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Abstract: The chromatin remodeling gene AT-rich interactive domain 1A (ARID1A), encoding a subunit of the switch/
sucrose non-fermentable (SWI/SNF) complex, is one of the most frequently mutated chromatin regulators across a 
broad spectrum of cancers. Most of the ARID1A alterations are inactivating, leading to the loss or reduced expres-
sion of the protein. Recently, ARID1A has been demonstrated as a tumor suppressor gene in pancreatic ductal 
adenocarcinoma (PDAC), as its inactive alterations attribute to carcinogenesis. Importantly, ARID1A alterations are 
revealed as predictive biomarkers for the selection of targeted therapy and immune checkpoint blockade (ICB) 
therapy. In PDAC, the application of ARID1A alterations in stratifying patients for precise treatment has also been 
widely explored in preclinical and early clinic studies with encouraging preliminary results. Furthermore, the prog-
nostic value of ARID1A mutations in PDAC has been suggested by various studies. In this review, we focus on the 
functions of ARID1A alterations in PDAC, particularly their functions during carcinogenesis and their predictive value 
in treatment selection and prognosis, to provide a comprehensive overview on our current understanding of ARID1A 
alterations in PDAC.
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Introduction

Pancreatic ductal adenocarcinoma (PDAC) is a 
type of cancer with one of the highest mortality 
rates. It ranks sixth as the leading cause  
of cancer-related death in China, fourth in  
the United States, and is may be as high as sec-
ond by 2030 [1-3]. Approximately 80% of 
patients diagnosed with PDAC are not suitable 
for surgical resection due to local invasion  
and distal metastasis. Unfortunately, PDAC 
responds poorly to chemotherapy and radio-
therapy. Thus, only about 8% of PDAC patients 
survive over 5 years, which has been barely 
improved over the past five decades despite 
vigorous efforts in the field [3].

Due to the advanced stage upon diagnosis, 
many PDAC patients are not eligible for surgical 

resection or local radiotherapy. Currently, the 
standard first-line treatment for PDAC is chemo-
therapy with FOLFIRONOX (a combination of 
5FU, leucovorin, irinotecan, and oxaliplatin) or 
gemcitabine plus albumin-bound (nab) pacilt-
axel [4]. Since the clinical outcome is still poor, 
current studies are focusing on uncovering  
personalized targeted therapy and improving 
the efficacy of immunotherapy for patients with 
PDAC.

For targeted therapy, erlotinib, a potent inhibitor 
of the tyrosine kinase activity of human epider-
mal growth factor receptor (EGFR), is the first 
targeted drug approved to treat PDAC. However, 
it is rarely used in clinics due to the limited ben-
efit in progression-free survival (PFS) by only 
two weeks [5]. In 2019, the POLO (Pancreas 
Cancer Olaparib Ongoing) study demonstrated 
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that olaparib, a poly (ADP-ribose) polymerase 
(PARP) inhibitor, significantly improved PFS by 
3.6 months compared with placebo among 
PDAC patients harboring BRCA1/2 variants [6], 
which led to its prompt approval by the FDA. 
Nevertheless, no significant differences in 
overall survival (OS), second PFS, or the objec-
tive response rate (ORR) were observed 
between the olaparib-treated and placebo 
groups. Moreover, gene profiling has indicated 
that only ~7% of PDAC patients harbor germline 
BRCA mutations, suggesting that only a small 
subgroup of patients could benefit from PARP 
inhibitors.

During the past decades, immune checkpoint 
inhibitors (ICIs), including anti-programmed 
death receptor-1/programmed death receptor-
ligand 1 (PD-1/PD-L1) agents and anti-cytotox-
ic T-lymphocyte-associated protein 4 (CTLA-4) 
agents, have been approved to treat a variety 
of cancers, which have reshaped the landscape 
of cancer treatment [7]. However, clinical trials 
demonstrate that most PDAC patients do not 
respond to ICIs [8].

