III 125 (23.5%)
Stage IV 83 (15.6%)

Grade (%) G1 15 (2.8 %)
G2 229 (43.2%)
G3 208 (39.2%)
G4 78 (14.7%)
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immunity and ferroptosis by univariate Cox 
analysis, IFR-DEG and prognostic genes were 
intersected to obtain IFR-DEGs associated with 
the prognosis of immune ferroptosis.

Prognostic model construction and validation

Lasso-Cox regression analysis was used to 
identify the genes used to construct the model. 
Using survival and GLMNET (a software pack-
age that fits generalized linear and similar mod-
els by penalty maximum likelihood fit), the regu-
larization path computes the lasso or elastic 
net penalty on the value (on a logarithmic scale) 
of the regularization parameter lambda. The 
algorithm is very fast and can take advantage 
of sparsity in the input matrix X. It is suitable  
for linear, logistic, polynomial, Poisson, and Cox 
regression models. Multi-response linear re- 
gression, customized generalized linear model, 
and relaxation lasso regression model can also 
be fitted. The best value of the penalty coeffi-
cient λ was selected and the genes included in 
the model were determined by running the 
10-fold cross validation possibility 1,000 times. 
The prognosis model of renal clear cell carci-
noma was established according to the follow-
ing conditions: risk score = ∑ (Expi × β i), where 
“Exp” is model gene expression level and β is 
the model gene coefficient. The model was con-
structed by dividing the median risk score of 
patients with renal clear cell carcinoma from 
the TCGA database. All patients with renal clear 
cell carcinoma were classified as high-risk or 
low-risk, and KIRC in TCGA was randomly divid-
ed into training and verification sets at a ratio of 
1:1.

Principal component analysis (PCA) and 
T-distributed stochastic neighbor embedding 
(t-SNE) analysis

PCA and t-SNE were applied to the high- and 
low-risk groups, respectively, according to the 
risk prognosis model. t-SNE for dimensionality 
reduction, which is convenient for visualization, 
was used to demonstrate the model’s ability  
to enable facile visual distinction between 
samples.

Prognostic model evaluation and survival 
analysis

By using the formula to derive the median value 
of the risk score, enrolled KIRC patients could 
be divided into high- and low-risk groups. 
Kaplan-Meier curves of the two risk groups 

were drawn using the “survival” package in R 
software. Risk score distribution, risk status, 
and risk heat map were used to evaluate the 
risk of predictive models. The receiver operat-
ing characteristic (ROC) curve of 1-year, 3-year, 
and 5-year overall survival (OS) rate of KIRC 
patients was drawn using the “survival” and 
“survival ROC” packages in R [36]. The area 
under the curve (AUC) values of 1-year, 3-year, 
and 5-year overall survival were also calculated 
to evaluate the sensitivity and specificity of the 
model. In addition, univariate and multivariate 
Cox regression analyses were performed on 
the prognostic models in combination with  
clinical information, such as age, sex, T, N, and 
M pathological stages, to verify whether the 
model scores could be independent predi- 
ctors.

Construction and evaluation of the line chart

The independent prognostic factors identified 
were comprehensively analyzed using the  
RMS package in R [37], as well as for the esti-
mation of the 1-, 3-, and 5-year survival of KIRC 
patients. The calibration curve of the line graph 
was plotted using the nomogramEx software 
package to evaluate the agreement between 
the predicted and observed values. 

Enrichment analysis of functional pathways

According to the high- and low-risk groups 
between DEGs (|log2FC| ≥ 1, FDR < 0.05), the 
“clusterProfiler” package in R [38], Gene 
Ontology (GO), Kyoto Encyclopedia of Genes 
and Genomes, KEGG Enrichment Analysis, and 
Gene Set Enrichment Analysis (GSEA) were per-
formed [38].

Protein level verification and immunofluores-
cence localization

Immunohistochemical images were based on 
TCGA database and the Human Protein Atlas 
(HPA) database [38]. The protein expression 
profiles of the Clinical Proteomic Tumor Analysis 
Consortium were used to detect prognostic 
model genes at cellular level by immunofluores-
cence localization and protein level verifica- 
tion.

ACADSB RNA sequencing expression mea-
sured at the single-cell level

To evaluate the expression of ferroptosis mark-
er genes in different cell types, we obtained 
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single-cell sequencing data from the PanglaoDB 
database, a user-friendly single-cell sequenc-
ing database that allows users to query and 
explore cell types, genetic pathways, and com-
munity-engineered markers based on single-
cell clusters [39]. We applied the “sample” 
module to retrieve the data set in PanglaoDB. 
Renal tissue was selected (SRA640325; 
SRS2769051) for single-cell analysis.

TF-miRNA coregulatory network

The database of RegNetwork [40] (www.net-
workanalyst.ca/) can collect TF-miRNA co-regu-
lation, which can help to detect miRNA of relat-
ed genes regulated by post-transcription and 
transcription level and regulate TF. The TF- 
miRNA collaborative regulation network was 
visually processed by NetworkAnalyst. Net- 
workAnalyst allows researchers to easily view a 
large amount of data, so as to determine the 
biological characteristics and functions that 
cause biological effects [41].

cBioPortal

CBioPortal is a comprehensive database for 
KIRC (http://www.cbioportal.org/) gene muta-
tion analysis, including amplification, muta-
tions, and copy number variation. It also pro-
vides an overview of multi-gene genetic chang-
es, visualization, and analysis of multi-dimen-
sional cancer genomic data. Data is based on 
TCGA database. P < 0.05 was considered sta-
tistically significant.

Correlation analysis between risk score and 
tumor immune microenvironment

Infiltrating stromal cells and immune cells are 
important components of tumor tissue cells 
and play a key role in cancer biology. Two bioin-
formatics algorithms were used to assess 
immune cell infiltration in renal clear cell carci-
noma tissues based on transcriptome sequ- 
encing data. Normalized enrichment score 
(NES) was used to quantify the relative abun-
dance of each immune cell type in the tumor 
microenvironment of a single sample [42]. The 
algorithm can identify specific gene signals 
associated with stromal and immune cell infil-
tration in tumor tissues, predict the level of 
stromal and immune cell infiltration, and infer 
tumor purity by calculating stromal and immune 
scores through single-sample gene set enrich-
ment analysis (ssGSEA).

