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Abstract: Objectives: Heart failure (HF), the primary end-stage manifestation of multiple cardiovascular diseases, 
has become a global epidemic with high morbidity and mortality. However, the mechanisms underlying the patho-
genesis of HF with different etiologies have yet to be fully elucidated. Methods: In this study, we developed a novel 
method to determine the dysregulated lncRNA-mRNA regulation pairs (LMRPs) in the different causes that lead 
to HF. Time-ordered dysregulated lncRNA-mRNA regulation networks were constructed for comparing the HF pro-
gression initiated from different causes. Additionally, the random forest and support vector machine classification 
algorithm were applied to identify HF-related diagnostic biomarkers. Results: Biological functional analysis indicated 
that similar functions were detected at the late stage across different causes of HF, whereas different characteris-
tics were revealed during disease progression. Specifically, the disturbance of myocardial energy metabolism might 
be a cause of dilated cardiomyopathy (DCM) and peripartum cardiomyopathy (PPCM), while immune response ap-
peared earlier in hypertrophic cardiomyopathy (HCM). Inflammatory response during HCM and PPCM progression 
might be mediated by complement system, whereas ischemic cardiomyopathy (ICM) might be induced by cytokines. 
Finally, we identified several panels of diagnostic biomarkers for distinguishing HF patients of different etiologies 
from non-heart failure (NF) controls. Conclusions: This study revealed distinct functional characteristics during the 
progression of HF from different causes and facilitated the discovery of candidate diagnostic biomarkers for HF.
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Introduction

Heart failure (HF) is the end stage of various 
cardiovascular diseases [1], which has high 
morbidity rate and can be caused by various 
etiologies [2]. Therefore, HF has become a 
major public health issue [3]. Although patients 
of HF from different causes usually show simi-
lar symptoms, they have distinct clinical fea-
tures. Nevertheless, the same treatment is 
usually provided to patients with HF clinically, 
overlooking the differences in diverse etiolo-
gies [4]. Therefore, it is important to investigate 
the molecular mechanisms of HF progression 
from different causes, which will be useful for 
precise clinical treatment.

Previous studies have explored the pathogene-
sis of different HF-inducing causes [5-11], es- 

pecially the pathogenesis of dilated cardiomy-
opathy (DCM) and ischemic cardiomyopathy 
(ICM). These studies were mainly carried out at 
the transcriptome, proteome, and functional 
levels. At the transcriptome level, microarray-
based data has been used to analyze the 
changes in gene expression in ICM and DCM. A 
study has reported the specific expression pat-
terns of protein-coding RNA and long non-cod-
ing RNA (lncRNA) in the plasma of ICM and  
DCM patients [5]. Deep RNA sequencing of the 
left ventricular samples from ICM and DCM 
revealed that cis-gene regulation was the pri-
mary mechanism of human heart lncRNAs [6]. 
At the proteome level, Northern blot and 
Western blot analyses were performed on the 
ventricular tissues of DCM and ICM patients, 
and the results revealed that the cardiac 
expression of TIMP-1 and -3 transcripts and 
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proteins was significantly reduced in DCM and 
ICM, while TIMP-4 protein was significantly 
decreased only in ICM myocardium [7]. After 
proteomics and metabolomics analysis on the 
left ventricular tissues of ICM and DCM, some 
commonly perturbed pathways were detected 
in ICM and DCM, suggesting the overlapping 
molecular changes in HF [10]. At the functional 
level, a study reported that both cell-cell and 
cell-matrix adhesions were related to DCM, 
while immune and fibrotic reactions were typi-
cal characteristics of ICM [8]. Additionally,  
compared with hypertrophic cardiomyopathy 
(HCM), the profibrotic and metabolic pathways 
were specifically associated with DCM in the 
left ventricle tissues of mouse models [9]. The 
limitation of the above studies was that only 
two etiologies of HF were investigated, and, till 
now, the comparative studies across multiple 
different HF-inducing causes are scarce.

With the increasing HF data available publicly, 
many studies have systematically analyzed the 
different etiologies of HF [12, 13]. By identify-
ing the significantly differentially expressed 
(SDE) genes from different microarray plat-
forms, the common functional modules [12] 
and shared pathways [13] related to the vari-
ous causes of HF have been revealed. However, 
all these studies were focused on the common 
characteristics of HF, and all the analyses were 
performed in a static state.

In this study, we extensively collected HF-relat- 
ed RNA-seq and microarray data for further 
analyses. First, by using a novel computational 
algorithm, dysregulated lncRNA-mRNA regula-
tion pairs (LMRPs) were systematically identi-
fied in HF with different etiologies. Second, 
time-ordered dysregulated lncRNA-mRNA regu-
lation networks were constructed, and the 
common and different characteristics were 
analyzed during HF progression. Finally, several 
panels of diagnostic biomarkers associated 
with different causes of HF were identified.