Through large-scale next generation sequenc-
ing (NGS), the chromatin remodeling gene 
AT-rich interactive domain containing protein 
1A (ARID1A) was discovered as one of the most 
frequently mutated epigenetic regulators in 
many types of human cancers [9], including 
ovarian clear cell carcinoma (varying from 40% 
to 57%) [10], liver cancer (varying from 10% to 

expression of the protein [10, 16, 17]. Recent 
reports have revealed the pivotal roles of 
ARID1A alterations during the carcinogenesis 
and progression of PDAC [18-20]. Moreover,  
in PDAC, the predictive value of ARID1A in  
precise cancer treatment, such as targeted 
therapy and immune checkpoint blockade  
(ICB) therapy, and in prognosis have also been 
investigated.

Herein, we comprehensively review the roles of 
ARID1A alterations in PDAC, particularly, their 
functions during tumorigenesis and their pre-
dictive values in treatment selection and prog-
nosis, from mechanisms to potential clinical 
applications. Better understanding the roles of 
ARID1A in PDAC might help improve the out-
come of patients with PDAC, which is a critical 
unmet medical need.

ARID1A alterations attribute to the carcino-
genesis of pancreatic cancer

ARID1A is postulated as a tumor suppressor 
gene in human pancreatic cancer, owing to its 
recurrent loss-of-function mutations. The direct 
evidence for the tumor suppression function of 
ARID1A were demonstrated by several recent 
studies (Figure 1). 

One study was performed using genetically 
engineered mouse (GEM) models with pancre-
atic expression of activated KRAS and/or dis-
ruption of ARID1A [18]. Mice with pancreatic 

Figure 1. The inactive alterations of ARID1A attribute to the carcinogenesis of 
PDAC. PanINs, pancreatic intraepithelial neoplasias; IPMNs, intraductal pap-
illary mucinous neoplasms; PDAC, pancreatic ductal adenocarcinoma; EMT, 
epithelial-mesenchymal transition.

17%) [11], gastric cancer 
(varying from 18% to 27%) 
[12] and pancreatic cancer 
(varying from 6% to 10%) 
[13]. ARID1A encodes an 
essential noncatalytic sub-
unit of the switch/sucrose 
nonfermentable (SWI/SNF) 
complex, an ATP-dependent 
chromatin remodeling com-
plex that controls nucleo-
some topology and DNA 
access and ultimately regu-
lates DNA replication, tran-
scription, and DNA damage 
repair [14, 15].

The majority of ARID1A alter-
ations, including nonsense 
and frameshift mutations, 
are inactivating and usually 
lead to the loss or reduced 
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expression of activated KRAS only developed 
pancreatic intraepithelial neoplasias (PanINs), 
whereas mice with activated KRAS cooperated 
with disrupted ARID1A developed premalignant 
intraductal papillary mucinous neoplasms 
(IPMNs) and PDAC through reducing the activity 
of the mTOR pathway, suggesting the involve-
ment of ARID1A in carcinogenesis. In addition, 
tissues from patients with IPMNs and PDAC 
exhibited lower expression of ARID1A [18]. The 
study concluded that, ARID1A was able to inhib-
it the formation of PDAC from IPMNs in the 
presence of activated KRAS.

A similar study also reported that ARID1A 
restrained oncogenic KRAS-driven formation of 
IPMNs [19]. Mechanically, ARID1A played a key 
role in pancreatic acinar homeostasis, the 
response to injury, and inhibition of epithelial-
mesenchymal transition (EMT). Furthermore, 
ARID1A loss in the context of mutant KRAS and 
P53 led to shorter tumor latency, forming poor-
ly differentiated tumors with more mesenchy-
mal features, and conferring high migratory/
invasive and stem-like properties [19].

Consistently, Wang et al. demonstrated that 
ARID1A loss concurrent with KRAS activation 
accelerated the development of cysts and 
PDAC formation [20]. Pancreas-specific ARID1A 
loss in mice was sufficient to induce inflamma-
tion, PanIN and mucinous cysts. RNA sequenc-
ing showed that ARID1A knockdown increased 
MYC activity and protein translation, which 
appeared to be associated with the function of 
ARID1A in suppressing pancreatic neoplasia.

Furthermore, attenuating KRAS-induced senes-
cence is another driving mechanism of ARID1A 
deficiency in promoting PDAC [21]. ARID1A loss 
activates the expression of aldehyde dehydro-
genase 1 family member A1 (ALDH1A1), which, 
in turn, attenuates KRAS-induced senescence 
and promotes the development of PDAC [22].