The CIBERSORT algorithm is another common 
tumor immune microenvironment analysis 
method (https://cibersort.stanford.edu/about.
php) [43]. This algorithm uses linear support 
vector regression to select genes from the fea-
ture matrix for deconvolution and can accurate-
ly quantify the relative levels of different 
immune cell types based on gene transcrip-
tome data.

Immunotherapy and drug reactivity

The tumor immune dysfunction and exclusion 
(TIDE) tool (http://tide.dfci.harvard.edu/) was 
used to calculate the TIDE score for every tu- 
mor sample as a substitution parameter that 
predicted the immune response to treatment. 
Thereafter, the R package “pRRophetic” was 
applied [44] (version 0.5), depending on the 
Genomics of Drug Sensitivity in Cancer (GDSC), 
(https://www.cancerrxgene.org/), through ridge 
regression and 10-fold cross-validation es- 
timation half inhibitory concentration (IC50) of 
each sample for drug sensitivity prediction. 
Differences in drug sensitivity between the 
high- and low-risk groups were subsequently 
assessed using the Wilcoxon rank-sum test 
between the two groups, including for cisplatin, 
etoposide, docetaxel, gefitinib, erlotinib, gem-
citabine, and paclitaxel.

Statistical analysis

Statistical analysis was performed using R (ver-
sion 3.6.3). Differences between subgroups 
were analyzed using the Mann-Whitney test, 
and P-values were corrected by the Benjamini 
and Hochberg methods to obtain the FDR. The 
survival difference between the two groups 
was analyzed by Kaplan-Meier curve and log-
rank test. Gene correlation was analyzed us- 
ing Pearson’s correlation coefficient test. 
Spearman correlation coefficient test was used 
to analyze the correlation between risk score 
and immune cells and immune regulatory 
genes. Univariate and multivariate Cox regres-
sion analyses were performed to determine the 
model’s risk score as an independent prognos-
tic factor. P < 0.05 was considered statistically 
significant.

Results

A total of 530 patients with pathologically con-
firmed KIRC from TCGA cohort were included in 
this study and randomly divided equally into 
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two groups: 265 patients were included in the 
training set and 265 patients were included in 
the validation set.

Determination of DEGs related to prognosis of 
immune-ferroptosis

According to the gene expression data of  
TCGA patients, 6,534 differential genes were 
obtained through differential analysis, and vol-
cano maps were drawn according to the level of 
differential expression (Figure 1A). Genes relat-
ed to immunity and ferroptosis were intersect-
ed using a Venn diagram (Figure 1B), yielding 
103 intersected genes. Univariate Cox analysis 
was performed on genes related to immunity 
and ferroptosis. According to statistical signifi-
cance (P < 0.05), 52 genes related to immunity 
and ferroptosis were obtained, from which for-
est maps were created: 23 low-risk genes and 
29 high-risk genes were found (Figure 1C).

Construction of an immune-ferroptosis gene 
marker prognostic model (IFRSig)

Lasso-Cox regression was performed on prog-
nostic genes using the GLNMET package in R to 
screen for the best prognostic genes. The Cox 
multivariate regression analysis coefficients of 
the prognostic genes were extracted (Figure 
1D and 1E). Risk scores were calculated based 
on gene expression levels using the following 
formula: Risk score= ∑ (Expi × β i), where “Expi” 
denotes the gene expression level and β i rep-
resents the Cox risk ratio coefficient of genes. 
The risk score of this model was calculated as 
follows:

-0.578*ACADSB+0.287*CHAC1-0.397*LUR- 
AP1L+0.447*PLA2G6.

According to the median risk score of TCGA 
cohort, the patients were divided into a high-
risk group and low-risk group, then randomly 
divided into training set, validation set, and 
cohort at a ratio of 1:1 for verification.

To intuitively analyze the high- and low-risk 
groups, we adopted PCA and t-SNE methods,  
in which data dimensionality is reduced to a 
two-dimensional plane, according to the dan-
gerous degree of the median value of PCA and 
t-SNE image processing. According to the visu-
alization images, most patients could be divid-
ed into high- and low-risk groups, and only a 
minority of patients could not be classified. This 

indicates that the model had a high sensitivity 
(Figure 1F and 1G).

Validation of prognostic models

In the training set, high-risk patients had signifi-
cantly lower survival rates than that of low-risk 
patients (Figure 2A, 2D). This result was con-
firmed in the validation set and cohort (Figure 
2B-F). Heat maps were constructed to show 
the expression levels of the four prognostic 
genes in the high- and low-risk groups in the 
three cohorts (Figure 2G-I).

Further survival analysis showed that the OS of 
high-risk patients in the training set was signifi-
cantly lower than that in the low-risk group 
(Figure 2J, P < 0.001), which was confirmed by 
the validation set and cohort (Figure 2L and 
2N, P < 0.001). The predictive ability of the risk 
score on OS was evaluated using time-depen-
dent ROC curve analysis. The results showed 
that the AUC of the training set cohort were 
0.802 (1 year), 0.746 (3 years), and 0.752 (5 
years) (Figure 2K), while the AUC of the verifica-
tion set cohort were 0.696 (1 year), 0.699 (3 
years), and 0.726 (5 years) (Figure 2M). The 
AUC of TCGA cohort was 0.750 (1 year), 0.726 
(3 years), and 0.736 (5 years) (Figure 2O), sug-
gesting that the model had good predictive 
ability.

Independent prognostic analysis of risk scores

To verify whether the risk score was indepen-
dent of other prognostic factors, univariate and 
multivariate Cox proportional risk regression 
analyses were performed in the training set, 
validation set, and cohort, respectively. Uni- 
variate and multivariate Cox regression analy-
ses were performed for age, sex, tumor stage, 
grade, and risk score, as shown in Figure 3. The 
risk score and tumor stage of the training set, 
validation set, and total TCGA cohort were 
found to be significantly associated with OS, 
suggesting that tumor stage and risk score 
were independent predictors of OS (training 
set: HR = 1.313, 95% CI: 1.154-1.493, P < 
0.001; validation set: HR = 1.178, 95% CI: 
1.065-1.303, P < 0.001); total TCGA cohort:  
HR = 1.229, 95% CI: 1.140–1.326, P < 0.001).