Materials and methods

Datasets of HF with different etiologies 

HF-related RNA-seq data were extensively 
searched from the Gene Expression Omnibus 
(GEO) database, and three datasets of GSE14- 
1910, GSE135055 and GSE116250 belonging 
to the same sequencing platform were obtain- 
ed and used as training sets. These datasets 
included 221 DCM patients, 28 HCM patients, 
13 ICM patients, 6 peripartum cardiomyopathy 
(PPCM) patients, and a control group consist- 
ing of 189 non-heart failure (NF) donors. All the 
samples were derived from human left ventric-
ular myocardial tissue (Table 1). Additionally, 
the RNA-seq data of GSE133054 and GSE- 
46224 and the microarray data of GSE1145 
were also acquired from the GEO and used as 
validation sets. GSE133054 included 8 HCM 
patients and 8 NF samples, GSE46224 in- 
volved 8 DCM patients, 8 ICM patients and 8 
NF donors, while GSE1145 contained 31 ICM 
patients, 27 DCM patients, 5 HCM patients, 4 
PPCM patients and 11 NF samples. 

Collection of lncRNA and mRNA expression 
profiles

The FASTQ formats of the RNA-seq datasets 
were downloaded from the ArrayExpress da- 
tabase (https://www.ebi.ac.uk/arrayexpress/). 
After quality control using FastQC (version 
0.11.9), the adapter sequences were removed 
using Trimmomatic (version 0.39) [14], and the 
reads were aligned to the human reference 
genome (GRCh37/hg19) using Hisat2 (version 
2.2.0) [15]. The read counts were obtained by 
using featureCounts (version 2.0.1) [16]. The 
transcripts per million (TPM) was calculated as 
the expression levels of mRNAs and lncRNAs. 
Combat-seq [17] was applied to eliminate  
the batch effect between different datasets. 
MRNAs and lncRNAs with at least one read in 
more than 80% of samples were retained for 

Table 1. Summary of the dataset used in this study
GEO ID Platform Data type Data set No. of DCM No. of HCM No. of ICM No. of PPCM No. of NF
GSE141910 GPL16791 RNA-seq Training set 166 28 0 6 166
GSE135055 GPL16791 RNA-seq Training set 18 0 0 0 9
GSE116250 GPL16791 RNA-seq Training set 37 0 13 0 14
GSE133054 GPL18573 RNA-seq Test set 0 8 0 0 8
GSE46224 GPL11154 RNA-seq Test set 8 0 8 0 8
GSE1145 GPL570 Mircoarray Test set 27 5 31 4 11
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further analysis. After removing the genes con-
taining multiple ensemble IDs, 15,163 mRNAs 
and 4,756 lncRNAs were retained.

For the microarray data, lncRNA expression 
profiles were acquired by applying an lncRNA 
classification pipeline based on probe sets in 
the Affymetrix Human Genome U133 Plus 2.0 
Array [18, 19]. Probe sets corresponding to 
multiple mRNA or lncRNA symbol identifiers 
were removed. If multiple probes map to the 
same mRNA or lncRNA, the median for these 
probes was taken as the final expression value 
of the gene.

Identification of dysregulated LMRPs in HF 
with different etiologies

In this study, we hypothesized that LMRPs  
were abundant in NF samples and that their 
dysfunction would lead to the occurrence and 
progression of the disease. To test this, LMRPs 
in NF were determined with the absolute value 
of Pearson correlation coefficients (PCC) great-
er than 0.8 and p-value < 0.01. In total, 23,475 
LMRPs consisting of 524 lncRNAs and 3,844 
mRNAs were obtained. An lncRNA-mRNA net-
work in NF was further constructed based on 
these LMRPs.

Based on the expression profile of lncRNAs and 
mRNAs, a dysregulated LMRP was identified by 
combing the following three factors: (1) the dys-
regulation of gene (node) expression; (2) the 
dysregulation of gene interaction (edge); (3) the 
influence of an LMRP dysregulation on the 
genes that directly interacted with it in NF 
lncRNA-mRNA networks. Specifically, the node 
score in an LMRP was calculated by equations 
(1) and (2) [20]:
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Where FZ(Z) was the cumulative distribution 
function (CDF) of z-statistics, p-value was the p 
value reflecting the significance of differential 
gene expression calculated by DESeq2, and FC 
was the corresponding fold change of the gene 
expression. λ = ln10 and σ2 were the variance 

of fold change (FC). Then, the edge score in an 
LMRP was computed by equation (3)-(5) [21]:
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Where φ was the CDF of the normal distribu-
tion. rcase and rcontrol were the PCCs of gene 
expression in the case and control samples, 
respectively. ncase and ncontrol were the sample 
numbers of case and control, respectively. F 
was the Fisher transformation function, appli- 
ed to make the data approximately follow nor-
mal distribution [22].