Paradoxically, a recent study demonstrated 
that the expression of ARID1A was critical dur-
ing the early stages of pancreatic tumorigene-
sis in mouse models, which was evidenced by 
lower proliferation and higher apoptosis stain-
ing detected in “KAC” (Ptf1a-Cre; KrasG12D; 
Arid1af/f) mice than in “KC” (Ptf1a-Cre; KrasG12D) 
mice. A possible explanation of this observa-
tion is that a multitude of “escaper” mecha-
nisms drive tumor progression in PDAC, which 
arises in the setting of ARID1A loss [22]. 

Nevertheless, thorough studies are needed to 
validate this hypothesis.

Collectively, the alterations of ARID1A promote 
the carcinogenesis of PDAC through multiple 
molecular mechanisms. Furthermore, the func-
tions of ARID1A in carcinogenesis vary during 
different stages of tumor formation, progres-
sion, and vary in different contexts of combined 
gene alterations as well.

ARID1A alterations predict the sensitivity of 
pancreatic cancer to precise treatment

Targeted therapy

Although ARID1A is among the most frequently 
mutated genes in cancers, there are no 
approved therapies targeting the alterations of 
ARID1A. As the majority of ARID1A mutations 
are inactive and lead to low or loss of expres-
sion of the protein, it is difficult to directly recov-
er the function of ARID1A, which makes it a 
poor therapeutic target [23]. In this situation, 
the strategy of synthetic lethality is usually 
applied, based on the concept that concurrent 
inhibition of two genes that have collaborative 
biological functions can lead to a lethal effect. 
Synthetic lethality has been demonstrated as a 
useful strategy to selectively target tumor cells 
with specific intrinsic deficiency, for example, 
the application of PARP inhibitors in tumors 
with BRCA1/2 mutations [24].

Until now, several targets have been reported 
to have synthetic lethality with ARID1A deficien-
cy in tumors, including PARP [25], EZH2 [26], 
PI3K/Akt/mTOR, ATR, and HDAC6 (Figure 2) [9, 
27]. Some of them have already been tested in 
PDAC (Table 1).

PARP inhibitors

The strategy of synthetic lethality has been 
applied successfully using olaparib in PDAC 
harboring BRCA mutations in the phase III 
POLO trial [6]. Due to the low incidence of BRCA 
mutations, the concept of “BRCAness” was 
introduced to identify phenotypic changes 
besides BRCA mutations that may also cause 
PARP inhibitor susceptibility [28].

Initially, Shen et al. demonstrated that ARID1A 
functioned in the repair of DNA double-strand 
breaks (DSBs) and sensitized cancer cells to 
PARP inhibitors. Mutations in ARID1A usually 
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cause homologous recombination (HR) defi-
ciency, which mimics the phenotypic changes 
of BRCA mutations and is associated with the 
response to PARP inhibitors. Currently, a clini-
cal trial (NCT04042831) is ongoing to evaluate 
the efficacy of olaparib in treating patients with 
metastatic biliary tract cancer harboring aber-
rant DNA damage repair (DDR) gene mutations, 
including ARID1A mutation.

However, it is still unclear whether synthetic 
lethality between ARID1A mutations and PARP 
inhibitors exists in PDAC. Recently, a study 
explored the effect of PARP inhibitor olaparib in 
treating PDAC patients harboring mutations of 
DDR genes other than germline BRCA altera-
tions [29]. From two phase 2 clinical trials, a 
total of 46 pretreated patients with advanced 
PDAC who received olaparib were analyzed. 
Among them, 24 patients had the DDR genetic 
alterations, including ATM (n = 14), ARID1A (n = 
3), PALB2 (n = 2), FANCB (n = 2), PTEN (n = 1), 
RAD51 (n = 1), CCNE (n = 1), and BRCA somatic 

(n = 1). The results revealed that olaparib 
increased the median PFS more significantly in 
PDAC patients with DDR genetic alterations 
than in the others (5.7 months vs. 3.7 months, 
p = .008), and the estimated median OS was 
also improved (13.6 months vs. 9.9 months). 
These data indicate that olaparib is therapeuti-
cally effective and safe for PDAC patients with 
specific DDR genetic mutations other than 
germline BRCA alterations. Since ARID1A is 
included in the DDR genes in this study, ARID1A 
mutations may also confer vulnerability to PARP 
inhibitors in PDAC. 