Construction of the prediction column chart

To predict the survival probability of patients 
with KIRC, a 1-, 3-, and 5-year nomograph were 
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established in the cohort based on the predic-
tion model (risk score) and clinical factors (T, N, 
and M) (Figure 3G). According to the scoring 
results of each factor, the total value of the line 
graph can be obtained from the sum of the sin-
gle scores of each factor associated with the 
overall score, which was used to estimate 
patient survival at 1, 3, and 5 years. The cali-
bration curve was used to evaluate the predic-
tive power of the prognostic model of the nomo-
graph. The calibration curve was approximately 
45 degrees, acting as the base line (Figure 3H), 
thereby indicating good consistency between 
the actual and expected survival rates of the 
model.

The high-risk group was closely associated 
with poor prognosis in patients with KIRC

To further evaluate the predictive power of  
the model, we re-assigned age, gender, G1-2, 
G3-4, T1-2, T3-4, M0, M1, N0, N1-3, Stage I-II, 
and Stage III-IV as prognostic and clinicopatho-
logical factors in KIRC patients in the TCGA 
cohort according to different conditions. In  
multiple clinical subgroups, age ≤ 65 (P < 
0.001), age > 65 (P = 0.001), female (P < 
0.001), male (P = 0.007), T1-2 (P = 0.009), T3-4 
(P < 0.001), M0 (P < 0.001), M1 (P = 0.008), N0 
(P < 0.001), N1-3 (P = 0.866), Stage I-II (P = 
0.016), and Stage III-IV (P < 0.001) were in- 
dicative of the relationship between a high-risk 
score and prognosis. We found that the Kaplan-
Meier survival analysis and survival rate of 
each subgroup showed that regardless of age 
and gender and TM Stage and Stage, the sur-
vival time of patients in the low-risk prognostic 
model group was significantly prolonged, ex- 
cept that the high-risk prognostic curve in the 
N1-3 subgroup was insignificant. This suggests 
that the prognostic model has good predictive 
power in most subclinical subgroups (Figure 4).

Enrichment analysis of functional pathways of 
DEGs

To elucidate why the model differentiated high- 
and low-risk patients with KIRC, the gene 

enrichment in high- and low-risk patients with 
KIRC was further compared. Using GO analysis, 
the differential genes were found to be enrich- 
ed in biological process (BP), cell component 
(CC), and molecular function (MF) (Figure 5A, 
Table 2). Differential genes were mainly en- 
riched in complement activation (classical 
pathway) and complement activation of hu- 
moral immune response mediated by circulat-
ing immunoglobulins. Differential genes were 
mainly enriched in immunoglobulin complex, 
circulating immunoglobulin complex, blood par-
ticles, and other functions. In MF, the differen-
tial genes were mainly enriched in antigen bind-
ing, immunoglobulin receptor binding, chemo-
kine activity, and other functions. In KEGG 
enrichment analysis, the differential genes 
were enriched in viral protein and cytokine and 
cytokine receptor interaction, cytokine-cyto-
kine receptor interaction, PPAR signaling path-
way, and other pathways. In GSEA analysis 
(Figure 5B), the high-risk group showed abun-
dant gene enrichment in diseases, immune 
system, innate immune system, hemostasis, 
and infectious diseases (P < 0.05). These 
results indicate that these functions and path-
ways were closely related to the development 
of KIRC.

Clinically relevant heat map

To observe the expression of prognostic model 
genes in clinical features, we constructed an 
expression heat map based on the correlation 
of clinical features to observe the expression 
relationship between the prognostic model 
genes in high- and low-risk groups, as well as 
patient age, sex, metastasis, tumor stage, 
grade, and immune score (Figure 5C).

Expression and immunofluorescence localiza-
tion of model genes in KIRC

According to the median value of gene expres-
sion in the prognostic model, patients with 
TCGA renal clear cell carcinoma data were 
divided into high- and low-expression groups. 
The mRNA expression levels of ACADSB and 

Figure 1. A. Volcano map of the differential genes. B. Intersection genes among the immune-related genes, fer-
roptosis related genes, and differential expression genes. C. Forest map of prognostic gene differences in survival 
in patients with renal clear cell carcinoma. “HR < 1” indicates low risk, denoted in green; “HR > 1” indicates high 
risk, denoted in red. Low-risk genes are good for patient prognosis, whereas high-risk genes are bad for prognosis. 
D. Cross validation diagram. E. LASSO coefficients of prognostic genes. F. PCA diagram of TCGA. G. t-SNE diagram 
of TCGA. PCA, Principal component analysis; t-SNE, T-distributed stochastic neighbor embedding; TCGA, The Cancer 
Genome Atlas.
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CHAC1 in renal clear cell carcinoma tissues 
were significantly lower than those in normal 
tissues (Figure 6A, 6B). The mRNA expression 
levels of LURAP1L and PLA2G6 were signifi-
cantly higher than those in the normal tissues 
(Figure 6C, 6D). To investigate the subcellular 
localization of ACADSB, CHAC1, LURAP1L, and 
PLA2G6 in cancer cells, we used the HPA data-
base to evaluate the distribution of ACADSB, 
CHAC1, LURAP1L, and PLA2G6 in renal tissue. 
As shown in Figure 6E-H ACADSB and CHAC1 
were mainly distributed in the mitochondria of 
U-2OS cells, whereas LURAP1L was mainly dis-
tributed in the nucleoli of A-431 cells. PLA2G6 
was mainly distributed in the cytoplasm of the 
central line satellite of U-2OS cells.

In the TCGA-KIRC cohort, ACADSB and CHAC1 
were low in renal clear cell carcinoma, whereas 
LURAP1L and PLA2G6 were higher in renal 
clear cell carcinoma than in adjacent non-tumor 
renal tissue. To confirm the expression of these 
four genes in clinical samples, we further vali-
dated the expression of proteins encoded by 
the four model genes using clinical samples 
from HPA. Immunohistochemical images of 
four gene signatures in normal kidney tissue 
and renal carcinoma are shown in Figure 6I-P.