Next, the influence score of an LMRP on the 
expression of interacting genes was calculated 
by equation (6):

Sinfluence = Sinfluence(mRNA|lncRNA) + Sinfluence 
(lncRNA|mRNA)                                                           (6)

Here, Sinfluence(mRNA|lncRNA) was the influence 
score of the lncRNA in the LMRP on mRNAs 
that directly interacted with the lncRNA, and it 
was defined as 1-(p-value), where the p-value 
was calculated by Fisher’s exact test, which 
reflected the significant level of the mRNAs 
directly interacted with the lncRNA that was 
enriched in SDE mRNAs Benjamini-Hochberg 
(BH) adjusted p < 0.05 and |log2FC| > 1. 
Similarly, Sinfluence(lncRNA|mRNA) was comput-
ed. Finally, an LMRP dysregulated score was 
computed by combining its node score, edge 
score and influence score:

S S S SLMRP nodenode LMRP edge influence= + +!
/          (7)

Furthermore, to evaluate the significance of 
each LMRP score, a permutation test was per-
formed. We randomly selected an lncRNA and 
an mRNA to construct a random LMRP and 
repeated this process 10,000 times. All the 
random LMRP scores were calculated through 
the above equations and the null distribution  
of LMRP scores was acquired. For an observed 
LMRP, the empirical p-value was defined as the 
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proportion of randomly obtained scores larger 
than the observed LMRP score as follow:

p = (Number of Srandom>SLMRP)/10000             (8)

Here, the LMRPs with p < 0.05 were considered 
as dysregulated LMRPs.

Construction of time-ordered background ln-
cRNA-mRNA regulation networks (TO-BLMRN) 
in NF

The LMRPs in NF formed an lncRNA-mRNA reg-
ulation network, and the largest component 
with 23,372 LMRPs was defined as the back-
ground lncRNA-mRNA regulation networks in 
NF, which included 472 lncRNAs and 3,746 
mRNAs. TO-BLMRN in NF was generated based 
on a previous research by using breadth-first 
search algorithm (BFS) and initial nodes [23]. 
The initial nodes were selected as the nodes 
with the smallest dysregulated score. Since a 
node might be involved in multiple LMRPs, we 
defined the dysregulated score of a node as  
the mean value of the LMRPs dysregulated 
scores in which it involved. Importantly, a sin-
gle-gene-based network was transformed to a 
LMRP-based network for facilitating the subse-
quent analysis. A LMRP was considered at a 
certain time-ordered level if any node in it first 
appeared at that level. Meanwhile, this LMRP 
was deleted at the later levels.

Collection of mRNAs and lncRNAs related to 
HF with different etiologies

Disease-related mRNAs and lncRNAs were ex- 
tracted from DisGeNET (version 7.0) [24] and 
LncRNADisease (version 2.0) [25] databases, 
respectively. In addition, disease-related lnc- 
RNAs were also manually collected from Pub- 
Med. For each article, the abnormal expression 
of lncRNAs in different etiologies of HF was 
manually confirmed. Finally, we obtained 828 
mRNAs and 7 lncRNAs, 357 mRNAs and 12 
lncRNAs, 103 mRNAs and 9 lncRNAs associat-
ed with DCM, HCM, and ICM, respectively. No 
mRNAs or lncRNAs associated with PPCM were 
found.

Identification of potential diagnostic biomark-
ers 

Genes highly associated with disease initiation 
were screened using the random forest super-

vised classification algorithm [26], which was 
performed by the R ‘RandomForest’ package. 
The importance score of each gene was calcu-
lated using the out-of-bag sample by permuta-
tion test, and two-thirds of the genes with the 
highest scores were retained each time until a 
balance was reached between the classifica-
tion accuracy and the number of genes. The 
support vector machine (SVM) classification 
model was applied to identify candidate diag-
nostic biomarkers. Furthermore, the classifica-
tion efficiency was measured via the classifica-
tion accuracy and the area under the receiver 
operating characteristic curve (AUC) using 
5-fold cross-validation. The processes were 
implemented by R ‘e1071’ and ‘pROC’ pack- 
ages. 