Interestingly, a recent case report described  
a patient with PDAC harboring mutation of 
ARID1A (c.3979C>T, p.Q1327*) who achieved 
an objective response to therapies including 
olaparib, which lasted for more than 13.0 
months [30]. Further randomized clinical trials 
are warranted to evaluate the therapeutic 
effect of PARP inhibitors in PDAC patients har-
boring ARID1A deficiency. 

Figure 2. Mechanisms of ARID1A alterations contributing to sensitivity of pancreatic cancer to targeted agents, 
ICB immunotherapy, and the combinations. HR, homologous recombination; DDR, DNA damage Repair; MSI-H, 
microsatellite instability-high; PARP, poly ADP-ribose polymerase; ICB, immune checkpoint blockade; TMB, tumor 
mutation burden; TME, tumor microenvironment; ICIs, immune checkpoint inhibitors.
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Table 1. Studies for the treatment of pancreatic cancer (or solid tumors including PDAC) with ARID1A-alterations
Study types Cancer types Molecular characteristics Intervention Results
Clinical trial (Javle et al. 2021) PDAC DDR genetic alterations, including ARID1A, ATM, and 

etc. other than germline BRCA variants
Olaparib (PARP inhibitor) PFS↑

OS↑

Case report (Zhao et al. 2019) PDAC Deleterious ARID1A mutation (c.3979C>T, p.Q1327*) olaparib-based therapy PFS > 13M
OS↑

A study in vitro (Yang et al. 2018) PDAC cells ARID1A deficiency PI3K/Akt inhibition combined with IR Cell death↑

Clinical trial Phase 2 (NCT05023655) Solid tumors (including PDAC) ARID1A deficiency Tazemetostat (EZH2 inhibitor) Not available now

Clinical trial (Okamura R et al. 2020) Solid tumors (including PDAC) ARID1A alteration ICB PFS↑ (11M vs. 4M)
OS↑ (31M vs. 20M)

Clinical trial (NCT02478931) (Botta et al. 2021) PDAC SWI/SNF alterations (ARID1A 77%) ICB ORR 89%
PFS 9M
OS 15M

Clinical trial (NCT03842228) Solid tumors (including PDAC) 25 gene alterations (including ARID1A) Olaparib
Copanlisib (PI3K inhibitor)
Durvalumab (An anti-PD-L1 antibody)

Not available now

PDAC, pancreatic ductal adenocarcinoma; DDR, DNA damage repair; PFS, progression-free survival; OS, overall survival; IR, iron radiation; ICB, immune checkpoint blockade; M, month.
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Furthermore, in ARID1A-deficient cancer cells, 
ionizing radiation (IR), which caused exogenous 
DNA damage, attributed to the additional sensi-
tivity to PARP inhibitors [31]. Low-dose IR com-
bined with olaparib significantly improved the 
antitumor efficacy in mice bearing ARID1A-
deficient tumors and resulted in long-term 
remission [31]. Nevertheless, these results 
need to be validated in PDAC.

Inhibition of the PI3K/Akt/mTOR pathway

Activation of the PI3K/Akt/mTOR pathway is 
common across cancer types and has long 
been considered as an oncogenic pathway [32, 
33]. The concurrence of ARID1A inactivation 
and PIK3CA activation has been reported in 
ovarian clear cell carcinoma (OCCC) [34, 35], 
nasopharyngeal carcinoma, and gastric cancer 
[36, 37]. One underlying mechanism of this 
concurrence is that ARID1A binds to the PI3K-
interacting protein 1 (PIK3IP1) promoter to  
activate the expression of PIK3IP1, so that 
ARID1A inactivation downregulates PIK3IP1 
expression, thereby leading to the activation of 
the PI3K/Akt/mTOR pathway [26]. Therefore, 
inhibitors of the PI3K/Akt pathway are poten-
tially effective against ARID1A-deficient can-
cers [38].

A recent study suggested that targeting the 
mTOR pathway could be a new strategy for gas-
tric adenocarcinoma with deficient ARID1A 
[39]. Mechanically, alterations of ARID1A acti-
vate the pS6 and SOX9 axis and promote the 
progression of gastric cancer, which can be 
inhibited by mTOR inhibitors.