Single-cell RNA sequencing localization analy-
sis of the ACADSB gene

To evaluate the localization of model genes in 
single cells, we used the PanglaoDB dataset for 
single-cell RNA sequencing localization analy-
sis; however, only ACADSB was found to be 
included in renal tissues. Therefore, we con-
ducted ACADSB single-cell RNA sequence lo- 
calization analysis. As shown in Figure 6Q and 
6R, renal tissue cells were divided into eight 
cell clusters: distal tubule cells (P = 5.647E-14), 
endothelial cells (P = 1.14415E-19), macro-
phages (P = 1.38073E-10), podocytes (P = 
5.62787E-05), main cells (P = 3.46711E-30), 
proximal tubule cells (P = 7.06537E-35), smoo- 
th muscle cells (P = 1.31683E-23), and un- 
known (P = 0.000803306). ACADSB was set as 
the superimposed expression of genes, and 
according to single-cell analysis, ACADSB was 

found to be enriched in clusters of distal tubule 
cells (Figure 6S). This suggests that a decreased 
expression of ACADSB in the distal tubules 
plays an important role in the carcinogenesis of 
KIRC.

Mutation and correlation analysis of four 
model genes

To evaluate the mutation of four model genes in 
KIRC, we used cBioPortal database for data 
analysis. A total of 1.56% (7/448) of the 
patients were found to have genetic changes. 
Genetic changes in ACADSB included depth 
loss and splicing mutation, whereas genetic 
changes in CHAC1 included deep deletions. 
Similarly, genetic changes in LURAP1L includ- 
ed non-frameshift mutation and missense 
mutation, whereas genetic changes in PLA2G6 
included missense mutations (Figure 7A, 7B). 

The Spearman correlation analysis of model 
gene mutations showed that ACADSB was posi-
tively correlated with LURAP1L, which may 
have a synergistic effect; it was negatively cor-
related with CHAC1 and PLA2G6, and CHAC1 
was negatively correlated with LURAP1L, which 
may have an antagonistic effect (Figure 7C).

TF-miRNA coregulatory network

The TF-miRNA coregulatory network was gener-
ated using NetworkAnalyst. The analysis of the 
TF-miRNA coregulatory network delivers miR-
NAs and TFs interaction with the model genes. 
This interaction could be the reason for regulat-
ing the expression of the model genes. The net-
work created for TF-miRNA coregulatory net-
work comprised 66 nodes and 77 edges. 
Thirty-two miRNAs and 29 TF-genes have inter-
acted with the model genes. The TF-miRNA 
coregulatory network is shown in Supplemen- 
tary Figure 1.

Correlation between the model and immune 
cell infiltration

To better investigate the complex cross-talk 
between the prognostic model and immune 
characteristics, we evaluated the immune infil-

Figure 2. Risk score of KIRC patients calculated according to the model and division of high- and low-risk groups, 
survival status, and four gene expression heat maps, Kaplan-Meier survival curves, and subject operating charac-
teristic curves of patients with overall survival (OS) at 1, 3, and 5 years. (A, D, G, J, K for training set; B, E, H, L, M for 
validation set; C, F, I, N, O for TCGA cohort). KIRC, clear cell carcinoma of kidney; TCGA, The Cancer Genome Atlas.
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Figure 3. Univariate Cox regression analysis of prognostic index validation of genes associated with immune fer-
roptosis (A, C, E). Multivariate Cox regression analysis (B, D, F). Training set (A, B); validation set (C, D); TCGA cohort 
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trate profiles of 22 immune cells in clear renal 
cell carcinoma tissues between the high- and 
low-risk groups in the KIRC sample using the 
CIBERSORT algorithm (data visualized in a vio-
lin plot). The results showed that CD8+ T cells 
(P < 0.001), follicular helper T cells (P < 0.001), 
regulatory T cells (Tregs) (P < 0.001), activated 
NK cells (P = 0.011), and macrophage M0 (P = 
0.01) were significantly increased in the high-
risk group of KIRC patients. In contrast, mono-
cytes (P < 0.001), macrophage M1 (P < 0.001), 
and macrophage M2 (P < 0.001) were signifi-
cantly reduced in the high-risk group of KIRC 
patients (Figure 7D).

Correlation analysis between risk score and 
immune cell abundance

With regards to correlation between the risk 
score and immune cell abundance, Spearman 
correlation analysis showed that risk score was 
positively correlated with regulatory T cells 
(Tregs), macrophages M0, activated NK cells, 
plasma cells, CD8+ T cells, and follicular helper 
T cells (Figure 7E-T). Risk scores were negative-
ly correlated with naive B cells, active dendritic 
cells, resting dendritic cells, eosinophils, mac-
rophages M1, macrophages M2, monocytes, 
neutrophils, resting mast cells, and resting 
memory CD4+ T cells (Figure 7E-T).

Correlation of immune cells

The correlation of these 22 different immune 
cells was explored, and the results showed  
that Treg cells were positively correlated with 
CD8+ T cells and follicular helper T cells. CD8+ 
T cells were positively correlated with follicular 
helper T cells and T cells γδ. Naive B cells were 
positively correlated with plasma cell. Activated 
dendritic cells were positively correlated with 
eosinophils. Macrophage M2 cells were nega-
tively correlated with CD8+ T cells and follicular 
helper T cells. The resting CD4 memory T cells 
were negatively correlated with CD8+ T cells 
and follicular helper T cells (Figure 8A).

Risk score and immune-related function

Based on ssGSEA, correlations between the 
risk scores and immune-related functions were 

determined, as shown in the boxplot in Figure 
8B. As a result, the high-risk group was found  
to have better immune function in terms of 
immune checkpoint activity, cytolysis activity, 
proinflammatory activity, T cell co-inhibition, 
and type II interferon response.

Kaplan-Meier survival analysis of immune cells

Subsequently, Kaplan-Meier survival analysis 
of immune cells was performed. The results 
showed that Treg cells, CD4+ T memory cells, 
follicular helper T cells, monocytes, resting 
mast cells, and resting dendritic cells had a 
good predictive ability for OS (Figure 8C-H).