Moreover, in order to evaluate the classification 
efficiency of LMRPs as diagnostic biomarkers, 
the regulatory strength of a LMRP for a sample 
k was calculated utilizing the measure of 
‘covariability’ by the following equation [27]:
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Where lnc
ke  and emRNAk  represented the expres-

sion level of the lncRNA and mRNA in sample k, 
respectively. μelnc

 and μemRNA
 denoted the aver-

age, while σelnc
 and σemRNA

 denoted the standard 
deviation of the lncRNA and mRNA across sam-
ples. The identification of the LMRPs diagnostic 
biomarkers was performed as described above.

Results

Global gene expression patterns in HF with 
different etiologies 

RNA-Seq data of DCM, HCM, ICM and PPCM 
from the same platform were collected from 
the GEO database. The ComBat-Seq method 
was adopted to eliminate the batch effects, 
and principal component analysis (PCA) was 
performed. The data presented in Figure 1A 
and 1B indicated that the batch effects were 
clearly removed. As shown in Figure 1C and 1D, 
we found that the overall expression of lncRNAs 
was lower than the expression of mRNAs in HF 
with different etiologies. About 70% of lncRNAs 
had TPM values between 0 and 1, but only less 
than 1% of them had TPM values > 20, consis-
tent with the current understanding that the 
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expression values of protein-coding genes in 
different tissues were higher than those of 
lncRNAs [28].

Subsequently, SDE genes between HF patients 
with different etiologies and controls were iden-
tified at the significance level of BH-adjusted p 
< 0.05 and |log2FC| > 1 (Figure 1E and 1F). As 
a result, 297 SDE mRNAs and 71 SDE lncRNAs 
were shared. Importantly, the up- and down-
regulation of all these shared SDE gene expres-
sion were consistent among the four diseases 
(Figure 1G and 1H; Supplementary Table 1). 

Meanwhile, we found that 16 SDE mRNAs and 
7 SDE lncRNAs were specific for DCM, while 
168 SDE mRNAs and 83 SDE lncRNAs were 
specific for HCM. The numbers of specific SDE 
mRNAs and SDE lncRNAs for ICM were 386 
and 207, respectively, while 185 SDE mRNAs 
and 60 SDE lncRNAs were specific for PPCM.

Dysregulated LMRPs in HF with different eti-
ologies

The dysregulated LMRPs across different etiol-
ogies of HF were identified using our method. 

Figure 1. Global transcriptome expression patterns in heart failure (HF) with different etiologies. A, B. The scatter 
plot before and after removing batch effects using principal component analysis (PCA). The points in the scatter 
plot visualize the samples by the first two primary elements (PC1 and PC2). C, D. The distribution of TPM values for 
mRNAs and long noncoding RNAs (lncRNA). E, F. Venn diagrams of differentially expressed (SDE) mRNAs and SDE 
lncRNAs. G, H. Heatmaps of shared SDE mRNAs and SDE lncRNAs in HF with different etiologies.

http://www.ajtr.org/files/ajtr0144161suppltab1.xlsx
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Consequently, 2,151 dysregulated LMRPs in- 
cluding 943 mRNAs and 68 lncRNAs were iden-
tified in DCM. A total of 1,689 dysregulated 
LMRPs consisting of 428 mRNAs and 86 
lncRNAs were identified in HCM. In ICM and 
PPCM, 2,221 dysregulated LMRPs including 
586 mRNAs and 157 lncRNAs, and 1,652 dys-
regulated LMRPs consisted of 471 mRNAs and 
81 lncRNAs were obtained, respectively 
(Supplementary Table 2).

More importantly, the dysregulated LMRPs 
were validated by several approaches and were 
compared with the traditional method. We first 
examined the proportion of SDE genes and dis-
ease-related genes (DRGene) in dysregulated 
LMRPs. We found that the proportion of SDE 
genes in the dysregulated LMRPs was signifi-
cantly higher than that of NF LMRPs (hypergeo-
metric test, P < 2.2×10-16 for the four diseases). 
Similarly, the proportion of DRGenes in dysreg-
ulated LMRPs was significantly higher than that 
of NF LMRPs, except for PPCM (DCM: P = 
4.37×10-3, HCM: P = 1.11×10-2, ICM: P = 
8.57×10-6). We then employed the traditional 
method to acquire dysregulated LMRPs. SDE 
lncRNA-SDE mRNA pairs with |PCC| > 0.8 and 
p-value < 0.01 were identified (Supplementary 
Table 3). However, the proportion of DRGenes 
in these dysregulated LMRPs was not signifi-
cantly higher than that of NF (DCM: P = 0.495, 
HCM: P = 0.104 and ICM: P = 0.098). 
Additionally, the biological functions of the dys-
regulated LMRPs were investigated. The signifi-
cantly enriched gene ontology biological pro-
cess (GO BP) terms were acquired with p < 0.01 
using DAVID (version 6.8) [29] (Supplementary 
Tables 3 and 4). As demonstrated in Figure 2, 
the traditional method only identified the pro-
cesses involved in immune, inflammatory, and 
myocardial remodeling responses, whereas our 
method obtained more functional information 
associated with HF.