In PDAC, our team reported that knockdown of 
ARID1A activated the PI3K/Akt signaling path-
way and led to aggravated resistance to IR [40]. 
Accordingly, inhibitors of PI3K or Akt improved 
the sensitivity of ARID1A-deficient pancreatic 
cancer cells to IR in vitro. These results suggest 
that the PI3K/Akt pathway may be a valuable 
target to sensitize ARID1A-deficienct PDAC to 
radiotherapy, which needs to be further validat-
ed in vivo and in clinical trials.

ATR inhibitors

Ataxia-telangiectasia and rad3-related protein 
kinase (ATR) is an apical kinase involved in 
intra-S-phase DNA damage response, especial-
ly in the process of HR, to protect cells from 

replication stress [41, 42]. It has been reported 
that cancer cells with deficient ARID1A are sen-
sitive to ATR inhibitors [43]. ARID1A deficiency 
results in the defects of topoisomerase 2A and 
cell cycle, leading to a high dependency on the 
function of ATR. Inhibition of ATR promotes pre-
mature mitotic entry and aggravates genomic 
instability, which induces the death of ARID1A-
deficient cancer cells. Hence, inhibition of ATR 
represents synthetic lethality in cancer cells 
with ARID1A mutations. Currently, a clinical 
trial, ATARI trial (NCT04065269), is ongoing to 
explore the effect of AZD6738, an ATR inhibitor, 
in combination with olaparib in gynecological 
cancers with ARID1A loss.

In PDAC, the combination treatment of 
AZD6738 with gemcitabine was investigated  
in vitro and in vivo, and a synergistic growth 
inhibition of cancer cells was observed [44]. 
However, the anti-tumor effect of ATR inhibitors 
in PDAC with ARID1A deficiency requires fur-
ther evaluation.

EZH2 inhibitors

In OCCC, inhibition of the enhancer of zeste 
homolog 2 methyltransferase (EZH2) has been 
reported to be selective against ARID1A deple-
tion [26]. ARID1A and EZH2 antagonistically 
regulate PIK3IP1 expression. When ARID1A is 
depleted, EZH2 silences PIK3IP1 and activates 
the downstream PI3K/Akt pathway. Therefore, 
suppression of EZH2 up-regulates the expres-
sion of PIK3IP1, which inhibits the PI3K/Akt 
pathway induced by ARID1A deficiency, sug-
gesting that inhibition of EZH2 has a synthetic 
lethal role on ARID1A-mutated cancers. 

However, it is unclear whether this strategy 
could be applied broadly in various tumors. For 
example, although the synthetic lethal strategy 
was effective to OCCC, it failed to achieve 
objective efficacy in patients with high-grade 
bladder cancers [45]. Thus, exploration on this 
issue in PDAC is warranted. Currently, a phase 
II study (NCT05023655) is ongoing to evaluate 
the antitumor effect of tazemetostat, an EZH2 
inhibitor, in solid tumors harboring an ARID1A 
mutation.

Pan-HDAC inhibitors

The growth of ARID1A-mutated ovarian can-
cers was initially found to be dependent on 
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HDAC6 activity as ARID1A mutation inactivated 
the apoptosis-promoting function of p53 by 
upregulating HDAC6 [9]. In preclinical models, 
pan-HDAC inhibitors was demonstrated to be 
specifically effective in ovarian cancers with 
ARID1A mutations [46]. Notably, in a clinical 
study of the urothelial carcinoma, patients that 
responded to HDAC inhibition were character-
ized by harboring ARID1A mutations, identify-
ing ARID1A loss as a basis for the clinical 
response to pan-HDAC inhibition [47]. In PDAC, 
no similar studies have been reported, and the 
antitumor effect of HDAC inhibitors is being 
tested in PDAC in clinical trials [48]. 

Immune checkpoint blockade

Although ICB has revolutionized the treatment 
strategy of multiple malignancies, it fails to 
demonstrate efficacy in PDAC [49]. The highly 
immunosuppressive tumor microenvironment 
in PDAC, which is incapable of spurring an 
immune response to checkpoint inhibition, is 
postulated to be the main cause of the failure 
[49].