Immune microenvironment and immune es-
cape

To explore the relationship between the tumor 
microenvironment (TME), we calculated TME 
scores and found that high-risk patients had 
higher immune scores and higher ESTIMATE 
scores than low-risk patients (Figure 9A-C). To 
assess the potential of risk scores as biomark-
ers for immunotherapy or chemotherapy, we 
used the TIDE online tool to predict responses 
to immunotherapy in different risk groups. The 
TIDE score was found to be negatively correlat-
ed with the efficacy of immunotherapy, and  
the results showed that TIDE score of high- 
risk patients significantly increased (P < 0.001) 
(Figure 9D-F), suggesting that the efficacy of 
immunotherapy in the high-risk group was less 
than that in the low-risk group.

Immune checkpoints

Based on the importance of immunotherapy 
with checkpoint inhibitors, we further investi-
gated the expression of immune checkpoints in 
both risk groups. The results showed that most 
immune checkpoints were more active in high-
risk populations. The expression of immune 
checkpoints was significantly increased in high-
risk patients. In particular, the expression of 
molecules, such as CD70, cytotoxic T lympho-
cyte-associated protein 4 (CTLA4), and PDCD1, 
were significantly elevated in the high-risk 
group (Figure 9G). These results suggest that 
the immune microenvironment in high-risk 

(E, F). Construction and validation of a column diagram (G, H). (G) Survival nomogram based on the TCGA cohort. 
(H) Calibration curves to predict 1-, 3-, and 5-year survival for KIRC patients in the TCGA cohort. KIRC, clear cell 
carcinoma of kidney; TCGA, The Cancer Genome Atlas.
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Figure 4. Kaplan-Meier survival curve comparing the survival of risk prediction models in KIRC. A-L. OS curves of age, sex, G1-2, G3-4, T1-2, T3-4, M0, M1, N0, N1-3, 
Stage I-II, and Stage III-IV of KIRC patients in the high- and low-risk groups. KIRC, clear cell carcinoma of kidney; OS, overall survival. 



Immune ferroptosis gene in KIRC

5995 Am J Transl Res 2022;14(9):5982-6010

groups may be suppressed by the upregulation 
of immunosuppressive cytokines and immune 
checkpoints.

Small molecule drugs

Many small molecule drugs often elicit drug 
resistance during the process of cancer treat-
ment, resulting in poor drug efficacy, leading to 
renal clear cell carcinoma and poorer clinical 
prognosis. To validate the use of drugs in differ-
ent risk groups, we compared the median maxi-
mum inhibitory concentration (IC50), which can 

help quantify the therapeutic ability of drugs to 
induce cancer cell apoptosis, which is inversely 
proportional to the sensitivity of small molecule 
drugs. Using the pRRophetic algorithm, we cal-
culated the chemotherapy effect of 12 com-
mon small molecule drugs (sunitinib, rapamy-
cin, pyrimethamine, paclitaxel, lenalidomide, 
imatinib, gemcitabine, gefitinib, erlotinib, cyta-
rabine, cisplatin, and bosutinib) on KIRC 
patients to evaluate the relationship between 
risk score and small molecule drug resistance 
based on IC50. As shown in Figure 10, the IC50 
for imatinib, gemcitabine, erlotinib, and cisplat-

Figure 5. A. Bubbles of functional enrichment analysis in the high- and low-risk groups of the TCGA cohort. B. GSEA 
analysis results diagram. BP, biological process; CC, cell composition; MF, molecular function. C. Clinically relevant 
heat maps created using clinicopathological data from patients based on the risk characteristics associated with 
prognosis. The higher the intensity of red, the higher the level of expression. The higher the intensity of blue, the 
lower the expression (*P < 0.05, **P < 0.01, and ***P < 0.001). TCGA, The Cancer Genome Atlas; GSEA, Gene 
Set Enrichment Analysis.
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in (P < 0.001) was significantly higher in the 
high-risk group than in the low-risk group, sug-
gesting that high-risk patients may not benefit 
from these drugs. Sunitinib, rapamycin, pyri-
methamine, paclitaxel, lenalidomide, gefitinib, 
cytarabine, and bosutinib were significantly 
reduced in the high-risk group, indicating that 
these small molecule drugs may be more sensi-
tive and have a greater impact on high-risk 
patients. These results indicate that the risk 
prognostic model could not only classify indi-
viduals into different risk groups, but also 
assist in the selection of small molecule drug 
treatments according to the corresponding 
sensitivity values of clinically observed KIRC 
patients.

Discussion

KIRC is the most common primary malignant 
tumor of adult renal carcinoma, affecting over 
400,000 people worldwide each year [45]. As 
early clinical symptoms are difficult to identify, 
KIRC is typically diagnosed at the later stages 
of disease [45]. Previous studies have reported 
that KIRC is a hypermetabolic disease and that 
fetal tumors may underlie the development of 
renal cancer-related deaths [46]. TNM staging 
is a classic method for predicting KIRC progno-

sis based on clinical information; however, TNM 
staging does not take into account any genetic 
characteristics. Therefore, to provide personal-
ized treatment, it is important to identify genet-
ic characteristics and construct prognostic 
models to screen patients with different risks 
and outcomes.

In recent years, several studies have shown 
that immunotherapy can benefit patients with 
KIRC [47]. A number of published studies have 
described the role of immune cells in the host 
defense against cancer and infection [48]. 
There have also been studies on kidney cancer 
[49] immune-related characteristics involving  
a large number of specific cell types [50]. 
Immunity has proved to play a key role in the 
proliferation, differentiation, invasion, and 
metastasis of renal tumors through different 
pathways of tumor progression and pathogen-
esis [51-53]. 