TO-BLMRN in NF

To construct TO-BLMRN in NF, DENND1B and 
EXOSC1 were chosen as the initial nodes 
because both genes were in the top 10% low-
est dysregulated scores in the four diseases 
(for details, see Materials and methods). The 
TO-BLMRN was then obtained using the BFS 
algorithm. Furthermore, the single gene-based 
networks were converted into LMRP-based  
networks. The TO-BLMRN included 10 time-

ordered levels (denoted L1 to L10). As demon-
strated in Figure 3A and Supplementary Table 
5, the dysregulated LMRPs in the diverse etiolo-
gies of HF were mapped to the TO-BLMRN, and 
we found that most of the dysregulated LMRPs 
were distributed at L3-L9 levels.

When we constructed the TO-BLMRN, we 
hypothesized that the initial nodes should be 
relatively stable; otherwise, it would cause the 
instability of the entire TO-BLMRN. To prove 
this, we calculated the ratio of dysregulated 
LMRPs in DCM to all LMRPs at their respective 
levels and repeated this process for HCM, ICM 
and PPCM. As shown in Figure 3B, as the time-
ordered level increased, the ratio of dysregu-
lated LMRPs gradually increased, especially at 
L8 and L9 levels. We further investigated the 
distribution of dysregulated scores of LMRPs at 
ten time-ordered levels (Figure 3C). Similarly, 
the LMRP dysregulated scores increased grad-
ually as the level increased from L1 to L9, which 
was consistent with our hypothesis.

Additionally, we investigated the stability of the 
TO-BLMRN. Since there were only two genes at 
the L1 level except for DENND1B and EXOSC1, 
we randomly selected two genes at the L2 level 
of the original TO-BLMRN as initial nodes and 
calculated the differences in each level for new 
TO-BLMRN against the original one. The pro-
cess was repeated 10 times, and the results 
were shown in Table 2. We found that most 
changes manifested at the following two time-
ordered levels, probably because TO-BLMRN 
was constructed based on LMRPs and that the 
initial nodes were taken from L2 level. More- 
over, the means and standard deviations (SDs) 
of overall level changes in new TO-BLMRNs 
were small.

Comparison and analysis of HF progression 
with different etiologies

To systematically investigate the common and 
different characteristics during HF progression 
with different etiologies, the mRNAs of dysre- 
gulated LMRPs in each level were employed  
for functional enrichment analysis using  
DAVID [29]. Significantly enriched GO BP terms 
were acquired with p < 0.01 (Supplementary 
Tables 6, 7, 8, 9). Figure 4 showed the terms 
that were typically related to HF initiation and 
progression. We found that, in the advanced 
stage (L8-L9) of the diseases, most of the 
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immune and inflammation-related functions 
and the myocardial remodeling-related func-
tions were overrepresented across the four 
causes of HF. For example, ‘leukocyte and gran-
ulocyte migration and chemotaxis’, ‘cytokine 
production’, and ‘regulation of immune system 
process’ are associated with immune and 
inflammation, while ‘extracellular matrix organi-
zation’, ‘tissue remodeling’, and ‘angiogenesis’ 
are related to myocardial remodeling. We also 
compared the pathway enrichment among the 
four causes of HF. Specifically, for DCM, as 

shown in Figure 4A, the ‘cellular protein and 
macromolecule catabolic processes’ and ‘regu-
lation of glucose transport’ were significantly 
enriched at the initial stage of DCM (L3 level), 
and their activities continued to L4. Functional 
categories of ‘regulation of actin polymerization 
or depolymerization’ related to cardiomyocyte 
morphology were enriched in L5. At the pro-
gression stage of DCM (L6 level), the signifi-
cantly enriched functions could be classified 
into two categories: cell apoptotic and immune 
response. 

Figure 2. Comparison of our method and traditional method in biological functions. To clearly demonstrate the 
results, the functional categories typically associated with HF initiation and progression were selected, and similar 
functions were merged and classified into six categories: immune-inflammation, myocardial remodeling, metabolic 
progress, apoptosis, cardiomyocyte morphology and others.
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In contrast, for HCM, the immune-related func-
tions appeared earlier at L4 level, such as 
‘immune response-regulating signaling path-
way’, ‘Fc receptor signaling pathway’ and ‘posi-
tive regulation of I-kappaB kinase/NF-kappaB 
signaling’ (Figure 4B). Simultaneously, func-
tions associated with cardiomyocyte morphol-
ogy were overrepresented at L4, such as ‘cyto-
skeleton organization’ and ‘actin filament-
based process’. At L6 level, the significantly 
enriched functions of HCM involved cell apop-
totic, immune, and inflammatory responses. 