Notably, clinical trials have discovered a sub-
group of cancer patients who are sensitive to 
ICB immunotherapy. Thus, biomarkers are 
required to guide the treatment selection more 
efficiently [50]. Indeed, several biomarkers 
have been identified to predict the response to 
ICIs, including microsatellite instability high 
(MSI-H), tumor mutation burden (TMB), and the 
expression of PD-L1 [51-53]. Moreover, MSI-H 
and TMB have been approved as indicators for 
the use of pembrolizumab, an anti-PD-1 anti-
body, regardless of the origin of cancers [54]. In 
the phase II clinical trial KEYNOTE-158, sub-
group analysis discovered that the ORR of pan-
creatic cancer patients with MSI-H was 18.2% 
(95% CI 5.2-40.3%) using pembrolizumab [55]. 
Since only approximately 1% of PDAC patients 
exhibit MSI-H, identification of other biomark-
ers for ICIs in PDAC is crucial.

Recently, inactivating alterations of ARID1A 
have emerged as a possible biomarker for the 
vulnerability to ICIs in a variety of cancers [23, 
56, 57]. An initial study revealed that ARID1A 
interacted with the mismatch repair (MMR) pro-
tein MSH2 and promoted MMR in multiple 
human cancer types. Therefore, ARID1A inacti-
vation compromised MMR, elevated TMB, and 
increased tumor-infiltrating lymphocytes (TILs) 

and the expression of PD-L1. Notably, an anti-
PD-L1 antibody showed anti-tumor effect and 
prolonged the survival of mice bearing ovarian 
tumors with ARID1A-deficient-type but not with 
ARID1A-wild-type. This study suggested that 
ARID1A deficiency led to impaired MMR and 
attributed to the mutator phenotypes in can-
cers, which could be used in combination with 
ICB [23]. Consistently, other studies also dem-
onstrated the association of ARID1A deficiency 
with the MSI-H phenotype and the increased 
TMB and PD-L1 expression (Figure 2) [58, 59].

A recent study explored the association 
between ARID1A alterations and clinical out-
comes after anti-PD-1/PD-L1 immunotherapy 
across histologies of cancers (Table 1) [56]. A 
total of 3,403 cancer patients who had tumor 
tissue NGS data were examined, and in nine 
cancer subtypes harboring > 5% prevalence of 
ARID1A mutations, including PDAC, MSI and 
TMB, they were significantly higher in tumors 
with ARID1A-mutation than in ARID1A wild-
type. The patients with ARID1A-altered tumors 
achieved significantly longer median PFS from 
ICB therapy than those with ARID1A wild-type 
tumors (11 months vs. 4 months, p = 0.006). 
Additionally, multivariate analysis revealed that 
alterations of ARID1A were associated with lon-
ger PFS via ICB therapy, which was indepen-
dent of the status of MSI or TMB. Although the 
difference of median OS did not reach statisti-
cal significance, it showed the trend of longer 
OS in patients with ARID1A-altered tumors than 
in wild-type tumors (31 months vs. 20 months). 
These findings indicate that ARID1A mutations 
may serve as a valuable biomarker for ICIs 
across cancer types. Currently, a clinical trial 
(NCT04953104) is undergoing to evaluate the 
antitumor effect of nivolumab, an anti-PD-1 
antibody, for patients with metastatic urothelial 
cancer with ARID1A mutations.

Till now, there are few clinical trials that directly 
explore whether a subpopulation of PDAC with 
ARID1A deficiency will show better response to 
ICB immunotherapy. Most recently, a study was 
conducted to evaluate the predictive value of 
SWI/SNF complex abnormalities for ICIs in pan-
creatic cancer (NCT02478931) (Table 1) [60]. 
In this study, 6,831 cancer patients with NGS 
profiles were included. Among them, fifteen 
patients with pancreatic cancer harboring alter-
ations of SWI/SNF complex were further strati-
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fied from the entire 123 PDAC patients. Nine 
out of the fifteen patients received ICIs. Among 
the nine patients, seven had ARID1A altera-
tions, two had ARID1B alterations, three had 
SMARCA4 alterations, one had SMARCB1 alter-
ations, and one had PBRM1 alterations. Only 
three tumors were of the MSI-H phenotype. The 
clinical outcome showed that eight of the nine 
patients achieved objective response, with one 
patient achieving complete remission (CR). The 
longest duration of response was ongoing for 
over 36 months. Surprisingly, tumors with 
intact MMR, low TMB, and/or low expression of 
PD-L1 also showed responses to ICB immuno-
therapy. The median PFS and OS of the nine 
patients were 9 and 15 months, respectively. 
Interestingly, in the other four patients with 
MMR proficiency but no alterations of SWI/SNF, 
immunotherapy failed to induce objective 
responses. This study indicates that a small 
subset of PDAC patients harboring alterations 
of SWI/SNF complex, including ARID1A, appear 
to be responsive to ICIs, which needs to be veri-
fied in prospective, large-scale clinical trials. 
Furthermore, since ARID1A inactivation is the 
most frequent gene alteration of the SWI/SNF 
complex in PDAC (77% in this study), clinical tri-
als especially in PDAC patients with ARID1A 
deficiency, should be carried out in the future.