Ferroptosis is also closely related to the prog-
nosis of KIRC. Research has found that KIRC is 
sensitive to ferroptosis, and many studies have 
suggested the targeted activation of ferropto-
sis as a potential treatment for KIRC [54, 55]. 
In recent years, several studies have reported 
that the regulation of ferroptosis-related genes 

Table 2. Functional enrichment analysis of high and low risk groups in the TCGA cohort

ONTOLOGY ID Description Gene 
Ratio Bg Ratio p-value p.adjust q-value

BP GO:0006958 complement activation, classical pathway 42/152 137/18670 7.04 e-56 1.64 e-52 1.43 e-52

BP GO:0002455
humoral immune response mediated by circulating 
immunoglobulin

42/152 150/18670 5.81 e-54 6.76 e-51 5.90 e-51

BP GO:0006956 complement activation 42/152 175/18670 8.80 e-51 6.83 e-48 5.96 e-48

BP GO:0072376 protein activation cascade 42/152 198/18670 2.70 e-48 1.57 e-45 1.37 e-45

BP GO:0016064 immunoglobulin mediated immune response 43/152 218/18670 5.32 e-48 2.48 e-45 2.16 e-45

CC GO:0019814 immunoglobulin complex 50/158 159/19717 1.00 e-67 1.57 e-65 1.50 e-65

CC GO:0042571 immunoglobulin complex, circulating 27/158 72/19717 8.58 e-39 6.73 e-37 6.41 e-37

CC GO:0072562 blood microparticle 21/158 147/19717 1.48 e-20 7.73 e-19 7.36 e-19

CC GO:0009897 external side of plasma membrane 29/158 393/19717 7.06 e-20 2.77 e-18 2.64 e-18

CC GO:0034364 high-density lipoprotein particle 4/158 26/19717 5.17 e-05 0.002 0.002

MF GO:0003823 antigen binding 42/133 160/17697 1.76 e-54 4.76 e-52 4.20 e-52

MF GO:0034987 immunoglobulin receptor binding 26/133 76/17697 5.08 e-37 6.86 e-35 6.04 e-35

MF GO:0008009 chemokine activity 5/133 49/17697 3.25 e-05 0.003 0.003

MF GO:0042379 chemokine receptor binding 5/133 66/17697 1.38 e-04 0.008 0.007

MF GO:0015926 glucosidase activity 3/133 14/17697 1.42 e-04 0.008 0.007

KEGG hsa04061 Viral protein interaction with cytokine and cytokine 
receptor

8/57 100/8076 4.17 e-07 5.76 e-05 5.19 e-05

KEGG hsa04060 Cytokine-cytokine receptor interaction 9/57 295/8076 1.97 e-04 0.010 0.009

KEGG hsa03320 PPAR signaling pathway 5/57 78/8076 2.09 e-04 0.010 0.009

KEGG hsa05323 Rheumatoid arthritis 5/57 93/8076 4.74 e-04 0.016 0.015

KEGG hsa04978 Mineral absorption 4/57 59/8076 7.61 e-04 0.021 0.019
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can influence the course and prognosis of KIRC 
[56].

The role of immunity and ferroptosis in tumors 
is also very similar [30, 31]. Recently, studies 
have shown that ferroptosis exhibits crosstalk 
with radiation therapy and the immune system, 
coupled with the metabolic vulnerability of tu- 
mor cells and sensitivity differences caused by 
different cell states [57-59]. Many studies on 
the relationship between ferroptosis and immu-
nity have provided new insights into the patho-
genesis of cancer [34, 60], which can effective-
ly improve immunosuppression [33, 61]. Our 
group recently learned that immune ferropto-
sis-related genes are closely associated with 
cancer, and their expression levels vary at dif-
ferent cancer stages. However, few studies 
have linked the prognosis and treatment of 
KIRC to ferroptosis-related genes, and we hope 
to have illustrated this correlation through our 
analysis.

In this study, we performed a Venn diagram 
analysis based on the differential genes of 
renal clear cell carcinoma and the genes asso-
ciated with immune ferroptosis in TCGA. We 
obtained 103 co-expressed immune-ferropto-
sis associated DEGs and established prognos-
tic risk models following Lasso-Cox regression 
analysis to gain insights into the pathogenesis 
of KIRC, as well as establishing an effective  
tool for predicting treatment outcomes of KIRC 
with the aim of improving the treatment and 
prognosis of this disease. We also screened 
four immune-ferroptosis-related genes from 52 
immune-ferroptosis-related prognostic genes 
and effectively divided KIRC patients into high- 
and low-risk groups based on the median risk 
score. Risk score is the dominant factor in prog-
nostic risk models and nomograms. Our results 
were well correlated with clinical outcomes, 
suggesting that the model is a good predictor 
of risk factor.

By conducting high/low risk differential analy-
sis and GO enrichment analysis, we found that 

risk differential genes were not only involved in 
complement activation (classical approach) 
and the complement activation of circulating 
immunoglobulin mediated humoral immune 
response, but also in antigen binding, immuno-
globulin receptor binding, and chemokine  
activity, among other functions. The activity of 
chemokines plays an important role in the 
development and differentiation of immune 
cells in the immune microenvironment. At the 
same time, we performed GSEA analysis, which 
revealed enrichment in diseases, immune sys-
tem, innate immune system, hemostasis, and 
infectious diseases. These findings confirm the 
role of differential genes in the development 
and progression of KIRC and validate the  
correlation of prognostic models with KIRC 
immune regulation.

Genes, such as CCDC134, play an important 
role in tumor progression [62]. Among these, 
STEAP1 [63] is expected to be a potential tar-
get for predicting the prognosis of different 
types of cancer. We further evaluated the 
expression of four prognostic genes by protein, 
subcellular localization, and single-cell analy-
sis. As a result, the mRNA and protein expres-
sion levels of LURAP1L and PLA2G6 in renal 
carcinoma were found to be significantly higher 
than those in normal tissues, while the expres-
sion levels of ACADSB and CHAC1 were signifi-
cantly lower than those in normal tissues. In 
subcellular localization analysis, ACADSB and 
CHAC1 were found to be mainly distributed in 
the mitochondria of U-2OS cells, while LURAP1L 
was mainly distributed in the nucleoli of A-431 
cells. PLA2G6 was mainly distributed in the 
cytoplasm and the central line satellite of 
U-2OS cells. This provides a basis for subse-
quent research on the corresponding mecha-
nism of action.