As for ICM, functional categories associated 
with ‘response to zinc ion’ were significantly 
enriched in L5 level (Figure 4C). Additionally, 
apoptotic signaling pathway, inflammation and 
immune responses were overrepresented in 
L6. Finally, for PPCM, the ‘cellular protein and 
macromolecule catabolic processes’ were sig-
nificantly enriched in L3 (Figure 4D). ‘Cellular 
response to zinc ion’ was a major process at 
L5, and a large amount of inflammation and 
immune responses, including ‘complement 
receptor-mediated signaling pathway’ and 

Figure 3. Time-ordered background lncRNA-mRNA regulation networks (TO-BLMRN) in non-heart failure (NF). A. 
Global overview of the TO-BLMRN and summary of dysregulated lncRNA-mRNA regulation pairs (LMRPs) in HF with 
different etiologies. Time-ordered levels of the TO-BLMRN are denoted as L1-L10. The number in a circle indicates 
the number of LMRPs. B. The proportion of dysregulated LMRPs at each level in HF with different etiologies. C. The 
dysregulated score distribution of LMRPs across 10 time-ordered levels. 
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‘granulocyte and leukocyte migration’ were 
overrepresented in L6.

In summary, four etiologies of HF showed the 
enrichments of cellular processes with differ-
ent biological functions across L3-L6 levels. 
The finding that the ‘cellular protein and macro-
molecule catabolic processes’ were significant-
ly enriched in the initial stage of DCM and PPCM 
suggested that the occurrence of DCM and 
PPCM might be associated with myocardial 
energy metabolism. However, the functional 
categories related to cardiomyocyte morpholo-
gy were overrepresented in the early stage of 
DCM and HCM, suggesting that the abnormal 
morphology of cardiomyocytes was likely to be 
an early feature of the two diseases. Addition- 
ally, our results showed that the ‘response to 
zinc ion’ was possibly related to ICM and PPCM, 
and the inflammatory response during HCM 
and PPCM progression was probably mediated 
by the complement system, while ICM might be 
induced by cytokines. Furthermore, compared 
to the other three causes of HF, the functions 
associated with ‘immune response’ appeared 
earlier in HCM.

Identification of the potential diagnostic bio-
markers in HF with different etiologies

In our study, two types of diagnostic biomark-
ers were identified based on the identified dys-
regulated LMRPs. One was single type mole-
cule-based biomarkers, and the other was 
LMRP-based biomarkers. They were then used 

for differentiating HF patients from the NF con-
trols (denoted as HF-NF). Since HF patients 
with different etiologies were similar in the late 
stage of the diseases, characterized by myocar-
dial remodeling, the dysregulated LMRPs in 
L1-L7 levels were selected for diagnostic bio-
markers identification.

To identify single type molecule-based diagnos-
tic biomarkers, 786 DCM dysregulated LMRPs, 
including 758 mRNAs and 26 lncRNAs, were 
evaluated. Using our method (for details, see 
the Materials and methods), the optimal DCM-
NF biomarkers were identified. As shown in 
Table 3, two panels of DCM-NF biomarkers 
were defined by three mRNAs (COPZ2, CPED1 
and TGFBR2) and four lncRNAs (AC244090.1, 
SNHG3, LINC01091 and AC004687.1). Simi- 
larly, two panels of HCM-NF biomarkers defined 
by three mRNAs (PLAGL1, SCG2 and HCLS1) 
and three lncRNAs (LINC01128, LINC00894 
and AC078850.1) were obtained. Two panels of 
ICM-NF biomarkers defined by two mRNAs 
(METRN and EIF4EBP1) and three lncRNAs 
(ANKRD10-IT1, AC124798.1 and AC027279.1) 
were obtained. Two panels of PPCM-NF bio-
markers defined by two mRNAs (IFT43 and 
GTF3A) and three lncRNAs (PCBP1-AS1, LINC- 
01128 and LINC01554) were obtained. 