As ARID1A deficiency correlates with the MSI-H 
phenotype, whether the predictive role of 
ARID1A for ICB immunotherapy depends on 
MSI-H phenotype is evaluated. In fact, in addi-
tion to MMR, ARID1A deficiency increases TMB, 
elevates the expression of PD-L1, and modu-
lates the tumor immune microenvironment 
through its function in DNA damage repair  
and chromatin remodeling to regulate gene 
transcription [49]. The increased TMB and 
frameshift mutations resulting from ARID1A-
mutantions elevated the level of neoantigens 
and enhanced the tumor immunogenicity and 
sensitivity to ICB immunotherapy. Results from 
a clinical study also demonstrated that ARID1A 
mutations should be recognized as a unique 
immunologically active subgroup independent 
of MIS-H phenotype [57]. In this study, the char-
acteristics of patients with microsatellite stable 
(MSS) colorectal cancer were analyzed, and the 
results showed that in this subtype, ARID1A 
alterations were enriched and were strongly 
correlated with higher interferon-gamma (IFNγ) 
expression and infiltration of T cells, suggesting 

that tumors harboring ARID1A mutations may 
be more susceptible to ICB immunotherapy 
even in the MSS subgroup.

On the other hand, T cell exhaustion remains a 
major challenge in immunotherapy, which limits 
antitumor immunity. A recent study reported 
that ARID1A depletion could decrease the 
acquisition of exhaustion-associated chroma-
tin accessibility and inhibit T cell exhaustion, 
which ultimately led to enhanced antitumor 
immunity [61]. Given that ARID1A can promote 
lymphocyte function and limit T cell exhaustion, 
it is proposed that ARID1A alterations may also 
influence the therapeutic effect of adoptive 
transfusion therapy such as CAR-T [61]. 
However, few reports are available on this sub-
ject now.

Targeted therapy combined with ICB immuno-
therapy

Because of the low response rate to ICB immu-
notherapy, various combinational therapeutic 
strategies have been explored to improve the 
clinical outcome [58]. Among them, targeted 
therapy combined with ICB immunotherapy is a 
promising approach due to its more precise 
nature compared with chemotherapy or radio-
therapy and its relatively better tolerance 
(Figure 2). 

In ARID1A-depleted tumors, our team used 
cell-based and animal models and found that 
the inhibition of ATM/Chk2 checkpoint axis 
potentiated the efficacy of ICIs. Mechanically, 
the inhibition of ATM/Chk2 pathway induced 
replication stress and increased cytosolic DNA, 
thereby activating the STING pathway, which, in 
turn, enhanced innate immune response in 
tumors with ARID1A variants, but not with wild-
type [62].

In ARID1A-inactivated OCCC, the combination 
of HDAC6 inhibition with ICIs represents a 
promising treatment strategy [63]. The HDAC6 
inhibitor ACY1215 combined with anti-PD-L1 
antibodies reduced the tumor burden and 
improved the survival in ARID1Aflox/flox/
PIK3CAH1047R OCCC mice due to the activation 
and increased presence of IFNγ positive CD8+ T 
cells [63]. 