Four model genes play important roles in 
tumors and other diseases. For ACADSB, stud-
ies have found that the down-regulation of 
ACADSB may induce the growth of cancer cells 
through pathways such as fatty-acid catabo-

Figure 6. (A-D) Expression of ACADSB, CHAC1, LURAP1L, and PLA2G6 in tumor and normal tissues in the TCGA 
renal clear cell carcinoma dataset. (E-H) Subcellular localization of ACADSB, CHAC1, LURAP1L, and PLA2G6 in cells, 
with blue representing the nucleus, red representing microtubules, and green representing antibodies. (I-P) Protein 
expression levels of ACADSB (I: normal tissue, M: tumor tissue), CHAC1 (J: normal tissue, N: tumor tissue), LURAP1L 
(K: normal tissue, O: tumor tissue), and PLA2G6 (L: normal tissue, P: tumor tissue). (Q-S) Localization analysis of 
ACADSB using single-cell RNA sequencing. (Q, R) Renal tissue cells were divided into eight cell clusters. (S) ACADSB 
was enriched in clusters of distal tubules. TCGA, The Cancer Genome Atlas.



Immune ferroptosis gene in KIRC

5999 Am J Transl Res 2022;14(9):5982-6010



Immune ferroptosis gene in KIRC

6000 Am J Transl Res 2022;14(9):5982-6010

Figure 7. Mutation and correlation analysis of four model genes in KIRC. A. Mutation frequency of model genes. C. Correlation between each of the two model genes. 
B. Mutations of each model gene in each sample. D. Analysis of tumor infiltrating cells in patients at high and low risk. Violin plot of the abundance of 22 immune 
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cells in the risk group. The x-axis represents 22 types of immune cells, and the y-axis represents the relative abundance of immune cells. E-T. Relationship between 
risk score and immune cells. KIRC, clear cell carcinoma of kidney.
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Figure 8. A. Correlation of different immune cells. Heat maps of correlations between 22 immune cells. Blue and red represent positive and negative correlations, 
respectively. B. Relationship between risk score and immune cell infiltration and related functions as analyzed by ssGSEA. The score refers to the immune score; the 
higher the score, the deeper the immune cell infiltration (*P < 0.05, **P < 0.01, and ***P < 0.001). C-H. Immune microenvironment and prognosis. KM survival 
analysis showed that Treg cells, CD4+ T memory cells, follicular helper T cells, monocytes, resting mast cells, and resting dendritic cells were significantly correlated 
with survival time. ssGSEA, single-sample gene set enrichment analysis.
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lism, branched-chain amino acid catabolism 
and ferroptosis in ccRCC. ACADSB can affect 
colorectal cancer (CRC) cell migration, invasion, 
and proliferation by regulating CRC cell ferrop-
tosis [64]. For CHAC1, dihydroartemisinin (DHA) 
may effectively induce ferroptosis in PLC cells 
(primary liver cancer) by up-regulating the 
expression of CHAC1 [65]. Moreover, CHAC1 
has broad application prospects in breast can-
cer diagnosis and prognosis analysis [66]. 
Interestingly, previous studies have found that 
CHAC1 is an effective indicator of poor progno-

sis in clear cell renal cell carcinoma [67]. The 
ferroptosis-related gene LURAP1L has an im- 
portant regulatory role for non-small cell lung 
cancer, oral squamous cell carcinoma, etc. [68, 
69]. Regarding the PLA2G6 gene, studies have 
found that knockdown of the ferroptosis-relat-
ed protein PLA2G6 significantly inhibits mela-
noma cell proliferation and metastasis and  
promotes apoptosis [70]. Another study found 
that human trophoblasts are particularly sensi-
tive to ferroptosis caused by the depletion or 
inhibition of GPX4 or the lipase PLA2G6 [71]. 

Figure 9. (A-F) Immune microenvironment and immune escape. (A) Immune score, (B) Stromal score, (C) ESTIMATE 
score, (D) Exclusion score, (E) Dysfunction score, and (F) TIDE score (*P < 0.05, **P < 0.01, and ***P < 0.001). (G) 
Expression of immune checkpoints between KIRC patients with two different risk groups. Expression of two immune 
checkpoints (e.g., CD274, CTLA4, LAG3, and PDCD1) in TCGA cohort. ANOVA was used to test for significance (*P < 
0.05, **P < 0.01, ***P < 0.001). KIRC, clear cell carcinoma of kidney; TCGA, The Cancer Genome Atlas.
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Figure 10. A-L. 50% maximum inhibitory concentrations (IC50) of 12 common small molecule drugs (sunitinib, rapamycin, pyrimethamine, paclitaxel, lenalidomide, 
imatinib, gemcitabine, gefitinib, erlotinib, cytarabine, cisplatin, and bosutinib).
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Moreover, PLA2G6 is closely related to neuro-
logical diseases [72-74]. 

The correlation of four genes still warrants fur-
ther study. Regulatory biomolecules act as 
potential biomarkers in many complex diseas-
es. Visual analysis of miRNA and TF gene ac- 
tivities is used to regulate model genes in 
TF-miRNA co-regulation network. In this study, 
32 miRNA and 29 TF genes were found. In the 
TF with the most interaction, SP1 has a higher 
degree of 3. It has been found that the up- 
regulation of lncRNA TUG1 mediated by SP1 
emphasizes the carcinogenic characteristics of 
colorectal cancer [75]. Copy number amplifica-
tion and SP1-activated lncRNA MELTF-AS1 reg-
ulates tumorigenesis by driving phase separa-
tion of YBX1 to activate ANXA8 in non-small  
cell lung cancer [76]. Overexpression of Sp1 is 
associated with the progression and poor prog-
nosis of bladder urothelial carcinoma [77]. 
Additionally, hsa-miR-361-5p, as the hub mi- 
RNA of LURAP1L and ACADSB, is also worthy of 
further study. Some studies have found that 
miR-361-5p can pass through the cancer 
genome atlas as the breast cancer prognosis 
markers [78]. Another study found that miR-
361-5p as a promising qrt-PCR internal control 
for tumor and normal breast tissues [79]. 
TF-genes are a reactor for regulating gene 
expression, which is regulated by binding with 
target genes and miRNA. It can also regulate 
gene expression by mRNA degradation [80]. 
These intriguing results present new questions 
for our next study on the mechanism of interac-
tions between genes.