For the identification of LMRP-based diagnostic 
biomarkers, the ‘covariability’ method was 
applied. In the same way, four panels of diag-
nostic biomarkers were defined by three LMRPs 
(AC244090.1/COPZ2, AC244090.1/GGT5 and 

Table 2. Summary of level sequence changes with different initial nodes

Initial node Mean of level 
change

SD of level 
change

No. of not 
changed

No. of cross 
1 level

No. of cross 
2 levels

No. of cross 
multiple levels

SCYL3, SMIM20 0.732 0.791 11266 7090/-2 5014/0 0/0
ANKIB1, BRK1 0.876 0.803 9158 7942/-2 6270/0 0/0
ALS2, COA8 0.9 0.814 9022 7646/-2 6702/0 0/0
RECQL, TRAPPC2B 0.752 0.786 10831 7496/-2 5043/0 0/0
KMT2E, TIMM23 0.786 0.791 10348 7683/-2 5339/0 0/0
MYCBP2, MRPS21 0.999 0.788 7261 8861/-2 7248/0 0/0
AGK, NCBP2AS2 0.983 0.798 7643 8491/-2 7245/0 0/0
PAFAH1B1, GTF2H5 0.755 0.786 10788 7522/-2 5060/0 0/0
CSDE1, PSMB3 1.033 0.815 7386 7829/-2 8155/0 0/0
REV3L, ISY1 0.984 0.809 7830 8077/-2 7463/0 0/0
Note: The positive and negative number indicate the node level changes to the previous or the following level, in the new time 
ordered background mRNA-long noncoding RNA (lncRNA) regulation networks (TO-BLMRN) against the original one. Zero repre-
sents no change between the two TO-BLMRNs. For example, if a node belongs to L2 in the original TO-BLMRN and is classified 
to L1 in the new TO-BLMRN, it is considered that the change number is -1.
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FGD5-AS1/CPED1) for selected DCM-NF, while 
four LMRPs (SNHG6/IFT43, FGD5-AS1/TACC1, 
FGD5-AS1/TGFBR2 and LINC00342/PLAGL1) 
were defined for HCM-NF. ICM-NF was repre-
sented by two LMRPs (TP53TG1/UQCRB and 
RAB11B-AS1/EIF4EBP1), and PPCM-NF by 
three LMRPs (ZFAS1/RBM47, AL513327.1/
NCBP3 and AC002350.2/DCBLD2). The accu-
racies and AUC values in the training and vali-
dation sets using 5-fold cross-validation were 
shown in Table 3. The results revealed that the 
biomarkers we identified could effectively dis-
tinguish HF patients with different etiologies 
from the NF controls.

Discussion

In the current study, we investigated the  
common and distinct functional characteristics 
during HF progression with different etiologies. 
By using a novel computational approach, the 
dysregulated LMRPs in the different causes  
of HF were identified, and furthermore, time-
ordered dysregulated lncRNA-mRNA regulation 
networks were constructed, from which several 
new biomarker panels potentially useful for HF 
diagnosis were identified.

We also performed functional analysis on the 
different causes of HF across different time-

Figure 4. Dynamic changes of biological functions of HF with different etiologies. Significantly enriched gene ontol-
ogy biological process (GO BP) terms typically related to HF initiation and progression were displayed. Coloring was 
performed based on p-values. ‘NS’ means non-significant (P > 0.01), while ‘NA’ means that the mRNAs are not 
enriched in this term.
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ordered levels and yielded several significant 
findings. First, we found that the functions 
related to energy metabolism occurred in the 
early stage of DCM and PPCM. In support of our 
finding, previous studies have demonstrated 
that the dysfunction to ADP/ATP carriers may 
cause the imbalance of intracellular energy 
transmission and demand, thereby promoting 
the occurrence of DCM [30, 31]. Hence, target-

ing cardiomyocyte metabolism could be a new 
treatment direction for non-ischemic HF [32]. 
For PPCM, a report indicated that the inhibition 
of β1AA’s on PGC-1α-related pathways could 
impair mitochondrial energy metabolism, lead-
ing to the occurrence of PPCM [33]. Second, we 
found that the functional categories of actin 
and cytoskeletal tissue were associated with 
DCM and HCM. Consistently, a previous study 

Table 3. Classification efficiency of the identified mRNA and lncRNA diagnostic biomarkers related to 
different etiologies in heart failure (HF)
Biomarker Type Combination Data set Accuracy AUC
DCM-NF mRNA COPZ2 Train set 0.956 0.988

CPED1 Test set-GSE1145 0.974 0.993
TGFBR2 Test set-GSE46224 1.000 1.000

lncRNA AC244090.1
SNHG3

LINC01091
AC004687.1*

Train set 0.824 0.899
Test set-GSE1145 0.921 0.966

Test set-GSE46224 0.938 0.984

LMRP AC244090.1/COPZ2 Train set 0.732 0.779
AC244090.1/GGT5 Test set-GSE1145 0.895 0.879
FGD5-AS1/CPED1 Test set-GSE46224 0.750 0.859