Some combinations of targeted therapy with 
ICB have been evaluated in clinical trials. In a 
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phase 1 clinical trial (NCT03842228), the com-
bination of olaparib, copanlisib (PI3K inhibitor) 
and durvalumab was used to treat patients 
with solid tumors selected by 25 genes muta-
tion-assay, including ARID1A, ATM, ATRX, 
BARD1, BRCA1, and BRCA2 (Table 1) [58]. 
Another clinical trial (NCT04284202) was 
designed to explore the combination of tori-
palimub (an anti-PD1 antibody) and dasatinib (a 
multi-kinase inhibitor) as third-line treatment 
for advanced non-small cell lung cancer with 
ARID1A Mutations. These two trials are ongo-
ing, and the results are not available now.

Currently, two clinical trials (NCT03851614, 
NCT02660034) are being performed to investi-
gate the effect of PARP inhibitors combined 
with ICIs in solid tumors, including PDAC; how-
ever, these two clinical trials did not select 
patients by molecular biomarkers, such as 
ARID1A mutations. 

Other targeting agents, such as the inhibitors of 
EZH2 and ATR, combined with ICIs have also 
been explored in clinical trials (NCT03854474, 
NCT03334617, and NCT02264678) with prom-
ising preliminary results. As these targets  
show “synthetic lethality” with ARID1A altera-
tions, further studies in ARID1A-mutation-
selective cancers, including PDAC, should be 
considered.

Other treatments

A recent study identified ARID1A deficiency as a 
valuable biomarker for increased sensitivity to 
proteotoxic agents in PDAC. Loss of ARID1A 
promoted an EMT phenotype, which sensitized 
PDAC cells to an inhibitor of HSP90, NVP-
AUY922, in vitro and in vivo [64].

ARID1A alterations predict the prognosis of 
pancreatic cancer

ARID1A alterations have been reported as a 
prognostic factor in gastric cancer [65, 66], 
breast cancer [67], and endometrium-related 
gynecological cancer [68]; however, regarding 
the prognostic function of ARID1A in PDAC, con-
troversy still exists.

In an initial study enrolling 109 microdissected 
PDAC cases, demonstrated that altered ARID1A 
was found to be associated with significantly 
shorter disease-free survival (DFS) and OS, 

suggesting that mutations in ARID1A predicted 
poor survival [13]. Consistently, in a study with 
22 PDAC patients who received neoadjuvant 
chemoradiation therapy, univariate analysis 
revealed worse survival in patients with ARID1A 
alterations, although multivariate analysis sug-
gested that the difference was insignificant, 
possibly due to the small sample size and con-
founding factors in this study [69].

In contrast, Sausen M et al. reported that 
patients with ARID1A mutations had better sur-
vival in PDAC; however, the short follow-up time 
in this study was debatable [70]. Additionally, 
some other studies suggested that ARID1A 
was not a prognostic factor in PDAC [60, 71, 
72].

Interestingly, in a recent study with a cohort of 
90 Chinese patients with pancreatic cancer, 
targeted sequencing and survival analyses 
revealed that altered ARID1A was associated 
with significantly shorter DFS and OS [73]. The 
median DFS and OS were 12 and 16 months, 
respectively, in patients with alternated AR- 
ID1A, while 24 months in those with wild-type. 
This study also analyzed the data from the 
TCGA pancreatic cancer patient cohort and sur-
prisingly found that there was no significant dif-
ference in DFS and OS between mutant ARID1A 
and wild-type ARID1A subgroups. These results 
suggested that race and genetic background 
might influence the prognostic value of ARID1A 
alterations in PDAC. Further clinical investiga-
tion is needed to clarify this notion.

Conclusion and perspective

In summary, the chromatin remodeling gene 
ARID1A plays important roles in PDAC, particu-
larly participating carcinogenesis, predicting 
response to precise therapeutic strategies, 
including targeted therapy and ICB immuno-
therapy, and predicting prognosis. The promis-
ing preliminary results from accumulated pre-
clinical and early clinic studies suggest that  
the functions of ARID1A alterations in PDAC 
deserve to be further exploited. 

As most of the current clinical results are from 
retrospective analysis with small sample size, 
selection bias and confounding factors may 
influence the conclusion. Prospective, multi-
center, large-scale clinical trials are warranted 
to provide definitive conclusions on the predic-
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tive and prognostic value of ARID1A alterations 
in PDAC. Hopefully, based on this research, the 
subgroup of PDAC patients harboring ARID1A 
alterations will achieve better clinical outcomes 
in the future.
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