In the tumor microenvironment, cancer cells 
and immune cells exert a large number of che-
mokines and cytokines to regulate the patho-
genesis and progression of tumor. In this study, 
we found a particularly significant increase in 
regulatory T cells. The powerful immunosup-
pressive microenvironment in cancer is a key 
challenge for cancer therapy. Tregs and tumor-
associated macrophages can directly reduce 
the activity of T cells in the immune microenvi-
ronment, resulting in suppression of immune 
function. It can also affect the aggressiveness 
of tumors by affecting lactic acid metabolism. 
In this study, immune infiltration analysis found 
an increase in the number of infiltrating immune 
cells, such as CD8+ T in the high-risk group. 
However, this grouping was positively correlat-
ed with PD-1 expression. Therefore, although 

this gene can recruit immune cells into tumor 
tissue, the high expression of PD-1 inactivates 
T cells. Therefore, the high-risk group continued 
to exhibit an inhibitory effect on tumor immune 
response.

SsGSEA showed higher immune function in  
the high-risk group in terms of immune check-
point, cytolysis activity, proinflammatory, T cell 
co-inhibition, and type II interferon response. 
Significant differences were observed among 
the different risk groups of KIRC patients. The 
combination of ferroptosis and ICI can synergis-
tically promote anti-tumor activity, even in ICI 
resistance [81]. Owing to the importance of 
checkpoint inhibitor-based immunotherapy, our 
data showed significant differences in the 
expression of immune checkpoint-related gen- 
es between the two groups of KIRC patients, 
highlighting the potential significance of IFRSig 
in regulating ICI.

Some studies have confirmed that the TIDE 
algorithm can be used as a predictive model for 
immunotherapy [82]. The immune avoidance 
mechanisms adapted by renal clear cell carci-
noma include the downregulation of antigen 
presentation or recognition, a lack of immune 
effector cells, the obstruction of anti-tumor 
immune cell maturation, an accumulation of 
immunosuppressive cells, the production of 
inhibitory cytokines, chemokines, or ligands/
receptors, and the upregulation of immune 
checkpoint modulators. Together with altered 
metabolism and hypoxia conditions, these fac-
tors constitute the tumor microenvironment, 
suggesting that IFRSig in KIRC patients may be 
involved in immune escape.

Antibodies based on immune checkpoint inhibi-
tors have been reported to improve survival in 
patients with a variety of cancers, including 
lung cancer, malignant melanoma, and blad- 
der cancer [83]. High levels of CD80 help main-
tain tolerance and immunosuppression in epi-
thelial ovarian cancer [84]. The tumor microen-
vironment induces CTLA4+ regulatory T cell 
migration through CC-motif chemokine ligand 
22 (CCL22) and CC-motif chemokine receptor  
4 (CCR4) [85, 86]. CTLA4 immunotherapy in 
tumors [87] has shown good anticancer effects. 
Pd-l1 interacts with the corresponding recep-
tors to inhibit the anti-tumor activity of immune 
cells and enable cancer cells to evade immune 
surveillance [88]. Drug-resistant tumor cells 



Immune ferroptosis gene in KIRC

6006 Am J Transl Res 2022;14(9):5982-6010

show an inhibition of immune-stimulating mol-
ecules and an increased expression of CD274 
[89]. In this study, we further evaluated the 
expression levels of these immunosuppressive 
checkpoint inhibitors and found significant dif-
ferences in CTLA4, PDCD1, CD276, CD70, and 
other immune checkpoints in the high- and  
low-risk groups. In particular, both CTLA4 and 
PDCD1 were upregulated in the high-risk group, 
suggesting that these immune checkpoints 
play an important immunosuppressive role in 
KIRC.

Finally, the differences observed in the survival 
time of KIRC patients in the high- and low-risk 
groups may also be due to their different sensi-
tivities to chemotherapy drugs. Patients with 
clear cell carcinoma of the kidney usually sur-
vive longer after receiving drug chemotherapy, 
while patients who are insensitive to chemo-
therapy drugs should receive an alternative 
treatment in a timely manner. To improve the 
prognosis of patients, as well as in response to 
the fact that a lack of response to drugs has 
implications on clinical decision making, we 
analyzed the chemotherapy drug resistance 
and sensitivity as well as that of small drug mol-
ecules, to predict IFRSig potential to determine 
the efficacy of treatment.

Based on the four genes analyzed, diagnostic 
and prognostic kits for KIRC can be developed 
that provide potential comprehensive targets 
for future therapeutic interventions of KIRC. We 
believe that in the future, more prominent 
translational and clinical studies will be able to 
confirm the results observed in our work. 
Although our results provide new insights into 
the underlying mechanisms of immune ferrop-
tosis that can predict the prognosis of KIRC, 
several limitations remain and further study is 
required. First, only samples from the TCGA 
cohort were used to build our model, and it will 
be necessary to use different groups and data-
bases, such as the GEO database or multi-cen-
ter cohort, to verify the accuracy of this model. 
Second, traceability data from a common data-
base was used to build and validate the model. 
Prospective data to evaluate the clinical effica-
cy of KIRC are limited, and its molecular mecha-
nism has not been determined. Therefore, fur-
ther experiments and clinical data will be need-
ed to validate the interaction between renal 
clear cell carcinoma and the expression of 
immune-ferroptosis genes.

Conclusion

In this study, genes associated with immune 
ferroptosis with independent prognostic value 
were identified through comprehensive bioin-
formatics analysis and used to establish a 
prognostic risk model. Significant correlations 
were observed between immune ferroptosis 
related genes and immune score, immune 
checkpoint, and small molecule drugs. From 
this, IFRSig was found to be an independent 
prognostic feature that may be able to esti- 
mate OS and clinical treatment response in 
patients with KIRC. Furthermore, ACADSB, 
CHAC1, LURAP1L, and PLA2G6 were identified 
as potential targets and effective prognostic 
biomarkers of immune-combined ferroptosis. 
Therefore, this study provides new perspec-
tives on the role of immune ferroptosis genes in 
the development of KIRC. Taken together, the 
model developed in this study, IFRSig, is closely 
related to the prognosis of KIRC and can be 
used to better estimate OS and predict patient 
responses to the clinical treatment combined 
with immunological characteristics.
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Supplementary Figure 1. The network depicts the TF-miRNA coregulatory network. It consists of 66 nodes and 
77 edges, including 29 TF-genes, 32 miRNAs, and 4 expressed genes. The nodes in red are the model expressed 
genes, the blue nodes represent miRNA, and the green nodes indicate TF-genes.