HCM-NF mRNA PLAGL1 Train set 0.963 0.820
SCG2 Test set-GSE1145 1.000 1.000
HCLS1 Test set-GSE133054 0.875 0.922

lncRNA LINC01128 Train set 0.963 0.840
LINC00894 Test set-GSE1145 0.938 1.000

AC078850.1* Test set-GSE133054 1.000 1.000
LMRP SNHG6/IFT43

FGD5-AS1/TACC1
FGD5-AS1/TGFBR2
LINC00342/PLAGL1

Train set 0.917 0.770
Test set-GSE1145 0.938 0.964

Test set-GSE133054 0.750 0.828

ICM-NF mRNA METRN
EIF4EBP1

Train set 0.995 0.998
Test set-GSE1145 0.786 0.936

Test set-GSE46224 0.813 0.891
lncRNA ANKRD10-IT1

AC124798.1
AC027279.1

Train set 0.960 0.957
Test set-GSE46224 0.750 0.859

LMRP TP53TG1/UQCRB
RAB11B-AS1/EIF4EBP1

Train set 0.955 0.979
Test set-GSE1145 0.810 0.883

Test set-GSE46224 0.750 0.859
PPCM-NF mRNA IFT43 Train set 0.985 0.993

GTF3A Test set-GSE1145 0.867 1.000
lncRNA PCBP1-AS1

LINC01128
LINC01554

Train set 0.985 0.979
Test set-GSE1145 0.933 1.000

LMRP ZFAS1/RBM47
AL513327.1/NCBP3

AC002350.2/DCBLD2

Train set 0.959 0.988

Note: ‘*’ denotes that the lncRNA is not re-annotated in GSE1145 test set.
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reported that mutations in the LMNA gene 
caused nuclear and cytoskeletal actin disor-
ders by affecting Lamin A/C, which further trig-
gered DCM initiation [34]. Similarly, the muta-
tions in MLP were related to the development 
of HCM via affecting the cytoskeleton protein 
assembling from actin [35]. Third, we found 
that the ‘Responses to zinc ion’ were signifi-
cantly enriched in ICM and PPCM, which was 
supported by a previous publication in which 
experimental data confirmed that the serum 
zinc level in ICM patients was significantly lower 
than that in normal donors [36]. Finally, we 
found that inflammatory response during HCM 
and PPCM progression might be mediated by 
the complement system, whereas ICM might be 
induced by cytokines. A comparative study veri-
fied that the increase in immune complexes 
concentration was associated with the de- 
crease in complement IgG, C4, and hemolytic 
activity in HCM, while the complement system 
did not play a role in ICM [37]. 

Furthermore, we assessed the extent of a dys-
regulated LMRP with three approaches: gene 
expression, gene interaction, and the influence 
of LMRP dysregulation. Therefore, our analysis 
not only reflected the expression changes of a 
single gene and the concurrent changes 
between two genes, but also revealed the influ-
ence of LMRP dysregulation on the expression 
changes of other genes. Compared with the tra-
ditional method, our method identified more 
dysregulated LMRPs and acquired more 
HF-related biological functions. Additionally, for 
diagnostic biomarkers we identified, we exam-
ined the gene expression between the different 
etiologies with HF and normal samples in mul-
tiple test sets (Supplementary Table 10 and 
Supplementary Figure 1). The results demon-
strated that the expression levels of some 
genes showed significant difference (t-test, P < 
0.05). Since the time-series gene expression 
data of human cardiomyopathy, which can pro-
vide more meaningful information than the 
data from steady-state, is unavailable, we con-
structed TO-BLMRN for HF with different etiolo-
gies based on the BFS algorithm. The advan-
tage of this method was that there was no need 
to correct or standardize the expression values 
at different time points and conditions. This 
method could be combined with time-series 
sequencing data and could detect more pre-
cise biological characteristics during disease 
progression.

Conclusion

In summary, the present study integrated mul-
tiple RNA-Seq datasets to construct time-
ordered dysregulated lncRNA-mRNA regulation 
networks in different causes that induced HF 
and explored the common and different biologi-
cal features during HF progression with differ-
ent etiologies. Meanwhile, several panels of 
diagnostic biomarkers were identified for differ-
ent causes of HF. These findings will provide 
new insights into the molecular mechanisms 
underlying the development of HF from differ-
ent causes. Our findings will also provide a 
basis for the personalized treatment of HF 
patients.
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Supplementary Figure 1. Boxplots of the 
expression levels of the identified diag-
nostic biomarkers in multiple test sets. 
(A) DCM, (B) HCM, (C) ICM, (D) PPCM.


